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Abstract. In this paper, we introduce some new classes of s-Godunova-Levin functions,
which are called (s, m)-Godunova-Levin functions of first and second kinds. We show
that these classes contain some previously known classes of convex functions. Finally,
we establish some new Ostrowski inequalities for (s, m)-Godunova-Levin functions via
fractional integrals. Some special cases are also discussed.
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1. Introduction

Over the years theory of convex functions has received special attention from
many researchers. Consequently, the classical concepts of convex functions have
been extended and generalized in various different directions using novel and
innovative ideas and techniques, see [1, 2, 3,4, 5, 7, 9, 13, 16, 17, 18, 19]. Inspired
by this, Dragomir [2, 3] has introduced and investigated a new class of Godunova-
Levin functions which is called s-Godunova-Levin functions of second kind. Noor
et al. [19] extended the class of Godunova-Levin functions and introduced the
classes of s-Godunova-Levin functions of first kind, logarithmic s-Godunova-Levin
functions of first and second kinds.

The interrelationship between theory of convex functions and theory of in-
equalities led many researchers to extend various classical inequalities known in
the literature for these newly developed generalizations of classical convex func-
tions. For details readers are referred to [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 21, 23, 24, 25].

Let f : I c [0,00) —» R be a differentiable mapping on I, the interior of the
interval |, such that f’ € L[a,b], where a,b € | with a < b. If [f’(X)] < M, then the
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following inequality,

b

f(x)—ﬁff(u)du

a

(1.1)

.M [(x—a)2+(b—x)2
_b_ 2 7

holds. This result is known in the literature as the Ostrowski inequality [20].

Motivated by this ongoing research, we introduce new notions of (s, m)-Godunova-
Levin functions of first and second kind in this paper. We show that these classes
unify several other known classes of convex functions. We also derive some new
Ostrowski type inequalities for (s, m)-Godunova-Levin functions of second kind.
Some special cases are also discussed which can be derived from our results. The
ideas and techniques of this paper may stimulate further research.

2. Preliminaries

In this section, we recall some preliminary concepts. Firstofall, letl = [a,b] ¢ R
be an interval and IR be the set of real numbers.

Definition 2.1. [4] A nonnegative function f : | — R is said to be P-function, if
(2.1) f(tx+ (1 -t)y) < f(x) + f(y), Yx,yel,t€[0,1].

Definition 2.2. [7] A function f : | — R is said to be Godunova-Levin function, if

f(x) . f(y)
(2.2) f(tx+ (1 -ty) < - +m,\7’x,ye I,te(0,1).
For some further details on Godunova-Levin type of functions, see [14, 22].
Using the idea of Noor et al. [19], we define a new class of (s, m)-Godunova-Levin
functions of first kind.

Definition 2.3. A function f : | — Ris said to be (s, m)-Godunova-Levin functions

of firstkind or f € Q%S m)’ if ¥s,m € (0, 1], we have

23) ftx+md—-1y)< tisf(x) + m( )f(y), ¥x,y el te(01).

1-1t8
We would like to mention that Definition 2.3 is also introduced and studied by LI
et al. [9] independently. It is obvious that for s = 1, m = 1 the definition of (s, m)-
Godunova-Levin functions of first kind collapses to the definition of Godunova-
Levin functions. For m = 1 in Definition 2.3 we have the definition of s-Godunova-
Levin functions of first kind, which is introduced and investigated by Noor et al.
[19].

Motivated by the idea of Dragomir [2, 3], we again introduce a new class of s-
Godunova-Levin function of second kind and derive some Ostrowski type in-
equalities. This is the main motivation of this paper.
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Definition 2.4. A function f : | — Rissaid to be (s, m)-Godunova-Levin functions
of second kind or f € Qfs )’ if s e [0,1], m e (0, 1], we have

(2.4) fax+ma—¢w)s54@)+m(—3—Jf@vayeLte(an.

t 1-1)s
It is obvious that for s = 0,m = 1, (s,m)-Godunova-Levin functions of second
kind reduces to P-functions. If s = 1,m = 1, it then reduces to Godunova-Levin
functions. For m = 1, we have the definition of s-Godunova-Levin function of
second kind introduced and studied by Dragomir [2, 3].
Now we discuss a preliminary definition from fractional calculus which will be
helpful in deriving our main results.

Definition 2.5. [8] Leta > 0 and f € L;[a,b]. Then Riemann-Liouville integrals
Ji. fand Jg‘,f of order a > 0 are defined by

Jgumzfayfa—owwamn X>a,

b
Jf(x) = % f(t —x)*Lf(t)dt, x<b,

where I'(.) is the Gamma function.
Lemma2.1. [25] Let f : [a,b] — IR be a differentiable function on (a, b) with a < b. If
f” € Ly[a, b], then for all x € [a,b] and a > 0, we have

x—a)*+ (b —x)* INa+1)
( b—a )“”_ )

Pgﬂ@+J;um]

(b -

1 1
_ aya+l a+l
_ 7(ij‘)a f € (tx + (1 — ta)dt - T@a f ' (tx + (1 - b)dt.

0 0

3. Main Results

In this section, we derive our main results.

Theorem 3.1. Let f : [a,b] — IR be a differentiable function on (a,b) with a < b and
f’ e Li[a,b]. If |f’] is (s, m)-Godunova-Levin function of second kind and |f’(X)| < M,
then, for & > 0, we have

(x—a)*+ (b —x)* I'a+1)
( b—a )“”‘ b-a
< min{31(a, b;m, a; x), 92(a, b; m, a; X)},

Jfﬂ@+ﬂjmm
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where
d1(a, b;m, a; x)
M (x—a)*?! + (b — x)2*!
T l+a-s bh—a
M1 — )T + 1) [ =Y (&)1+ (b - x4 1/(2))
- I'2+a--s) bh-a ’
and

I2(a, b;m, a; x)
F(l—s)l"(oz+ 1)
[1+ |f(/ I I'2+a--s)

[(X _ a)a+l +(b- X)‘Hl]

b-a

Proof. Using Lemma 2.1 and the fact that | f’| is (s, m)-Godunova-Levin function of
second kind, we have

((x—a)“+(b—x)“) (x )_F(a+1)

[J“ f(a) + 12, f(b)]'

b—a (b —a)
(x —a)**! ( (b — x)a+1 :
=" p-a ft“f’(tx + (1 - haydt — ——— ft“f'(tx + (1 - tb)dt
(x—a at+l Ol (b - X)a+l O !
S hZa ft“If (x+ (1 -Da)ldt+ — — ft“lf’(tx + (1 - t)b)|dt

0

1
x—-a)**t .11, m
e — ft [t_5|f(x)|+(1—t)5

0

o

1
b — x)a+l 1 b
(B [l gl
0
M jx=att+ (b -xe
_1+0(—S[ b-a ]
mI(L - 9+ 1) D™ (R)l + 0 =7 (F)
(3.1) T2+a-s) [ b—a ]
Similarly
((x - a)z J_r ;b - X)" )f(x) ~ r((gvjs) [ 12 f(a) + I8 f(b)]
T(L - s)T(a + 1) [ (X — )1 + (b — )21
(3.2) <[1+a |f( Jl+M T2+a-s) ][ b-a ]
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This completes the proof. O

Note that for « = 1, Theorem 3.1 collapses to following result for (s, m)-Godunova-
Levin function of second kind.

Corollary 3.1. Let f : [a,b] — IR be a differentiable function on (a, b) with a < b and
f” € Ly[a, b] for all x € [a, b]. If [f’] is (S, m)-Godunova-Levin function of second kind and
[f/(X)| < M, then

b
3.3 f(x) — ﬁff(u)du < min{31(a, b;m, 1;x), 92(a, b;m, 1; x)},
where

d1(a, b;m, 1; x)

M | (x—a)? + (b —x)?

T 2-5 b—a

m (x= (&) + (b -x)?f(2)
ST b—a '

and

32(a,b;m, 1;x) = [%W(X/m)H M H(x—a)2+(b—x)z].

(1-9)(2-59) b-a

Theorem 3.2. Let f : [a,b] — IR be a differentiable function on (a, b) with a < b and
f’ e Li[a,b]. If |f’] is (s, m)-Godunova-Levin function of second kind and |f’(X)| < M,
then, for & > 0, we have

x—a)*+ (b—x)~ Ia+1)J., N
( — )f(x)— b [Jx_f(a)+JX+f(b)”

< min{pi(a, b;m, a; x), p2(a, b;m, a; x)},

where
p1(a,b;m, a; x)
:( 1 )% ( Mi . m |f,(3)|q)%w
pa+1) \1-s  1-s' \m b—a
MI m o, b\ (0 — X)L
(= )9 S~
+(1—s+1—s|f<m)|) b-a |
and
1 ;‘1, m M % (X_a)a+1+(b_x)a+l
. . — ba— ! q
(Pz(a,b,m,a,x) (pa+1) [1—S|f (X/m)| +1—S] [ b—a 7

respectively.
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Proof. Using Lemma 2.1, the Hdélder inequality and the fact that |f’| is (s, m)-
Godunova-Levin function of second kind, we have

(T i - o e f“’)]'

(X _ a)a+l
b—

1 1
b — a+1
ft“f’(tx+(l—t)a)dt— %fﬂf’(txﬂl—nb)dt‘
0

1

(X a)m f tp“dt)%( f |f'(tx+(1—t)a)|th)%

1 1
(b ><)“+1 f oot f 7(ex+ (1 - D))
0

1

) 1
(X a) l ftp"dt (f —If()|q+ t)s|f( )|q)dt)
0

0

o

1 1 1

(b X)‘”l f tp“dt)( f —|f(x)|‘*+ t)slf( )"*)dt)q

0 0

E q = _ a+l
S( 1 )p ( M + m |f,(i)|q)q(X a)
pa+1 l1-s 1-s ‘m b—a

M m by \i (b—x)a+t
L e (22 A
+(1—s+1—s|f<m)|) b-a ]

Similarly

x—a)*+ (b —x)* INa+1)
( b—a )f(x)_ b-2a)

() 1“11]%[“‘”“”*“*X)“”].

b-a
This completes the proof. O

[ f(a) + I8 f(b)]'

1-s

For a = 1, Theorem 3.2 collapses to following result for (s, m)-Godunova-Levin
function of second kind.

Corollary 3.2. Let f : [a,b] — IR be a differentiable function on (a, b) with a < b and
f’ € Ly[a,b]. If|f’] is (s, m)-Godunova-Levin function of second kind and |f’(X)| < M,
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then, we have

b

f(x)—leaff(u)du

a

< min{pi(a, b;m, 1;x), p2(a, b;m, 1;x)},

where
o= (f |5 ) 6
=
and
pem 0= (s [ rm 2 [0

respectively.

Theorem 3.3. Let f : [a,b] — IR be a differentiable function on (a, b) with a < b and
f” e Li[a,b]. If [f’] is (s, m)-Godunova-Levin function of second kind and |f/(X)| < M,
then, for a > 0, we have

x—a)*+ (b —x)* I'a+1)
( b—a )f(x)_ b-a
< min{pi(a, b;m, a; x), p2(a, b; m, a; X)},

@) + I8 f(b)”

where
p1(a,b;m, a; x)
() e M M o9Ta Y 2
S la+1 b-a \l+a-s F2+a-5) m
+(b_x)a+l( M mr(l—S)r(a + 1)|f;(E)|q)%
b-a \l+a-s I2+a-s) m ’
and

p2(a, b;m, a; x)

_ ( 1 )1—% [( (x—a)"* + (b — X)a+1)

a+1 b-a

( m |f,(£)|q+Mql"(l—s)l"(a+1))%]’

l+a-s ‘m I'2+a-5s)

respectively.
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Proof. Using Lemma 2.1, the power mean inequality and the fact that | f'| is (s, m)-
Godunova-Levin function of second kind, we have

x—a)*+ (b —x)* I'a+1)
( b—a )f(x)_ b-2a)

[ f(a) + I8, f(b)]'

(X _ a)a+l (b _ X)a+l

1 1
— ft f(tx+(1—t)a)dt—ﬁft f(tx+(1—t)b)dt‘
0

1

< oAy f ) f 1 (bx+ (2 - D))’

o

1

a+l 1-
(b X) f t“dt

1 1 1

(x a)vt+1 ft“dt (fta SIF I+ t)sH( )|q)dt)q

1 1 1

(b X)a+1 ft"‘dt 1‘&[[ |f()|q - t)s|f'(£)|q)dth

<( 1 )1-a (X_a)a+l( M +mI‘(1—s)I‘(a+1)|f,(%)|q)§

_nIH

f £ (tx + (1 — t)b)lth)%

o

o
o

“\a+1 b—a \l+a-s Ir2+a-ys)
b—x)**l/ Mmd mI(1-s)(a+1
LooX L M- 9T (a )l()lq)
b—a \l1+a-s I'2+a-y5)

Similarly

(Cm O r((b“fa?[ () + I f(b)”

< ( 1 )1_% [( (x—a)* +(b- X)a+1)

“\a+1 b—a

( m lf,<£)|q+Mqr(l—s)r(ml))%}

l+a-s ‘m r2+a-ys)

This completes the proof. O

When a = 1 in Theorem 3.3, we have the following result.

Corollary 3.3. Let f : [a,b] — IR be a differentiable function on (a, b) with a < b and
f’ € Li[a, b] for all x € [a,b]. If |f’| is (S, m)-Godunova-Levin function of second kind and
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[f/(x)| < M, then, we have

b

f(x)—ﬁ1 f f(x)dx]

< min{pi(a, b;m, 1;x), pa(a, b;m, 1;x)},

where
(Wi x— )P e m ana
plabim 1 = (3) [b—a (2—s+(1—s)(2_s)'f(a)|q)
(b—x)%( M® m AT
Th-a (2—s+(1—s)(2_5)|f<ﬁ)|q) ]

and

p2(a,b;m, 1; x)

1

(&) e e ]

respectively.

Remark 3.1. Note that for x = %b in all above results, we have mid-point inequalities and
for x = aand x = b, we have further new results.

Remark 3.2. We would like to mention here that using the same analysis one can prove the
similar results for (s, m)-Godunova-Levin functions of first kind. We leave the details for
interested readers. For some recent investigations on (s, m)-Godunova-Levin functions of
first kind see [9].
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