
FACTA UNIVERSITATIS (NIŠ)
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Abstract. The class of gradient methods is a very efficient iterative technique for solv-
ing unconstrained optimization problems. Motivated by recent modifications of some
variants of the SM method, this study proposed two methods that are globally conver-
gent as well as computationally efficient. Each of the methods is globally convergent
under the influence of a backtracking line search. Results obtained from the numerical
implementation of these methods and performance profiling show that the methods are
very competitive with respect to well-known traditional methods.
Keywords: unconstrained optimization; gradient methods; line search.

1. Introduction

The following unconstrained optimization problem

(1.1) min
x∈Rn

f(x),

is ubiquitous in all areas of science and practical engineering applications. In (1.1),
the function f : Rn → R is uniformly convex (UC) and twice continuously differen-
tiable (TCD).

The most frequent iterations for solving (1.1) is the gradient descent (GD) iter-
ative scheme

(1.2) xGD
k+1 = xGD

k − tkgk,

where tk > 0 is the stepsize and gk := ∇f(xk) corresponds to the gradient of f .
The step length tk is mainly calculated using the backtracking line search (BLS).

The Newton iterations stabilized by the line search are defined as

(1.3) xk+1 = xk − tkG
−1

k gk,
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wherein G−1

k means the inverse of the Hessian matrix Gk := ▽2f(xk). In order
to avoid time consuming computation of the Hessian and its inverse, practical nu-
merical methods for solving unconstrained optimization problem are derived from
the usage of appropriate approximations Hk of G−1

k . The general scheme of quasi-
Newton type with line search [16] is given by

(1.4) xk+1 = xk − tkHk gk.

In order to define efficient class of quasi-Newton methods, we use the simplest
scalar approximation of the Hessian with respect to known classifications from [5, 8]:

(1.5) Bk := γkI, γk > 0,

where I is an identity matrix of appropriate order and γk > 0 is a real parameter.
The choice (1.5) leads to the iterative prototype

(1.6) xk+1 = xk − γ−1

k tkgk,

where tk denotes the basic step size and γ−1

k is an additional step size which should
be defined appropriately. Clearly, the value γ−1

k tk can be considered as a composite
step size, so that iterations (1.6) are GD methods. The iterations (1.6) are known
as improved gradient descent (IGD) methods.

Andrei in [1, 3] originated so called Accelerated Gradient Descent (AGD) itera-
tions in the form

(1.7) xAGD
k+1 = xAGD

k − θAGD
k tkgk.

The AGD process (1.7) was improved into the Modified AGD (MAGD) method
[7] as

(1.8) xMAGD
k+1 = xMAGD

k − θk(tk + t2k − t3k)gk.

A few variants of the IGD class (1.6) were proposed in [7, 10, 11, 14, 15]. The
SM method belongs to the class IGD methods. It was originated in [14] by the
iterative process

(1.9) xSM
k+1 = xSM

k − tk
(

γSM
k

)−1
gk,

where tk > 0 is the basic step size and γSM
k > 0 is the gain parameter determined

as in

γSM
k+1 = 2γSM

k

γSM
k

[

f(xSM
k+1

)− f(xSM
k )

]

+ tk‖gk‖
2

t2k‖gk‖2
.

The ADSS model from [10] is defined as

(1.10) xADSS
k+1 = xADSS

k −
(

tk
(

γADSS
k

)−1
+ lk

)

gk,
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where tk and lk are determined by BLSs. The TADSS method [15] is defined by
the iterative rule

xTADSS
k+1 = xTADSS

k −
(

tk
(

(γTADSS
k )−1 − 1

)

+ 1
)

gk.

The next scheme was proposed as the modified SM (MSM) method in [7]:

(1.11) xMSM
k+1 = xMSM

k − (tk + t2k − t3k)(γ
MSM
k )−1gk.

The acceleration parameters in ADD, ADSS, TADSS and MSM methods are
summarized in Table 1.1.

Table 1.1: Acceleration parameters γk+1 in variants SM method.
MethodAcceleration parameter γk+1 Reference

ADD γADDk+1 =2
f(xADD

k+1 )−f(xADD
k

)−tk(g
ADD
k

)T(tkdADD
k

−(γk)
−1gk)

(tkdADD

k
−γ−1

k
gk)

T(tkdADD

k
−(γADD

k
)−1gk)

(2014) [11]

ADSS γADSSk+1 = 2
f(xADSS

k+1 )−f(xADSS
k

)+(tk(γk)−1+lk)‖gk‖
2

(tk(γADSS
k

)−1+lk)
2
‖gk‖

2
(2015) [10]

γTADSSk+1 = 2
f(xTADSS

k+1
)−f(xTADSS

k
)+ψk‖gk‖

2

ψ2
k
‖gk‖

2 ,

TADSS ψk = tk((γ
TADSS
k )−1

− 1) + 1 (2015) [15]

MSM γMSM
k+1 = 2γk

γk[f(xMSM

k+1
)−f(xMSM

k
)]+(tk+t

2
k
−t3

k
)‖gk‖

2

(tk+t
2
k
−t3

k
)2‖gk‖

2 (2019) [7]

The main goal of this research is to study the impact of multiple usage of
backtracking line search in modified SM method [7] and practical computational
performance of two new methods. Our intention is to propose and investigate im-
provements of the MSM method. Globally, we investigate possibility to multiple
use backtracking line search in the modified MSM method.

Main results of the present study can be highlighted as follows:

(1) A novel iterative scheme is proposed using the idea of computing the step
parameters tk, t2k and t3k in the MSM method by means of multiple BLS
procedures. The resulting iterations will be denoted as TMSM and DMSM.

(2) Convergence behavior of the proposed iterations are investigated on appropri-
ate quadratic functions.

(3) Numerical experiments compare introduced methods with existing iterations
and analyze three main performances: number of iterative steps and function
evaluations and CPU time.

The remainder of the paper is developed according to the following hierarchy of
sections. Two modifications of the MSM methods, termed as TMSM and DMSM
methods, are introduced in Section 2. Section 3. investigates the convergence of the
presented TMSM and DMSM methods. In Section 4., we perform a number of
numerical experiments and compare main performances of the novel methods with
similar available methods. Final remarks are presented in Section 5.
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2. Multiple use of backtracking line search in modified SM method

The MSM method is based on the iteration

(2.1) xMSM
k+1 = xMSM

k − tMSM
k (γMSM

k )−1gk,

where tMSM
k = tk + t2k − t3k. The leading idea in defining tMSM

k arises from the
observation tk + t2k > tMSM

k > tk, which means that the MSM method proposes a
slightly greater step size with respect to the SM iterations. Since tk arises from the
BLS procedure, which ensures tk ∈ (0, 1), it implies

tk ≤ tMSM
k ≤ tk + t2k.

Our intention in current research is to improve behaviour of iterations (2.1) using
two or three appropriately defined step-parameters. Following this idea, a method
based on triple usage of the BLS in the MSM method is obtained when t2k is substi-
tuted with l2k and t3k is substituted with j3k in (2.1), where tk, lk and jk are defined
by independent LS procedures: the first BLS (Algorithm 1) calculates tk, another
BLS (Algorithm 2) calculates lk, while the third BLS (Algorithm 3) determines jk.

Replacing the above changes gives the expression of the TMSM iteration:

(2.2) xTMSM
k+1 = xTMSM

k − tTMSM
k

(

γTMSM
k

)−1
gk,

where

(2.3) tTMSM
k =

{

tk + l2k − j3k, tk + l2k − j3k > tk

tk, tk + l2k − j3k ≤ tk.

The second order Taylor development of f(xTMSM
k+1

) gives

(2.4)
f(xTMSM

k+1 ) ≈ f(xTMSM
k )− tTMSM

k

(

γTMSM
k

)−1
gT
k gk

+
1

2

(

tTMSM
k

)2 (

(γTMSM
k )−1gk

)T
∇2f(ξ)

(

γTMSM
k

)−1
gk.

The parameter ξ in (2.4) fulfills the condition ξ ∈ [xTMSM
k ,xTMSM

k+1 ]. One possible
choice is

(2.5)
ξ = xTMSM

k + δ(xTMSM
k+1 − xTMSM

k )

= xTMSM
k − ϕ tTMSM

k

(

γTMSM
k

)−1
gk, 0 ≤ ϕ ≤ 1.

According to [14], ∇2f(ξ) is approximated as γTMSM
k+1

I. So, (2.4) reduces to

(2.6)
f(xTMSM

k+1 ) ≈f(xTMSM
k )− tTMSM

k

(

γTMSM
k

)−1
‖gk‖

2

+
1

2

(

tTMSM
k

)2
γTMSM
k+1 (γTMSM

k )−2‖gk‖
2.
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Then γTMSM
k+1 can be obtained from (2.6) as

(2.7) γTMSM
k+1 =2γTMSM

k

γTMSM
k

[

f(xTMSM
k+1 )−f(xTMSM

k )
]

+tTMSM
k ‖gk‖

2

(

tTMSM
k

)2
‖gk‖2

.

The improper situation γTMSM
k+1 < 0 can be resolved by taking γTMSM

k+1 = 1.

The BLS method is implemented in the Algorithm 1 from [14]. Algorithm 1
defines tk starting from t = 1 and subsequently decreases values of t so that it
reduces the value of the objective f enough.

Algorithm 1 The backtracking line search calculates tk.

Require: A real function f(x), appropriate search direction dk at the point xk

and the positive real numbers 0 < σ < 0.5 and β ∈ (0, 1).
1: t = 1.
2: While f(xk + tdk) > f(xk) + σtgT

k dk, do t := tβ.
3: Output tk := t.

Algorithm 2 The second backtracking line search calculates lk.

Require: Objective function f(x), the search direction dk at the point xk and
positive real numbers 0 < σl < 0.5 and βl ∈ (0, 1).

1: l = 1.
2: While f(xk + ldk) > f(xk) + σllg

T
k dk, take l := lβl.

3: Return lk = l.

Algorithm 3 The third backtracking line search calculates jk.

Require: Objective function f(x), the search direction dk at the point xk and
positive real numbers 0 < σj < 0.5 and βj ∈ (0, 1).

1: j = 1.
2: While f(xk + jdk) > f(xk) + σjjg

T
k dk, take j := jβj .

3: Return jk = j.

Finally, the TMSM method is described in Algorithm 4.

It is expectable that the total number of iterations (NofI) required by the TMSM
method will be smaller than the number of iterations of the MSM method, but an
increase in the number of function evaluations (NofFE) and the CPU time (CPUT)is
expectable. Based on these indicators, we came up with the idea to omit one line
search in the TMSM method. This would drastically reduce the CPUT and the
NofFE. Following this idea, a method of double use backtracking line search in
modified SM method is obtained. In this way, we get a new expression of the
DMSM iteration:

(2.8) xDMSM
k+1 = xDMSM

k − tDMSM
k

(

γDMSM
k

)−1
gk,
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Algorithm 4 Triple use of backtracking line search in the MSMmethod (the TMSM
method)

Require: Objective function f(x), initial point xTMSM
0 ∈ dom(f) and parameters

0 < λ < 1, 0 < ν < 1.
1: Put k = 0, evaluate f(xTMSM

0 ), g0 = ∇f(xTMSM
0 ), and put γTMSM

0 = 1.
2: If

‖gk‖ ≤ λ and
|f(xTMSM

k+1 )− f(xTMSM
k )|

1 + |f(xTMSM
k )|

≤ ν,

STOP; else go to Step 3.
3: (The first backtracking) Compute tk ∈ (0, 1] using Algorithm 1.
4: (The second backtracking) Compute lk ∈ (0, 1] using Algorithm 2.
5: (The third backtracking) Compute jk ∈ (0, 1] using Algorithm 3.
6: Determine tTMSM

k using (2.3).
7: Compute xTMSM

k+1 = xTMSM
k − (γTMSM

k )−1tTMSM
k gk.

8: Compute f(xTMSM
k+1

) and gk+1 = ∇f(xTMSM
k+1

).

9: Determine γTMSM
k+1 using (2.7).

10: If γTMSM
k+1 < 0, then take γTMSM

k+1 = 1.
11: Set k := k + 1, go to the step 2.
12: Return xTMSM

k+1 and f(xTMSM
k+1 ).

where

(2.9) tDMSM
k =

{

tk + t2k − j3k, tk + t2k − j3k > tk

tk, tk + t2k − j3k ≤ tk.

In exactly the same way as for the TMSM method, we arrive at

(2.10) γDMSM
k+1 =2γDMSM

k

γDMSM
k

[

f(xDMSM
k+1

)−f(xDMSM
k )

]

+tDMSM
k ‖gk‖

2

(

tTMSM
k

)2
‖gk‖2

.

The difficulty γDMSM
k+1

< 0 can be resolved using γDMSM
k+1

= 1.

The DMSM method is presented in Algorithm 5:
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Algorithm 5 Double use backtracking line search in the MSM method (the DMSM
method)

Require: Function f(x), chosen initial point xDMSM
0 ∈ dom(f) and parameters

0 < λ < 1, 0 < ν < 1.
1: Put k = 0, evaluate f(xDMSM

0 ), g0 = ∇f(xDMSM
0 ) and take γDMSM

0 = 1.
2: If

‖gk‖ ≤ λ and
|f(xDMSM

k+1 )− f(xDMSM
k )|

1 + |f(xDMSM
k )|

≤ ν,

STOP; else go to Step 3.
3: (The first backtracking) Compute tk ∈ (0, 1] using Algorithm 1.
4: (The second backtracking) Compute jk ∈ (0, 1] using Algorithm 3.
5: Determine tDMSM

k using (2.9).
6: Compute xDMSM

k+1
= xDMSM

k − (γDMSM
k )−1tDMSM

k gk.

7: Compute f(xDMSM
k+1 ) and gk+1 = ∇f(xDMSM

k+1 ).

8: Determine the scalar approximation γDMSM
k+1

I of the Hessian of f at the point

xDMSM
k+1 using (2.10).

9: If γDMSM
k+1

< 0, then take γDMSM
k+1

= 1.
10: Put k := k + 1, go to the step 2.
11: Return xDMSM

k+1 and f(xDMSM
k+1 ).

3. Convergence analysis

The content of this section is the convergence analysis of the TMSM and DMSM
methods. In the following part, we restate and derive some basic statements which
will be used in the convergence analysis of Algorithms 4 and 5. The proofs can be
found in [1, 9, 12, 13, 14] and have been omitted:

(H1) the function f is bounded below on B0 = {x ∈ R
n | f(x) ≤ f(x0)};

(H2) the gradient g is Lipschitz continuous in an open convex set B ⊇ B0:

(3.1) ‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀ x,y ∈ B, L > 0.

Proposition 3.1. [1, 13] Let dk be a descent direction and the gradient gk satisfies

the Lipschitz condition (3.1). If tk is determined by the BLS in Algorithm 1, then

(3.2) tk ≥ min

{

1,−
β(1− σ)

L

gT
k dk

‖dk‖2

}

.

Lemma 3.1. If the function f is UC and TCD on R
n then there exist m, M such

that

(3.3) 0 < m ≤ 1 ≤ M,
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then f(x) possesses a minimizer x∗ and

m‖y‖2 ≤ yT∇2f(x)y ≤ M‖y‖2, ∀ x,y ∈ R
n;(3.4)

1

2
m‖x− x∗‖2 ≤ f(x)− f(x∗) ≤

1

2
M‖x− x∗‖2, ∀ x ∈ R

n;(3.5)

m‖x− y‖2 ≤ (g(x) − g(y))T(x− y) ≤ M‖x− y‖2, ∀ x,y ∈ R
n.(3.6)

Lemma 3.2. [14] The following inequality holds for a TCD and UC function f

and for the IGD sequence {xk} generated by (1.6):

(3.7) f(xk)− f(xk+1) ≥ µ‖gk‖
2,

with

(3.8) µ = min

{

σ

M
,
σ(1 − σ)

L
β

}

.

In further, it is assumed in this section that dk is a descent direction. Further,
the scalar approximation of Hessian is TCD. Moreover, instead of (3.4) and (3.3)
it is sufficient to assume:

(3.9) m ≤ γk ≤ M, 0 < m ≤ 1 ≤ M, m,M ∈ R.

So, all values γk < 0 will be replaced by γk = 1, while the cases γk > M will be
resolved by γk = M .

Theorem 3.1. Let (H1) and (H2) and (3.9) be true and the mapping f is UC.

Then the sequence {xDMSM
k } fulfils (3.7)–(3.8).

Proof. From (2.8), it can be concluded

xDMSM
k+1 = xDMSM

k − tDMSM
k (γDMSM

k )−1gk

= xDMSM
k − tk

tDMSM
k

tk
(γDMSM

k )−1gk

= xDMSM
k + tkdk,

where dk = −
tDMSM

k

tk
(γDMSM

k )−1gk.

Based on the stopping condition of the backtracking line search (Algorithm 1),
we conclude

(3.10) f(xDMSM
k )− f(xDMSM

k+1 ) ≥ −σtkgk
Tdk. ∀ k ∈ N.

In the situation tk < 1, by putting expression for dk into (3.10), the following
inequalities can be derived:

(3.11)

f(xDMSM
k )− f(xDMSM

k+1 ) ≥ −σtkgk
Tdk

=−σtkgk
T

(

−
tDMSM
k

tk

(

γDMSM
k

)−1
gk

)

= σtk
tDMSM
k

tk

(

γDMSM
k

)−1
‖gk‖

2.
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Now, from (3.2), it follows that

(3.12)

tk ≥ −
β(1− σ)

L
·
gT
k dk

‖dk‖2

= −
β(1− σ)

L
·
gT
k

(

−
tDMSM

k

tk
(γDMSM

k )−1gk

)

∥

∥

∥
−

tDMSM

k

tk
(γDMSM

k )−1gk

∥

∥

∥

2

=
β(1 − σ)

L
·

gk
T tDMSM

k

tk
(γDMSM

k )−1gk

(

tDMSM

k

tk

)2

(γDMSM
k )−2‖gk‖2

=
β(1 − σ)

L
·

‖gk‖
2

tDMSM

k

tk
(γDMSM

k )−1‖gk‖2

=
(1− σ)β

L
·
tkγ

DMSM
k

tDMSM
k

.

By applying inequality (3.12) to (3.11), we obtain

(3.13)

f(xDMSM
k )− f(xDMSM

k+1 ) ≥ σtk
tDMSM
k

tk
(γDMSM

k )−1‖gk‖
2

≥ σ
(1− σ)β

L
·
γDMSM
k

tDMSM

k

tk

tDMSM
k

tk
(γDMSM

k )−1‖gk‖
2

≥ σ
(1− σ)β

L
‖gk‖

2.

In the case tk = 1, based on (3.9) and (3.10) the following inequality holds

(3.14)

f(xDMSM
k )− f(xDMSM

k+1 ) ≥ −σgT
k dk

= −σgT
k

(

−
tDMSM
k

tk
(γDMSM

k )−1gk

)

=
σ

γDMSM
k

tDMSM
k

tk
‖gk‖

2.

According to (2.9), it follows that tDMSM
k ≥ tk, which implies

(3.15)

f(xDMSM
k )− f(xDMSM

k+1 ) ≥
σ

γDMSM
k

‖gk‖
2

≥
σ

M
‖gk‖

2.

Finally, from (3.13) and (3.15) we get (3.8).
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Theorem 3.2. Let (H1) and (H2) are valid in conjunction with (3.9) and f be a

UC function.

(a)The sequence {xDMSM
k } satisfies lim

k→∞

‖gk‖=0, and {xDMSM
k } converges to x∗.

(b)The sequence {xTMSM
k } satisfies lim

k→∞

‖gk‖=0, and {xTMSM
k } converges to x∗.

Proof. Analogously as the proof of [14, Theorem 4.1].

Lemma 3.3 confirms the convergence of the DMSMmethod on the strictly convex
quadratic (SCQ) functions

(3.16) f(x) =
1

2
xTAx− bTx,

where A ∈ R
n×n is a symmetric positive definite matrix and b ∈ R

n. The eigenval-
ues of A are ordered as λ1 ≤ · · · ≤ λn.

Lemma 3.3. The DMSM iterations (2.8) applied on a SCQ function f given by

the expression (3.16) satisfy the inequality

(3.17) λ1 ≤
γDMSM
k+1

tk+1

≤
2λn

σ
, k ∈ N.

Proof. Simple verification gives

(3.18)
f(xDMSM

k+1 )− f(xDMSM
k ) =

1

2
(xDMSM

k+1 )TAxDMSM
k+1 − bTxDMSM

k+1

−
1

2
(xDMSM

k )TAxDMSM
k + bTxDMSM

k .

The substitute of (2.8) in (3.18) gives

(3.19)

f(xDMSM
k+1 )−f(xDMSM

k )=
1

2

[

xDMSM
k −tDMSM

k (γDMSM
k )−1gk

]T

×A
[

xDMSM
k −tDMSM

k (γDMSM
k )−1gk

]

− bT[xDMSM
k −tDMSM

k (γDMSM
k )−1gk]

−
1

2
(xDMSM

k )TAxDMSM
k +bTxDMSM

k

=−
1

2
tDMSM
k (γDMSM

k )−1(xDMSM
k )TAgk

−
1

2
tDMSM
k (γDMSM

k )−1 gT
k Ax

DMSM
k

+
1

2

(

tDMSM
k

)2
(γDMSM

k )−2gT
kAgk

+ tDMSM
k (γDMSM

k )−1bTgk.
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Since the gradient of the function (3.16) corresponding to DMSM is equal to

(3.20) gk = AxDMSM
k − b,

one can verify

(3.21)

f(xDMSM
k+1 )−f(xDMSM

k )

= tDMSM
k (γDMSM

k )−1[bTgk−(xDMSM
k )TAgk]

+
1

2

(

tDMSM
k

)2
(γDMSM

k )−2gT
k Agk

= tDMSM
k (γDMSM

k )−1[bT − (xDMSM
k )TA]gk

+
1

2

(

tDMSM
k

)2
(γDMSM

k )−2gT
k Agk

=−tDMSM
k (γDMSM

k )−1gT
k gk

+
1

2

(

tDMSM
k

)2
(γDMSM

k )−2gT
k Agk.

After substitute (3.21) into (2.10), the parameter γDMSM
k+1 becomes

(3.22)

γDMSM
k+1 =2γDMSM

k

γDMSM
k

[

f(xDMSM
k+1 )−f(xDMSM

k )
]

+tDMSM
k ‖gk‖

2

(

tDMSM
k

)2
‖gk‖2

=
gT
k Agk

‖gk‖2
.

Therefore, the following inequalities are valid:

(3.23) λ1 ≤ γDMSM
k+1 ≤ λn, k ∈ N.

The inequality in (3.17) follows from (3.23) in conjunction with 0 < tk+1 ≤ 1. In
order to verify the right hand side inequality in (3.17), it suffices to observe the
upper bound caused by the BLS

tk ≥
β(1 − σ)γk

L
,

which implies

(3.24)
γDMSM
k+1

tk+1

<
L

β(1 − σ)
.

Using g(x) = Ax− b in common with the fact that A symmetric, it follows that

(3.25) ‖g(x)− g(y)‖ = ‖Ax−Ay‖ = ‖A(x− y)‖ ≤ ‖A‖‖x− y‖ = λn‖x− y‖.

The Lipschitz constant L in (3.24) can be equal to the largest eigenvalue λn. Using
σ ∈ (0, 0.5), β ∈ (σ, 1) one obtains

(3.26)
γDMSM
k+1

tk+1

<
L

β(1− σ)
=

λn

β(1− σ)
<

2λn

σ
.

So, the right inequality in (3.17) is verified.
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Theorem 3.3. Let f be a SCQ function defined in (3.16). In the case λn < 2λ1

the DMSM method (2.8) satisfies

(3.27) (dk+1

i )2 ≤ δ2(dki )
2,

where

(3.28) δ = max

{

1−
σλ1

2λn

,
λn

λ1

− 1

}

.

In addition,

(3.29) lim
k→∞

‖gk‖ = 0.

Proof. Let {v1, . . . , vn} be orthonormal eigenvectors of A. On the basis of (3.20),
there exist real quantities dk1 , d

k
2 , . . . , d

k
n satisfying

(3.30) gk =
n
∑

i=1

dki vi.

Now, using (2.8) one can simply deduce

gk+1 = AxDMSM
k+1 − b

= A(xDMSM
k − tDMSM

k (γDMSM
k )−1gk)− b

= gk − tDMSM
k (γDMSM

k )−1Agk

=
(

I − tDMSM
k (γDMSM

k )−1A
)

gk.

Using the simple linear approximation of gk+1 as in (3.30), we get

(3.31) gk+1 =

n
∑

i=1

dk+1

i vi =

n
∑

i=1

(

1− tDMSM
k (γDMSM

k )−1λi

)

dki vi.

To prove (3.27), it is enough to show that

∣

∣

∣

∣

1− λi

γDMSM

k (tDMSM

k )−1

∣

∣

∣

∣

≤ δ. Two cases

can be observed. First, if λi ≤
γDMSM

k

tDMSM

k

implying (3.17), we can conclude the follow-

ing:
(3.32)

1 >
λi

γDMSM
k

(

tDMSM
k

)−1
≥

σλ1

2λn

=⇒ 1−
λi

γDMSM
k

(

tDMSM
k

)−1
≤ 1−

σλ1

2λn

≤ δ.

Now, let us examine another case
γDMSM

k

tDMSM

k

< λi. Since

(3.33) 1 <
λi

γDMSM
k

(

tDMSM
k

)−1
≤

λn

λ1

,
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it follows that

(3.34)

∣

∣

∣

∣

∣

1−
λi

γDMSM
k

(

tDMSM
k

)−1

∣

∣

∣

∣

∣

≤
λn

λ1

− 1 ≤ δ.

Now, in order to prove lim
k→∞

‖gk‖ = 0, it suffices to use the orthonormality of

{v1, . . . , vn} in common with (3.30) and conclude

(3.35) ‖gk‖
2 =

n
∑

i=1

(dki )
2.

Since (3.27) is valid and 0 < δ < 1 holds, (3.35) initiates that (3.30).

4. Numerical results

All the considered methods are coded in Matlab R2017a programming language
and executed on the notebook with Intel Core i3 2.0 GHz CPU, 8 GB RAM and
Windows 10 operating system. The number of iterations (NofI), number of func-
tion evaluations (NofFE) and the CPU time (CPUT) are analyzed in numerical
experiments.

Numerical testing is based on 24 test functions from [2], where a lot of the
problems are taken over from CUTEr collection [4]. For each of tested functions in
Tables 4.1, 4.2 and 4.3, 12 numerical testings are performed with 100, 200, 300, 500,
1000, 2000, 3000, 5000, 7000, 8000, 10000 and 15000 unknowns. Tables 4.1, 4.2
and 4.3 arrange summary numerical results for AGD, MAGD, MSM, SM, DMSM
and TMSM, tested on 24 functions.

For each of six tested methods (AGD, MAGD, SM, MSM, DMSM and TMSM),
the same stopping criteria are used:

‖gk‖ ≤ 10−6 and
|f(xk+1)− f(xk)|

1 + |f(xk)|
≤ 10−16.

The BLS parameters for AGD, MAGD, MSM and SM methods are σ=0.0001
and β=0.8. The backtracking procedures in the DMSM method are implemented
using σ = 0.0001 and β = 0.8 for Algorithm 1 and σj = 0.00015 and βj = 0.85 for
Algorithm 3.

The backtracking procedures in the TMSM method are developed using σ =
0.0001 and β = 0.8 for Algorithm 1, σl = 0.0002 and βl = 0.9 for Algorithm 2 and
σj=0.00015 and βj=0.85 for Algorithm 3.

Table 4.4 contains average values of NofI, the NofFE and the CPUT for all 288
numerical experiments.

Based on the values for NofI given in Table 4.4, it can be concluded that the
DMSM and TMSM methods gives superior results with respect to MAGD, AGD,
MSM and SM methods.
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Table 4.1: Numerical results of the AGD, MAGD, MSM, SM, DMSM and TMSM
methods for the NofI.

Test function MAGD TMSM MSM DMSM SM AGD

Perturbed Quadratic 352325 31269 34828 31386 59908 353897

Raydan 1 58504 30148 26046 17238 14918 22620

Diagonal 3 119719 6767 7030 7077 12827 120416

Generalized Tridiagonal 1 647 332 346 350 325 670

Extended Tridiagonal 1 692219 685 1370 728 4206 3564

Extended TET 455 191 156 156 156 443

Diagonal 4 8084 96 96 96 96 120

Diagonal 5 48 72 72 72 72 48

Extended Himmelblau 302 312 260 264 196 396

Perturbed quadratic diagonal 1060824 36640 37454 31662 44903 2542050

Quadratic QF1 362896 32099 36169 33138 62927 366183

Extended quadratic penalty QP1 229 338 369 298 271 210

Extended quadratic penalty QP2 356357 1735 1674 990 3489 395887

Quadratic QF2 71647 31745 32727 30642 64076 100286

Extended Tridiagonal 2 1665 694 659 583 543 1657

ARWHEAD (CUTE) 12834 328 430 302 270 5667

Almost Perturbed Quadratic 354369 30790 33652 32902 60789 356094

LIARWHD (CUTE) 925138 1257 3029 1726 18691 1054019

ENGVAL1 (CUTE) 822 623 461 434 375 743

QUARTC (CUTE) 177 302 217 220 290 171

Generalized Quartic 229 191 181 186 189 187

Diagonal 7 159 144 147 111 108 72

Diagonal 8 154 120 120 109 118 60

Full Hessian FH3 63 63 63 63 63 45

Performance profiles from [6] are used in comparing the selected methods. As
usual, the NofI, NofFE and CPUT profiles are used. All numerical results are
represented in Figures 4.1 and 4.2. Figure 4.1 (left) shows the performances of
compared methods related to NofI. Figure 4.1 (right) illustrates the performance
of these methods relative to NofFE. Graphs in Figure 4.2 illustrate the behavior of
considered methods with respect to to CPUT.

From the results displayed in Tables 4.1, 4.2 and 4.3 and according to graphs in
Figures 4.1 and Figure 4.2, the following can be observed.

(1) The DMSM and TMSM methods give better results compared to other
methods when we compare the number of iterations.

(2) The SM, MSM, DMSM and TMSM exhibit better performances than the
AGD and MAGD methods.

From Figure 4.1 (left), it is observable that the graph of the DMSM method
comes first to the top, which signifies that the DMSM outperforms other considered
methods with respect to the NofI.
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Table 4.2: Numerical results of the AGD, MAGD, MSM, SM, DMSM and TMSM
methods for the NofFE.

Test function MAGD TMSM MSM DMSM SM AGD

Perturbed Quadratic 13855459 645704 200106 370595 337910 13916515

Raydan 1 1282162 1305952 311260 326766 81412 431804

Diagonal 3 4244404 131307 38158 80193 69906 4264718

Generalized Tridiagonal 1 9057 2934 1191 2061 1094 9334

Extended Tridiagonal 1 2077341 14797 10989 9147 35621 14292

Extended TET 4130 1689 528 948 528 3794

Diagonal 4 133440 2316 636 1320 636 1332

Diagonal 5 108 300 156 228 156 108

Extended Himmelblau 5192 3636 976 1908 668 6897

Perturbed quadratic diagonal 38728371 1309740 341299 629088 460028 94921578

Quadratic QF1 13192789 661661 208286 392426 352975 13310016

Extended quadratic penalty QP1 2939 6400 2196 5421 2326 2613

Extended quadratic penalty QP2 8846145 44962 11491 14058 25905 9852040

Quadratic QF2 2810965 642829 183142 364257 353935 3989239

Extended Tridiagonal 2 9613 9779 2866 4951 2728 8166

ARWHEAD (CUTE) 468970 15416 5322 8503 3919 214284

Almost Perturbed Quadratic 13936462 639129 194876 393591 338797 14003318

LIARWHD (CUTE) 41619197 39788 27974 33271 180457 47476667

ENGVAL1 (CUTE) 8332 10120 2285 4319 2702 6882

QUARTC (CUTE) 414 1412 494 780 640 402

Generalized Quartic 1244 1311 493 836 507 849

Diagonal 7 745 930 504 696 335 333

Diagonal 8 740 805 383 546 711 304

Full Hessian FH3 1955 2160 566 1263 631 1352

Figure 4.1 (right) confirms that all six methods are able to solve all test cases.
Further, the MSM method is superior in 58.33% of all tests with respect to MAGD
(4.17%), TMSM(0%), DMSM(4.17%), SM(29.17%) and AGD(16.67%).

Graphs in Figure 4.2 again confirm that all the methods are able to solve test
problems, and the MSM is winer in 54.17% of the tests with respect to MAGD
(4.17%), TMSM(0%), DMSM(4.17%), SM(37.50%) and AGD(4.17%).

According to individual data arranged in the tables 4.1-4.3, generated average
values as well as the presented graphs, the conclusion is that the DMSM method is
winer concerning the NofI.

Compared to the previous numerical results obtained during the testing of AGD,
MAGD, MSM, SM, DMSM and TMSM methods, in the next test for parameter
values in the second and third backtracking line search we take the values that are
less than the values in primary backtracking. The aim of this test is to answer the
question: Does the choice of higher or lower parameter values in the second and
third backtracking line search in relation to the primary backtracking line search
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Table 4.3: Numerical results of the AGD, MAGD, MSM, SM, DMSM and TMSM
methods for the CPUT.

Test function MAGD TMSM MSM DMSM SM AGD

Perturbed Quadratic 6049.531 344.172 116.281 198.328 185.641 6756.047

Raydan 1 334.266 388.156 31.906 67.344 36.078 158.359

Diagonal 3 6401.969 199.547 52.609 120.406 102.875 5527.844

Generalized Tridiagonal 1 7.781 4.641 1.469 3.625 1.203 11.344

Extended Tridiagonal 1 8853.172 26.828 29.047 17.297 90.281 55.891

Extended TET 2.766 1.703 0.516 1.203 0.594 3.219

Diagonal 4 16.172 0.719 0.203 0.359 0.141 0.781

Diagonal 5 0.313 0.750 0.344 0.734 0.328 0.391

Extended Himmelblau 1.031 1.094 0.297 0.703 0.188 1.953

Perturbed quadratic diagonal 22820.172 534.750 139.625 273.188 185.266 44978.750

Quadratic QF1 6846.453 258.938 81.531 168.453 138.172 12602.563

Extended quadratic penalty QP1 1.063 2.234 1.000 3.516 0.797 1.266

Extended quadratic penalty QP2 1872.797 12.578 3.516 8.063 6.547 3558.734

Quadratic QF2 768.563 243.938 73.438 153.109 132.703 1582.766

Extended Tridiagonal 2 2.531 4.938 1.047 2.375 1.031 3.719

ARWHEAD (CUTE) 138.000 6.422 1.969 4.609 1.359 95.641

Almost Perturbed Quadratic 7086.563 285.563 73.047 153.891 133.516 13337.125

LIARWHD (CUTE) 15372.625 10.203 9.250 12.641 82.016 27221.516

ENGVAL1 (CUTE) 2.641 4.328 1.047 2.375 1.188 3.906

QUARTC (CUTE) 2.078 4.531 1.844 3.297 2.313 2.469

Generalized Quartic 0.500 0.734 0.281 0.375 0.188 0.797

Diagonal 7 0.688 0.953 0.547 1.469 0.375 0.625

Diagonal 8 0.656 0.781 0.469 1.078 0.797 0.438

Full Hessian FH3 1.188 1.672 0.391 1.234 0.391 1.438

Table 4.4: Average numerical outcomes for 24 test functions tested on 12 numerical
experiments.

Average performances MAGD TMSM MSM DMSM SM AGD

Number of iterations 182494.42 8622.54 9064.83 7947.21 14575.25 221896.04
No. of fun.evaluation 5885007.25 228961.54 64424.04 110298.83 93938.63 8434868.21
CPU time (sec) 3190.98 97.51 25.90 49.99 46.00 4829.4

directly affect the numerical results of DMSM and TMSM methods?

The primary BLS uses the same parameters σ = 0.0001 and β = 0.8 as in the
first test for AGD, MAGD, MSM and SM methods. The BLS procedures in the
DMSM method are implemented using σ=0.0001 and β=0.8 for Algorithm 1 and
σj=0.00005 and βj=0.7 for Algorithm 3. Also, the BLS in the TMSM method are
implemented using σ=0.0001 and β=0.8 for Algorithm 1, σl=0.00001 and βl=0.6
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Fig. 4.1: Performance profiles based on the NofI (left) and NofFE (right).
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Fig. 4.2: Performance profiles based upon CPUT.

for Algorithm 2 and σj=0.00005 and βj=0.7 for Algorithm 3.

All other conditions (stop criteria and number of variables) remain the same as
in the first numerical experiment.

The obtained numerical results are shown in the Tables 4.5, 4.6 and 4.7.

Table 4.8 includes the average values of NofI, the NofFE and the CPUT in a
second numerical experiment.

According to the NofI values given in Table 4.8, it can be notified that the DMSM
method gives better results and in the second numerical experiment compared to
MAGD, AGD, MSM, SM and TMSM methods.

All numerical results from Tables 4.5, 4.6 and 4.7 are represented in Figures
4.3 and 4.4. Figure 4.3 (left) shows the NofI performances of compared methods.
Figure 4.3 (right) demonstrates the NofFE profile of these methods. Figure 4.4
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Table 4.5: Numerical results of the AGD, MAGD, MSM, SM, DMSM and TMSM
methods for the NofI.

Test function MAGD MSM SM AGD TMSM DMSM

Perturbed Quadratic 352325 34828 59908 353897 35697 28487

Raydan 1 58504 26046 14918 22620 9801 17594

Diagonal 3 119719 7030 12827 120416 8372 6409

Generalized Tridiagonal 1 647 346 325 670 342 348

Extended Tridiagonal 1 692219 1370 4206 3564 907 760

Extended TET 455 156 156 443 156 156

Diagonal 4 8084 96 96 120 96 96

Diagonal 5 48 72 72 48 72 72

Extended Himmelblau 302 260 196 396 288 294

Perturbed quadratic diagonal 1060824 37454 44903 2542050 31031 37331

Quadratic QF1 362896 36169 62927 366183 39619 26585

Extended quadratic penalty QP1 229 369 271 210 303 362

Extended quadratic penalty QP2 356357 1674 3489 395887 2047 1908

Quadratic QF2 71647 32727 64076 100286 39452 28651

Extended quadratic exponential EP1 67 100 73 48 107 107

Extended Tridiagonal 2 1665 659 543 1657 528 615

ARWHEAD (CUTE) 12834 430 270 5667 304 281

Almost Perturbed Quadratic 354369 33652 60789 356094 35755 26274

LIARWHD (CUTE) 925138 3029 18691 1054019 1340 3543

ENGVAL1 (CUTE) 822 461 375 743 418 482

QUARTC (CUTE) 177 217 290 171 289 275

Generalized Quartic 229 181 189 187 197 195

Full Hessian FH3 63 63 63 45 63 63

Diagonal 9 325609 10540 13619 329768 10219 11229

shows the performance CPUT.
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Fig. 4.3: Performance profiles based on the NofI (left) and NofFE (right).



Multiple Use of Backtracking Line Search in Unconstrained Optimization 1435

Table 4.6: Numerical results of the AGD, MAGD, MSM, SM, DMSM and TMSM
methods for the NofFE.

Test function MAGD MSM SM AGD TMSM DMSM

Perturbed Quadratic 13855459 200106 337910 13916515 423496 260678

Raydan 1 1282162 311260 81412 431804 124905 280011

Diagonal 3 4244404 38158 69906 4264718 95962 54865

Generalized Tridiagonal 1 9057 1191 1094 9334 2408 2153

Extended Tridiagonal 1 2077341 10989 35621 14292 13562 6800

Extended TET 4130 528 528 3794 1080 828

Diagonal 4 133440 636 636 1332 1284 996

Diagonal 5 108 156 156 108 300 228

Extended Himmelblau 5192 976 668 6897 2136 2418

Perturbed quadratic diagonal 38728371 341299 460028 94921578 619938 529154

Quadratic QF1 13192789 208286 352975 13310016 472273 243573

Extended quadratic penalty QP1 2939 2196 2326 2613 5073 3895

Extended quadratic penalty QP2 8846145 11491 25905 9852040 29847 21345

Quadratic QF2 2810965 183142 353935 3989239 444580 257674

Extended quadratic exponential EP1 1513 894 661 990 2083 1617

Extended Tridiagonal 2 9613 2866 2728 8166 4446 4456

ARWHEAD (CUTE) 468970 5322 3919 214284 9038 6761

Almost Perturbed Quadratic 13936462 194876 338797 14003318 424470 237534

LIARWHD (CUTE) 41619197 27974 180457 47476667 22254 53306

ENGVAL1 (CUTE) 8332 2285 2702 6882 6064 4442

QUARTC (CUTE) 414 494 640 402 1264 909

Generalized Quartic 1244 493 507 849 1043 798

Full Hessian FH3 1955 566 631 1352 1152 957

Diagonal 9 12984028 68189 89287 13144711 131327 125119
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Fig. 4.4: Performance profiles arising from CPUT.



1436 B. Ivanov, B.I. Shaini and P.S. Stanimirović

Table 4.7: Numerical results of the AGD, MAGD, MSM, SM, DMSM and TMSM
methods for the CPUT.

Test function MAGD MSM SM AGD TMSM DMSM

Perturbed Quadratic 6049.531 116.281 185.641 6756.047 219.328 134.781
Raydan 1 334.266 31.906 36.078 158.359 44.828 66.484
Diagonal 3 6401.969 52.609 102.875 5527.844 129.734 96.688
Generalized Tridiagonal 1 7.781 1.469 1.203 11.344 2.969 2.969
Extended Tridiagonal 1 8853.172 29.047 90.281 55.891 25.672 12.609
Extended TET 2.766 0.516 0.594 3.219 1.234 0.938
Diagonal 4 16.172 0.203 0.141 0.781 0.344 0.172
Diagonal 5 0.313 0.344 0.328 0.391 0.594 0.516
Extended Himmelblau 1.031 0.297 0.188 1.953 0.688 0.875
Perturbed quadratic diagonal 22820.172 139.625 185.266 44978.750 263.953 220.719
Quadratic QF1 6846.453 81.531 138.172 12602.563 173.953 91.047
Extended quadratic penalty QP1 1.063 1.000 0.797 1.266 2.781 1.813
Extended quadratic penalty QP2 1872.797 3.516 6.547 3558.734 8.750 5.906
Quadratic QF2 768.563 73.438 132.703 1582.766 169.266 98.141
Extended quadratic exponential EP1 0.844 0.688 0.438 0.750 1.000 0.859
Extended Tridiagonal 2 2.531 1.047 1.031 3.719 1.828 1.922
ARWHEAD (CUTE) 138.000 1.969 1.359 95.641 2.813 2.625
Almost Perturbed Quadratic 7086.563 73.047 133.516 13337.125 158.156 92.578
LIARWHD (CUTE) 15372.625 9.250 82.016 27221.516 5.250 17.406
ENGVAL1 (CUTE) 2.641 1.047 1.188 3.906 2.578 2.391
QUARTC (CUTE) 2.078 1.844 2.313 2.469 4.625 3.203
Generalized Quartic 0.500 0.281 0.188 0.797 0.422 0.500
Full Hessian FH3 1.188 0.391 0.391 1.438 1.063 0.891
Diagonal 9 6662.984 43.609 38.672 6353.172 61.984 114.703

Table 4.8: Average numerical results in the second numerical experiment.

Average performances MAGD MSM SM AGD TMSM DMSM

Number of iterations 196051.21 9497.04 15136.33 235632.88 9058.46 8004.88
No. of fun.evaluation 6426009.58 67265.54 97642.88 8982579.21 118332.71 87521.54
CPU time (sec) 3468.58 27.71 47.58 5094.18 53.49 40.45

In accordance with obtained numerical data generated in the second numerical
experiment, we can give an answer to the question, that independently of the choice
of parameter values in the second and third backtracking line search, the DMSM
iterations has the best results in relation to NofI. Also, if we compare the average
results obtained in Tables 4.4 and 4.8, we can see that there is a slight percentage
decrease in the average numerical results of the NofFE and CPUT, the DMSM
method compared to the MSM method in the second numerical experiment.

5. Conclusion

Multiple usage of the backtracking line search in the modified SM (MSM)



Multiple Use of Backtracking Line Search in Unconstrained Optimization 1437

method lead to two improvements of the MSM scheme, denoted as the TMSM
and DMSM methods. Proposed iterations are investigated both theoretically and
numerically. The linear convergence of the defined model is proved for UC and for
a subset of SCQ functions. Numerical experiments confirm that the derived TMSM
and DMSM methods outperform the SM, AGD, MAGD and the MSM with respect
to the number of iterations. Numerical values arranged in Tables 4.1-4.8 confirm
the better performance of presented accelerated gradient descent method. Finally,
the obtained TMSM and DMSM methods can be used as a motivation for different
possibilities of deriving new efficient schemes for unconstrained optimization.
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11. M. J. Petrović and P. S. Stanimirović: Accelerated Double Direction method for

solving unconstrained optimization problems. Mathematical Problems in Engineering
2014 (2014), Article ID 965104, 8 pages.

12. R. T. Rockafellar: Convex Analysis. Princeton University Press, Princeton, 1970.

13. Z. -J. Shi: Convergence of line search methods for unconstrained optimization. App.
Math. Comput. 157 (2004), 393–405.
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