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Abstract. In this paper, we discuss various consequences of Hahn-Banach theorem
for bounded b-linear functional in linear n-normed space and describe the notion of
reflexivity of linear n-normed space with respect to bounded b-linear functional. The
concepts of strong convergence and weak convergence of a sequence of vectors with
respect to bounded b-linear functionals in linear n-normed space have been introduced
and some of their properties are being discussed.
Keywords: Hahn-Banach theorem, reflexivity of normed linear space, weak and strong
convergence, linear n-normed space, n-Banach space.

1. Introduction

The dual space of a normed linear space is the set of all bounded linear functionals
on the space. In some cases, the dual of the dual space, i. e., second dual space of
a normed space, under a specific mapping-called the natural embedding, is isomet-
rically isomorphic to the original space. Such normed spaces are known as reflexive
spaces. This concept was introduced by H.Hahn in 1927 and called reflexivity by
E.R Lorch in 1939.Hahn recognized the importance of reflexivity in his study of
linear equations in normed spaces.Weak convergence of sequence of vectors in a
normed space is a certain kind of interplay between a normed space and its dual
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space. This concept demonstrates a fundamental principle of functional analysis
which in turn states that the investigation of normed spaces is generally linked with
that of their dual spaces.Weak convergence has various applications in the calculus
of variations, general theory of differential equations and in fact, plays an important
role in many problems of analysis.

The notion of linear 2-normed space was introduced by S.Gahler [2]. A survey
of the theory of linear 2-normed space can be found in [1]. The concept of 2-Banach
space is briefly discussed in [8]. H.Gunawan and Mashadi [5] developed the gener-
alization of a linear 2-normed space for n ≥ 2. P. Ghosh and T. K. Samanta [3]
developed Uniform Boundedness Principile and Hahn-Banach theorem for bounded
b-linear functionals in linear n-normed space. They also studied slow convergence of
sequences of b-linear functionals in linear n-normed space [4].

In this paper, some important consequences of the Hahn-Banach theorem for
bounded b-linear functionals in case of linearn-normed spaces are discussed.We
shall introduce the notion of b-relexivity of linearn-normed space and see that
a closed subspce of a b-reflexiven-Banach space is also b-reflexive. Finally, b-weak
convergence and b-strong convergence of a sequence of vectors in a linearn-normed
space in terms of bounded b-linear functionals are introduced and characterized.

2. Preliminaries

Theorem 2.1. [6] Let {Tk } be a sequence of bounded linear operators Tk : Y →
Z from a Banach space Y into a normed space Z such that { ∥Tk (x ) ∥ } is
bounded for every x ∈ Y . Then the sequence of the norms { ∥Tk ∥ } is bounded.

Definition 2.1. [5] Let X be a linear space over the field K, where K is the real
or complex numbers field with dimX ≥ n, where n is a positive integer. A real
valued function ∥ ·, · · · , · ∥ : X n → R is called an n-norm on X if

(N1) ∥x 1, x 2, · · · , xn ∥ = 0 if and only if x 1, · · · , xn are linearly dependent,

(N2) ∥x 1, x 2, · · · , xn ∥ is invariant under permutations of x 1, x 2, · · · , xn,

(N3) ∥αx 1, x 2, · · · , xn ∥ = |α | ∥x 1, x 2, · · · , xn ∥ ∀ α ∈ K,

(N4) ∥x + y, x 2, · · · , xn ∥ ≤ ∥x, x 2, · · · , xn ∥ + ∥ y, x 2, · · · , xn ∥

hold for all x, y, x 1, x 2, · · · , xn ∈ X. The pair (X , ∥ ·, · · · , · ∥ ) is then called a
linear n-normed space. For particular value n = 2, the space X is said to be a
linear 2-normed space [2].

Throughout this paper, X will denote linearn-normed space over the field K
( R or C ) associated with the n-norm ∥ ·, · · · , · ∥.
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Definition 2.2. [5] A sequence {x k } ⊆ X is said to converge to x ∈ X if

lim
k→∞

∥x k − x, e 2, · · · , en ∥ = 0

for every e 2, · · · , en ∈ X and it is called a Cauchy sequence if

lim
l , k→∞

∥x l − x k, e 2, · · · , en ∥ = 0

for every e 2, · · · , en ∈ X. The space X is said to be complete or n-Banach space
if every Cauchy sequence in this space is convergent in X. 2-Banach space [8] is a
particular case of n-Banach space for n = 2.

Definition 2.3. [7] We define the following open and closed ball in X:

B { e 2, ···, en } ( a, δ ) = {x ∈ X : ∥x − a, e 2, · · · , en ∥ < δ } and

B { e 2, ···, en } [ a, δ ] = {x ∈ X : ∥x − a, e 2, · · · , en ∥ ≤ δ } ,
where a, e 2, · · · , en ∈ X and δ be a positive number.

Definition 2.4. [7] A subset G of X is said to be open in X if for all a ∈ G,
there exist e 2, · · · , en ∈ X and δ > 0 such that B { e 2, ···, en } ( a, δ ) ⊆ G.

Definition 2.5. [7] Let A ⊆ X. Then the closure of A is defined as

A =

{
x ∈ X | ∃ {x k } ∈ A with lim

k→∞
x k = x

}
.

The set A is said to be closed if A = A.

Definition 2.6. [3] Let W be a subspace of X and b 2, b 3, · · · , bn be fixed
elements in X and ⟨ b i ⟩ denote the subspaces of X generated by b i, for i =
2, 3, · · · , n. Then a map T : W × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ → K is called a b-linear
functional on W × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩, if for every x, y ∈ W and k ∈ K, the
following conditions hold:

(I) T (x + y , b 2 , · · · , bn ) = T (x, b 2, · · · , bn ) + T ( y, b 2, · · · , bn )

(II) T ( k x, b 2, · · · , bn ) = k T (x, b 2, · · · , bn ).

A b-linear functional is said to be bounded if there exists a real number M > 0
such that

|T (x, b 2, · · · , bn ) | ≤ M ∥x, b 2, · · · , bn ∥ ∀ x ∈ W.

The norm of the bounded b-linear functional T is defined by

∥T ∥ = inf {M > 0 : |T (x, b 2, · · · , bn ) | ≤ M ∥x, b 2, · · · , bn ∥ ∀ x ∈ W } .

The norm of T can be expressed by any one of the following equivalent formula:



186 P. Ghosh and T. K. Samanta

(I) ∥T ∥ = sup { |T (x, b 2, · · · , bn ) | : ∥x, b 2, · · · , bn ∥ ≤ 1 }.

(II) ∥T ∥ = sup { |T (x, b 2, · · · , bn ) | : ∥x, b 2, · · · , bn ∥ = 1 }.

(III) ∥T ∥ = sup
{

|T ( x, b 2, ···, bn ) |
∥ x, b 2, ···, bn ∥ : ∥x, b 2, · · · , bn ∥ ̸= 0

}
.

Also, we have

|T (x, b 2, · · · , bn ) | ≤ ∥T ∥ ∥x, b 2, · · · , bn ∥ ∀ x ∈ W.

Let X ∗
F denote the Banach space of all bounded b-linear functional defined on

X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ with respect to the above norm.

Definition 2.7. [3] A set A of bounded b-linear functionals defined on X ×
⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ is said to be pointwise bounded if for each x ∈ X, the set
{T (x, b 2, · · · , bn ) : T ∈ A} is a bounded set in K and uniformly bounded if
there exists K > 0 such that ∥T ∥ ≤ K ∀ T ∈ A.

Theorem 2.2. [3] Let X be a n-Banach space over the field K. If a set A of
bounded b-linear functionals on X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ is pointwise bounded, then
it is uniformly bounded.

Theorem 2.3. [3] Let X be a linear n-normed space over the field R and W
be a subspace of X. Then each bounded b-linear functional TW defined on W ×
⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ can be extended onto X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ with preservation
of the norm. In other words, there exists a bounded b-linear functional T defined
on X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ such that

T (x, b 2, · · · , bn ) = TW (x, b 2, · · · , bn ) ∀ x ∈ W

and ∥TW ∥ = ∥T ∥.

Theorem 2.4. [3] Let X be a linear n-normed space over the field R and x 0 be
an arbitrary non-zero element in X. Then there exists a bounded b-linear functional
T defined on X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ such that

∥T ∥ = 1 and T (x 0, b 2, · · · , bn ) = ∥x 0, b 2, · · · , bn ∥ .

Theorem 2.5. [3] Let X be a linear n-normed space over the field R and x ∈
X. Then

∥x, b 2, · · · , bn ∥ = sup

{
|T (x, b 2, · · · , bn ) |

∥T ∥
: T ∈ X ∗

F , T ̸= 0

}
.
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3. Consequences of Hahn-Banach theorem in linear n-normed space

In this section, we shall consider some immediate corollaries and important con-
sequences of the Hahn-Banach extension theorem for bounded b-linear functional
[3] in case of linearn-normed space.

Theorem 3.1. Let X be a linear n-normed space over the field R and let x, y
be two distinct points of X such that the set {x, b 2, · · · , bn } or { y, b 2, · · · , bn }
are linearly independent. Then there exists T ∈ X ∗

F such that

T (x, b 2, · · · , bn ) ̸= T ( y, b 2, · · · , bn ).

Proof. Consider, z = x − y. Then θ ̸= z ∈ X and therefore by Theorem 2.4,
there exists T ∈ X ∗

F such that

T ( z, b 2, · · · , bn ) = ∥ z, b 2, · · · , bn ∥

and ∥T ∥ = 1.Thus

T (x − y, b 2, · · · , bn ) = ∥x − y, b 2, · · · , bn ∥ ̸= 0

⇒ T (x, b 2, · · · , bn ) − T ( y, b 2, · · · , bn ) ̸= 0

⇒ T (x, b 2, · · · , bn ) ̸= T ( y, b 2, · · · , bn ).

Corollary 3.1. If X ̸= { θ } is a linear n-normed space, then there are always
non-trivial bounded b-linear functionals on X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩, i. e., X ̸=
{ θ } ⇒ X ∗

F ̸= {O }, O being a null operator.

Proof. This is an immediate consequence of Theorem 2.4.

Corollary 3.2. Let X be a linear n-normed space. Then for all T ∈ X ∗
F ,

T (x, b 2, · · · , bn ) = 0 ⇒ x = θ.

Proof. If possible let x ̸= θ. Then by Corollary 3.1, there exists T ∈ X ∗
F such

that T (x, b 2, · · · , bn ) ̸= 0.This is a contradiction to the given hypothesis. Hence
the results follows.

We now proceed to present another implication of the Hahn-Banach theorem for
bounded b-linear functional and establish that there are always sufficient bounded
b-linear functionals on a linear n-normed space which separate points from proper
subspaces.

Theorem 3.2. Let X be a linear n-normed space over the field R and W be a
subspace of X and let x 0 ∈ X such that x 0, b 2, · · · , bn are linearly independent
and suppose d = inf

x∈W
∥x 0 − x, b 2, · · · , bn ∥ > 0. Then there exists T ∈ X ∗

F

such that
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(I) T (x 0, b 2, · · · , bn ) = 1,

(II) T (x, b 2, · · · , bn ) = 0 ∀ x ∈ W and ∥T ∥ = 1
d .

Proof. Let W 0 = W + ⟨x 0 ⟩ be the space spannded by W and x 0. Since d > 0,
we have x 0 ̸∈ W . Therefore, each x ∈ W0 can be expressed uniquely in the form
x = y + αx 0, y ∈ W and α ∈ R.We define a functional as follows:

T 1 : W0 × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ → R, T 1 ( y + αx 0, b 2, · · · , bn ) = α.

Then clearly T 1 is a b-linear functional on W0 × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ satisfying

T 1 (x, b 2, · · · , bn ) = 0 ∀ x ∈ W and T 1 (x 0, b 2, · · · , bn ) = 1.

Also, for each x ∈ W0, we have

|T 1 (x, b 2, · · · , bn ) | = |T 1 ( y + αx 0, b 2, · · · , bn ) | = |α |

=
|α | ∥x, b 2, · · · , bn ∥
∥x, b 2, · · · , bn ∥

=
|α | ∥x, b 2, · · · , bn ∥

∥ y + αx 0, b 2, · · · , bn ∥

=
|α | ∥x, b 2, · · · , bn ∥

|α |
∥∥ y

α + x 0, b 2, · · · , bn
∥∥

=
∥x, b 2, · · · , bn ∥∥∥x 0 −
(
− y

α

)
, b 2, · · · , bn

∥∥
≤ ∥x, b 2, · · · , bn ∥

d

[
since − y

α
∈ W

]
.

This shows that T 1 is a bounded b-linear functional with ∥T 1 ∥ ≤ 1
d . To prove

∥T 1 ∥ ≥ 1
d , we consider a sequence {x k } , x k ∈ W such that

lim
k→∞

∥x 0 − x k, b 2, · · · , bn ∥ = d.

Now,

1 = |T 1 (x 0, b 2, · · · , bn ) − T 1 (x k, b 2, · · · , bn ) |
= |T 1 (x 0 − x k, b 2, · · · , bn ) |
≤ ∥T 1 ∥ ∥x 0 − x k, b 2, · · · , bn ∥ .
≤ ∥T 1 ∥ lim

k→∞
∥x 0 − x k, b 2, · · · , bn ∥

= ∥T 1 ∥ d ⇒ ∥T 1 ∥ ≥ 1

d
.

Thus, we have established that there exists a bounded b-linear functional T 1 on
W0 × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ such that

T 1 (x, b 2, · · · , bn ) = 0 ∀ x ∈ W, T 1 (x 0, b 2, · · · , bn ) = 1 and ∥T 1 ∥ =
1

d
.
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Applying the Theorem 2.3, we obtain a b-linear functional T ∈ X ∗
F such that

T (x, b 2, · · · , bn ) = T 1 (x, b 2, · · · , bn ) ∀ x ∈ W0 and ∥T ∥ = ∥T 1 ∥ =
1

d
.

So,

T (x, b 2, · · · , bn ) = T 1 (x, b 2, · · · , bn ) = 0 ∀ x ∈ W and

T (x 0, b 2, · · · , bn ) = T 1 (x 0, b 2, · · · , bn ) = 1.

Hence, the proof of the theorem is complete.

Remark 3.1. Theorem 3.2 is a generalization of Theorem 2.4 and its derivation is as
follows:

Consider W = { 0 } and d = ∥x 0, b 2, · · · , bn ∥, then by Theorem 3.2, there exists
a bounded b-linear functional T 0 ∈ X ∗

F such that

∥T 0 ∥ =
1

d
=

1

∥x 0, b 2, · · · , bn ∥ and T 0 (x 0, b 2, · · · , bn ) = 1.

Now, for all x ∈ X, we define

T (x, b 2, · · · , bn ) = ∥x 0, b 2, · · · , bn ∥ T 0 (x, b 2, · · · , bn ).

Then

T (x 0, b 2, · · · , bn ) = ∥x 0, b 2, · · · , bn ∥ T 0 (x 0, b 2, · · · , bn )

= ∥x 0, b 2, · · · , bn ∥ .

Also,

∥T ∥ = sup

{
|T (x, b 2, · · · , bn ) |
∥x, b 2, · · · , bn ∥ : ∥x, b 2, · · · , bn ∥ ̸= 0

}
= sup

{
| ∥x 0, b 2, · · · , bn ∥ T 0 (x, b 2, · · · , bn ) |

∥x, b 2, · · · , bn ∥ : ∥x, b 2, · · · , bn ∥ ̸= 0

}
= ∥x 0, b 2, · · · , bn ∥ sup

{
|T 0 (x, b 2, · · · , bn ) |
∥x , b 2 , · · · , bn ∥ : ∥x, b 2, · · · , bn ∥ ̸= 0

}
= ∥x 0, b 2, · · · , bn ∥ ∥T 0 ∥ = 1.

Corollary 3.3. Let X be a linear n-normed space over the field R and W be a
subspace of X and let x 0 ∈ X such that x 0, b 2, · · · , bn are linearly independent
and suppose d = inf

x∈W
∥x 0 − x, b 2, · · · , bn ∥ > 0. Then

(I) T (x 0, b 2, · · · , bn ) = d,

(II) T (x, b 2, · · · , bn ) = 0 ∀ x ∈ W and ∥T ∥ = 1, for some T ∈ X ∗
F .
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Proof. By Theorem 3.2, there exists T 1 ∈ X ∗
F such that

T 1 (x 0, b 2, · · · , bn ) = 1, T 1 (x, b 2, · · · , bn ) = 0 ∀ x ∈ W

and ∥T 1 ∥ = 1
d . Define the bounded b-linear functional T on X × ⟨ b 2 ⟩ × · · · ×

⟨ bn ⟩ by T = d T 1. Then

T (x 0, b 2, · · · , bn ) = d T 1 (x 0, b 2, · · · , bn ) = d ,

T (x, b 2, · · · , bn ) = d T 1 (x, b 2, · · · , bn ) = 0 ∀ x ∈ W

with ∥T ∥ = d ∥T 1 ∥ = d
d = 1.This completes the proof.

Corollary 3.4. Let X be a linear n-normed space over the field R and W be
a closed linear subspace of X and let x 0 ∈ X − W such that x 0, b 2, · · · , bn
are linearly independent and suppose d = inf

x∈W
∥x 0 − x, b 2, · · · , bn ∥. Then there

exists T ∈ X ∗
F such that

(I) T (x 0, b 2, · · · , bn ) = 1,

(II) T (x, b 2, · · · , bn ) = 0 ∀ x ∈ W and ∥T ∥ = 1
d .

Proof. It can be easily verified that inf
x∈W

∥x 0 − x, b 2, · · · , bn ∥ = 0 if and only

if x 0 ∈ W . But W = W and it follows that x 0 ̸∈ W . Hence

d = inf
x∈W

∥x 0 − x, b 2, · · · , bn ∥ > 0.

Now, the proof of this corollary follows from Theorem 3.2.

Corollary 3.5. Let X be a linear n-normed space over the field R and W be a
closed linear subspace of X and let x 0 ∈ X − W such that x 0, b 2, · · · , bn are
linearly independent. Then there exists T ∈ X ∗

F such that

T (x 0, b 2, · · · , bn ) ̸= 0 and T (x, b 2, · · · , bn ) = 0 ∀ x ∈ W.

Proof. Proof of this corollary directly follows from that of the corollary 3.4.

The Hahn-Banach Theorem for bounded b-linear functional and its consequences
can be used to revel much among the properties of linearn-normed space and its
dual space.Next theorem relates separability of the dual space to the separability
of its original space.

Theorem 3.3. Let X be a linear n-normed space over the field R and X ∗
F be

the Banach space of all bounded b-linear functionals defined on X × ⟨ b 2 ⟩ × · · · ×
⟨ bn ⟩. Then the space X is separable if X ∗

F is separable.
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Proof. Since X ∗
F is separable, there exists a countable set S = { Tk ∈ X ∗

F : k ∈ N }
such that S is dense in X ∗

F , i. e., S = X ∗
F . For each k ∈ N, choose x k ∈ X

such that ∥x k, b 2, · · · , bn ∥ = 1 and |Tk (x k, b 2, · · · , bn ) | ≥ 1
2 ∥Tk ∥. Let W

be the closed subspace of X generated by the sequence {x k }∞
k=1, i. e., W =

span {x k ∈ X : k ∈ N }. Suppose W ̸= X. Let x 0 ∈ X −W such that x 0, b 2,
· · · , bn are linearly independent. By Corollary 3.5, there exists 0 ̸= T ∈ X ∗

F such
that

T (x 0, b 2, · · · , bn ) ̸= 0 and T (x, b 2, · · · , bn ) = 0 ∀ x ∈ W.

Since
{x k }∞

k=1 ⊆ W , T (x k, b 2, · · · , bn ) = 0, k ∈ N.
Thus,

1

2
∥Tk ∥ ≤ |Tk (x k, b 2, · · · , bn ) |

= |Tk (x k, b 2, · · · , bn ) − T (x k, b 2, · · · , bn ) |
≤ ∥Tk − T ∥ ∥x k, b 2, · · · , bn ∥
= ∥Tk − T ∥ [ since ∥x k, b 2, · · · , bn ∥ = 1 ].

Again, since S = X ∗
F , for each T ∈ X ∗

F , there exists a sequence {Tk } in S such
that lim

k→∞
Tk = T . Therefore,

∥T ∥ ≤ ∥Tk − T ∥ + ∥Tk ∥ ≤ 3 ∥Tk − T ∥ ∀ k ∈ N.

Taking limit on both sides as k → ∞, it follows that T = 0, which contradicts
the assumption that W ̸= X. Hence, W = X and thus X is separable.

4. Reflexivity of linear n-normed space

Recall that given a linearn-normed space X ̸= { 0 }, the dual space X ∗
F is a

normed space with respect to the norm ∥ · ∥ : X ∗
F → R defined by

∥T ∥ = sup { |T (x, b 2, · · · , bn ) | : x ∈ X, ∥x, b 2, · · · , bn ∥ = 1 } .

Furthermore, X ∗
F is a Banach space.Also, by Corollary 3.1, X ∗

F ̸= {O } and,
therefore, as a normed space X ∗

F has its own dual space (X ∗
F )

∗
, denoted by X ∗ ∗

F

and is called the second dual space of X, which is again a Banach space under the
norm

∥φ ∥ = sup { |φ (T ) | : T ∈ X ∗
F , ∥T ∥ ≤ 1 } , φ ∈ X ∗ ∗

F .

Theorem 4.1. Let X be a real linear n-normed space.Given x ∈ X, let

φ( x, F ) (T ) = T (x, b 2, · · · , bn ) ∀ T ∈ X ∗
F .(4.1)

Then φ( x, F ) is a bounded linear functional on X ∗
F . Furthermore, the mapping

(x, b 2, · · · , bn ) → φ( x, F ) is an isometric isomorphism of X × ⟨ b 2 ⟩ × · · · ×
⟨ bn ⟩ onto the subspace

{
φ( x, F ) : (x, b 2, · · · , bn ) ∈ X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩

}
of X ∗ ∗

F .
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Proof. Let α, β ∈ R. Then, for all T 1, T 2 ∈ X ∗
F , we have

φ( x, F ) (αT 1 + β T 2 ) = (αT 1 + β T 2 ) (x, b 2, · · · , bn )
= αT 1 (x, b 2, · · · , bn ) + β T 2 (x, b 2, · · · , bn )
= αφ( x, F ) (T 1 ) + β φ( x, F ) (T 2 ).

So, φ( x , F ) is linear functional. Also, for all T ∈ X ∗
F , we have∣∣φ( x, F ) (T )

∣∣ = |T (x, b 2, · · · , bn ) | ≤ ∥x, b 2, · · · , bn ∥ ∥T ∥.

Consequently, φ( x, F ) ∈ X ∗ ∗
F with

∥∥φ( x, F )

∥∥ ≤ ∥x, b 2, · · · , bn ∥.Moreover,
such φ( x, F ) is unique. So, for every fixed x ∈ X there corresponds a unique
bounded linear functional φ( x, F ) ∈ X ∗ ∗

F given by (4.1). This defines a function
J : X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ → X ∗ ∗

F given by J (x, b 2, · · · , bn ) = φ( x, F ).We
now verify that J is an isomorphism between X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ and the
range of J , which is a subspace of X ∗ ∗

F .

(I) Let x, y ∈ X and α, β ∈ R. Then for all T ∈ X ∗
F , we have

[ J (αx + β y, b 2, · · · , bn ) ] (T ) = φ(αx+ β y, F ) (T )

= T (αx + β y, b 2, · · · , bn )
= α T (x, b 2, · · · , bn ) + β T ( y, b 2, · · · , bn )
= α φ( x, F ) (T ) + β φ( y, F ) (T ) =

(
α φ( x, F ) + β φ( y, F )

)
(T )

= [α J (x, b 2, · · · , bn ) + β J ( y, b 2, · · · , bn ) ] (T ).

⇒ J (αx+ β y, b 2, · · · , bn) = αJ (x, b 2, · · · , bn ) + βJ ( y, b 2, · · · , bn ) .

This shows that J is a b-linear operator.

(II) J preserves the norm:
For each (x, b 2, · · · , bn ) ∈ X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩, we have

∥ J (x, b 2, · · · , bn ) ∥ =
∥∥φ( x, F )

∥∥
= sup

{ ∣∣φ( x, F ) (T )
∣∣

∥T ∥
: T ∈ X ∗

F , T ̸= 0

}

= sup

{
|T (x, b 2, · · · , bn ) |

∥T ∥
: T ∈ X ∗

F , T ̸= 0

}
= ∥x, b 2, · · · , bn ∥ [ by Theorem 2.5 ].(4.2)

(III) J is injective:
Let x, y ∈ X with x ̸= y such that {x, b 2, · · · , bn } or { y, b 2, · · · , bn }
are linearly independent. Then by (4.2), we get

∥x − y, b 2, · · · , bn ∥ ̸= 0

⇒ ∥ J (x − y, b 2, · · · , bn ) ∥ ̸= 0

⇒ ∥ J (x , b 2 , · · · , bn ) − J ( y , b 2 , · · · , bn ) ∥ ̸= 0

⇒ J (x, b 2, · · · , bn ) ̸= J ( y, b 2, · · · , bn ) .
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We thus conclude that J is an isomeric isomorphism of X × ⟨ b 2 ⟩ ×· · · × ⟨ bn ⟩
onto the subspace of X ∗ ∗

F . This completes the proof.

Definition 4.1. Let X be a linear n-normed space over the field R. The isometric
isomorphism J : X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ → X ∗ ∗

F defined by

J (x, b 2, · · · , bn ) = φ( x, F ) ∀ x ∈ X and φ( x, F ) ∈ X ∗ ∗
F

is called the b-natural embedding or the b-canonical mapping of X × ⟨ b 2 ⟩ × · · · ×
⟨ bn ⟩ into the second dual space X ∗ ∗

F .

Definition 4.2. A linear n-normed space X is said to be b-reflexive if the b-
natural embedding J , maps the space X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ onto its second
dual space X ∗ ∗

F , i. e., J (X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ ) = X ∗ ∗
F .

Theorem 4.2. Let {xk }∞
k=1 be a sequence in a linear n-normed space X. Suppose

sup
1≤ k<∞

|T (xk, b 2, · · · , bn ) | < ∞ ∀ T ∈ X ∗
F . Then

sup
1≤ k<∞

∥x k, b 2, · · · , bn ∥ < ∞.

Proof. Consider the b-natural embedding

(x, b 2, · · · , bn ) → φ( x, F ), (x, b 2, · · · , bn ) ∈ X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ .

Since {xk }∞
k=1 is a sequence of vectors in X,

{
φ( xk, F )

}∞
k=1

is a sequence of
bounded linear functionals in X ∗ ∗

F . Also,∣∣φ( xk, F ) (T )
∣∣ = |T (xk, b 2, · · · , bn ) | ≤ sup

1≤ k<∞
|T (xk, b 2, · · · , bn ) | .

Therefore,
{
φ( xk, F ) (T )

}∞
k=1

is bounded for each T ∈ X ∗
F . Applying the Prin-

ciple of Uniform Boundedness (Theorem 2.1 ), to the family
{
φ( xk, F )

}∞
k=1

, we

conclude that
{∥∥φ( xk, F )

∥∥}∞
k=1

is bounded and hence by (4.2), the sequence

{ ∥xk, b 2, · · · , bn ∥ }∞
k=1 is bounded.This proves the theorem.

Theorem 4.3. A closed subspace of a b-reflexive n-Banach space is b-reflexive.

Proof. Let X be a b-reflexive n-Banach space and Y be a closed subspace of
X. Let T : X ∗

F → Y ∗
F be an operator defined by

(T f ) ( y, b 2, · · · , bn ) = f ( y, b 2, · · · , bn ) ∀ y ∈ Y, f ∈ X ∗
F ,

where Y ∗
F denotes the Banach space of all bounded b-linear functionals defined on

Y × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩. Then for f ∈ X ∗
F ,

∥T f ∥ = sup

{
| f ( y, b 2, · · · , bn ) |
∥ y, b 2, · · · , bn ∥

: ∥ y, b 2, · · · , bn ∥ ̸= 0

}
= ∥ f ∥.



194 P. Ghosh and T. K. Samanta

Let JY be the b-natural embedding of Y × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ into Y ∗ ∗
F . That is,

JY ( y, b 2, · · · , bn ) = ψ( y, F ) ∀ y ∈ Y, ψ( y, F ) ∈ Y ∗ ∗
F . Define

T 1 : Y ∗ ∗
F → X ∗ ∗

F by
(
T 1 ψ( y, F )

)
( f ) = ψ( y, F ) (T f ), f ∈ X ∗

F .We now
verify that T 1 ψ( y, F ) ∈ X ∗ ∗

F .

(I) T 1 ψ( y, F ) is linear functional:
Let α, β ∈ R. Then for every f, g ∈ X ∗

F and y ∈ Y , we have(
T 1 ψ( y, F )

)
(α f + β g ) ( y, b 2, · · · , bn )

= ψ( y , F ) [T (α f + β g ) ] ( y , b 2 , · · · , bn )
= ψ( y , F ) [α T ( f ( y , b 2 , · · · , bn ) ) + β T ( g ( y , b 2 , · · · , bn ) ) ]
= αψ( y , F ) (T f ) ( y, b 2, · · · , bn ) + βψ( y , F ) (T g ) ( y, b 2, · · · , bn )
=

[
α ψ( y , F ) (T f ) + β ψ( y , F ) (T g )

]
( y , b 2 , · · · , bn )

=
[
α

(
T 1 ψ( y , F )

)
( f ) + β

(
T 1 ψ( y , F )

)
( g )

]
( y , b 2 , · · · , bn ) .

⇒
(
T 1ψ( y , F )

)
(α f + β g ) = α

(
T 1ψ( y , F )

)
( f ) + β

(
T 1ψ( y , F )

)
( g ).

(II) T 1 ψ( y , F ) is bounded:
Since ψ( y , F ) preserves the norm,∥∥ (T 1 ψ( y , F )

)
( f )

∥∥ =
∥∥ψ( y , F ) (T f )

∥∥ = ∥T f ∥ = ∥ f ∥.

So, T 1 ψ( y , F ) ∈ X ∗ ∗
F and hence T 1 is well-defined. Since X is b-reflexive, the

b-natural embedding JX : X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ → X ∗ ∗
F defined by

JX (x , b 2 , · · · , bn ) = φ( x , F ) , φ( x , F ) ∈ X ∗ ∗
F

is such that JX (X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ ) = X ∗ ∗
F . Therefore, T 1ψ( y , F ) ∈ X ∗ ∗

F

implies that J − 1
X

(
T 1 ψ( y , F )

)
∈ X × ⟨ b 2 ⟩ ×· · · × ⟨ bn ⟩.Write (x, b 2, · · · , bn ) =

J − 1
X

(
T 1 ψ( y , F )

)
so that JX (x , b 2 , · · · , bn ) = T 1 ψ( y , F ).We need to prove

that x ∈ Y . Let, if possible, x ∈ X − Y such that x, b 2, · · · , bn are linearly
independent. Then by Corollary 3.5, there exists a bounded b-linear functional
f ∈ X ∗

F such that f (x , b 2 , · · · , bn ) ̸= 0 and f ( y , b 2 , · · · , bn ) = 0 for
all y ∈ Y . Consequently, T f = 0 and as such ψ( y , F ) (T f ) = 0.This leads
to φ( x , F ) ( f ) = 0 and hence f (x , b 2 , · · · , bn ) = 0, which is a contradic-

tion. Thus, we conclude that (x , b 2 , · · · , bn ) = J − 1
X

(
T 1 ψ( y F )

)
∈ Y × ⟨ b 2 ⟩ ×

· · · × ⟨ bn ⟩. This verifies that J − 1
X (T 1 (Y ∗ ∗

F ) ) ⊂ Y × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩. Now,
let ψ ∈ Y ∗ ∗

F . Set (x 0 , b 2 , · · · , bn ) = J − 1
X (T 1 ψ ) so that (x 0 , b 2 , · · · , bn ) ∈

Y × ⟨ b 2 ⟩ ×· · · × ⟨ bn ⟩. Let g ∈ Y ∗
F . Then there exists a b-linear functional f ∈ X ∗

F

such that

f ( y , b 2 , · · · , bn ) = g ( y , b 2 , · · · , bn ) ∀ y ∈ Y and g = T f.
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Therefore,

ψ ( g ) = ψ (T f ) = (T 1 ψ ) ( f ) = [ JX (x 0 , b 2 , · · · , bn ) ] ( f )
= φ( x 0 , F ) ( f ) = f (x 0, b 2, · · · , bn ) = g (x 0, b 2, · · · , bn ) .

This proves that JY (x 0 , b 2 , · · · , bn ) = ψ( x 0 , F ) and hence

JY (Y × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ ) = Y ∗ ∗
F .

This proves that Y is b-reflexive.

5. b-weak convergence and b-strong convergence in linear n-normed
space

In this section, we shall introduce b-weak convergence and b-strong convergence
relative to bounded b-linear functionals in linearn-normed space and establish that
these two types of convergence are equivalent in case of finite dimensional linearn-
normed space.

Definition 5.1. A sequence {x k } in a linear n-normed space X is said to be
b-weakly convergent if there exists an element x ∈ X such that for every T ∈ X ∗

F ,

lim
k→∞

T (x k , b 2 , · · · , bn ) = T (x , b 2 , · · · , bn ).

The vector x is called the b-weak limit of the sequence {x k } and we say that {x k }
converges b-weakly to x. Note that, for each T ∈ X ∗

F , {T (x k , b 2 , · · · , bn ) } is
a sequence of scalars in K. Therefore, b-weak convergence means convergence of the
sequence of scalars {T (x k , b 2 , · · · , bn ) } for every T ∈ X ∗

F .

Theorem 5.1. Let {x k } be b-weakly convergent sequence in X. Then

(I) the b-weak limit of {x k } is unique.

(II) { ∥x k , b 2 , · · · , bn ∥ } is bounded sequence in K.

Proof. (I) Suppose that {x k } converges b-weakly to x as well as to y. Then for
all T ∈ X ∗

F , we get

T (x , b 2 , · · · , bn ) = lim
k → ∞

T (x k , b 2 , · · · , bn )

= T ( y , b 2 , · · · , bn ).

This shows that

T (x , b 2 , · · · , bn ) − T ( y , b 2 , · · · , bn ) = 0 ∀ T ∈ X ∗
F .

⇒ T (x − y , b 2 , · · · , bn ) = 0 ∀ T ∈ X ∗
F .
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Hence, by Corollary 3.2, x = y.

Proof of (II) Since {x k } converges b-weakly to x, we have

lim
k → ∞

T (x k , b 2 , · · · , bn ) = T (x , b 2 , · · · , bn ) ∀ T ∈ X ∗
F .

Therefore, for each T ∈ X ∗
F , {T (x k , b 2 , · · · , bn ) } is a convergent sequence in

K and so the sequence {T (x k , b 2 , · · · , bn ) } is bounded.Consequently, there
exists a constant KT ( depending on T ) such that |T (x k , b 2 , · · · , bn ) | ≤
KT ∀ k ∈ N. Let (x , b 2 , · · · , bn ) → φ( x , F ) be the b-natural embedding
of X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ into X ∗ ∗

F . Then for each k ∈ N, by (4.2), we have∥∥φ( x k , F )

∥∥ = ∥x k , b 2 , · · · , bn ∥

and ∣∣φ( xk , F ) (T )
∣∣ = |T (x k , b 2 , · · · , bn ) | ≤ KT ∀ k ∈ N.

Thus,
{
φ( xk , F ) (T )

}
is bounded for each T ∈ X ∗

F . But the space X ∗
F be-

ing a Banach space, by the Principle of Uniform Boundedness (Theorem 2.1 ),
it follows that

{∥∥φ( x k , F )

∥∥} is bounded and hence { ∥x k , b 2 , · · · , bn ∥ }∞
k=1 is

bounded.

Theorem 5.2. Let {x k } and { y k } be two sequences in a linear n-normed space
X. If {x k } and { y k } converges b-weakly to x and y, respectively then for any
scalar α and β, {αx k + β y k } converges b-weakly to αx + β y.

Proof. Since {x k } and { y k } converges b-weakly to x and y, we have

lim
k → ∞

T (x k , b 2 , · · · , bn ) = T (x , b 2 , · · · , bn ) and

lim
k → ∞

T ( y k , b 2 , · · · , bn ) = T ( y , b 2 , · · · , bn ) ∀ T ∈ X ∗
F .

Now, for all T ∈ X ∗
F , we have

lim
k → ∞

T (αx k + β y k , b 2 , · · · , bn )

= lim
k → ∞

[T (αx k , b 2 , · · · , bn ) + T (β y k , b 2 , · · · , bn ) ]

= lim
k → ∞

αT (x k , b 2 , · · · , bn ) + lim
k → ∞

β T ( y k , b 2 , · · · , bn )

= αT (x , b 2 , · · · , bn ) + β T ( y , b 2 , · · · , bn )
= T (αx + β y , b 2 , · · · , bn ).

This shows that {αx k + β y k } converges b-weakly to αx + β y.

Theorem 5.3. A sequence {x k } in X converges b-weakly to x ∈ X if and only
if

(I) the sequence { ∥x k , b 2 , · · · , bn ∥ } is bounded and
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(II) lim
k → ∞

T (x k , b 2 , · · · , bn ) = T (x , b 2 , · · · , bn ) ∀ T ∈ M , where M is

fundamental or total subset of X ∗
F .

Proof. In the case of b-weak convergence, (I) follows from the Theorem 5.1 and
since M ⊂ X ∗

F , (II) follows from the definition of b-weak convergence of {x k }.
Conversely, suppose that (I) and (II) hold . By (I), there exists a constant L

such that

∥x k , b 2 , · · · , bn ∥ ≤ L ∀ k ∈ N and ∥x , b 2 , · · · , bn ∥ ≤ L.

Since spanM = X ∗
F , for each T ∈ X ∗

F , there exists a sequence {Tm } in spanM
such that lim

m → ∞
Tm = T . Hence, for any given ϵ > 0, there exists Tm ∈ spanM

such that ∥Tm − T ∥ < ϵ
3L . Furthermore, by the hypothesis (II), there exists

K ∈ N such that

|Tm (x k , b 2 , · · · , bn ) − Tm (x , b 2 , · · · , bn ) | <
ϵ

3
∀ m > K.

Now, for m > K, we have

|T (x k , b 2 , · · · , bn ) − T (x , b 2 , · · · , bn ) |
≤ |T (x k , b 2 , · · · , bn ) − Tm (x k , b 2 , · · · , bn ) | +
+ |Tm (x k , b 2 , · · · , bn ) − Tm (x , b 2 , · · · , bn ) |
+ |Tm ( x , b 2 , · · · , bn ) − T ( x , b 2 , · · · , bn ) |

< ∥Tm − T ∥ ∥x k , b 2 , · · · , bn ∥ +
ϵ

3
+ ∥Tm − T ∥ ∥x , b 2 , · · · , bn ∥

<
ϵ

3L
· L +

ϵ

3
+

ϵ

3L
· L =

ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ

⇒ lim
k → ∞

T (x k , b 2 , · · · , bn ) = T (x , b 2 , · · · , bn ) ∀ T ∈ X ∗
F .

Hence, {x k } converges b-weakly to x ∈ X.

Definition 5.2. A sequence {x k } in X is said to be b-strongly convergent if
there exists a vector x ∈ X such that lim

k→∞
∥x k − x , b 2 , · · · , bn ∥ = 0.The

vector x is called b-strong limit and we say that {x k } converges b-strongly to x.

Theorem 5.4. If a sequence {x k } in X converges b-strongly to x, then {x k }
converges b-weakly to x in X.

Proof. Suppose {x k } converges b-strongly to x. Then for every T ∈ X ∗
F , we have

|T (x k , b 2 , · · · , bn ) − T (x , b 2 , · · · , bn ) |
= |T (x k − x , b 2 , · · · , bn ) | ≤ ∥T ∥ ∥x k − x , b 2 , · · · , bn ∥

→ 0 as k → ∞ [ since {x k } converges b-strongly to x ]

⇒ lim
k → ∞

T (x k , b 2 , · · · , bn ) = T (x , b 2 , · · · , bn ) ∀ T ∈ X ∗
F .

Hence, {x k } converges b-weakly to x in X.
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Theorem 5.5. In a finite dimensional linear n-normed space, b-weak convergence
implies b-strong convergence.

Proof. Let X be a linearn-normed space with dimX = d ≥ n. Then there exists
a basis { e 1 , e 2 , · · · , e d } for X. Let {x k } be a sequence in X such that {x k }
converges b-weakly to x. Now, we can write

x k = a k , 1 e 1 + a k , 2 e 2 + · · · + a k , d e d , ( k = 1 , 2 , · · · ) ,
x = a 1 e 1 + a 2 e 2 + · · · · · · + a d e d ,

where a k , 1, a k , 2, · · · , a k , d , a 1, a 2, · · · , a d ∈ R. Consider the b-linear func-
tionals {T 1 , T 2 , · · · , T d } in X ∗

F such that T i ( e j , b 2 , · · · , bn ) = 1 if i = j
and T i ( e j , b 2 , · · · , bn ) = 0 if i ̸= j, 1 ≤ i, j ≤ d. Now, for 1 ≤ i ≤ d, we
have

T i (x k , b 2 , · · · , bn ) = T i

 d∑
j =1

a k , j e j , b 2 , · · · , bn


=

d∑
j =1

a k , j T i ( e j , b 2 , · · · , bn ) = a k , i

and similarly, T i (x , b 2 , · · · , bn ) = a i, ( 1 ≤ i ≤ d ). Since

lim
k → ∞

T (x k , b 2 , · · · , bn ) = T (x , b 2 , · · · , bn ) ∀ T ∈ X ∗
F ,

in particular, we have

lim
k → ∞

T i (x k , b 2 , · · · , bn ) = T i (x , b 2 , · · · , bn ), ( 1 ≤ i ≤ d ).

Thus,
lim

k → ∞
ak , i = a i , ( 1 ≤ i ≤ d ).(5.1)

Therefore,

∥x k − x , b 2 , · · · , bn ∥ =

∥∥∥∥∥
d∑

i=1

( ak , i − a i ) e i , b 2 , · · · , bn

∥∥∥∥∥
≤

d∑
i=1

| ak , i − a i | ∥ e i , b 2 , · · · , bn ∥

→ 0 as k → ∞ [ by ( 5.1 ) ]

⇒ lim
k → ∞

∥x k − x , b 2 , · · · , bn ∥ = 0

and hence {x k } converges b-strongly to x in X.
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