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Abstract. This paper deals with different approaches for solving linear systems of the
first order differential equations with the system matrix in the symmetric arrowhead
form. Some needed algebraic properties of the symmetric arrowhead matrix are proposed.
We investigate the form of invariant factors of the arrowhead matrix. Also the entries of
the adjugate matrix of the characteristic matrix of the arrowhead matrix are considered.
Some reductions techniques for linear systems of differential equations with the system
matrix in the arrowhead form are presented.
Keywords: Arrowhead matrices, Linear systems of differential equations, Partial and
total reductions of non-homogeneous linear systems of first order operator equations

1. Introduction

Arrowhead matrices are an important type of matrices occurring in wide area
of applications. They are popular subject of research related with mathematics,
physics and engineering. Some important problems like computing eigenvalues and
eigenvectors of arrowhead matrices [9, 2, 21], solving inverse eigenvalue problems
[15, 28, 25, 24], computing the inverse of arrowhead matrices [7, 26, 4], and solving
symmetric arrowhead systems [5] have been considered by various authors over the
last four decades. Arrowhead matrices are often an essential tool for the computation
of the eigenvalue problems for large and sparse or tridiagonal matrices [22, 6, 8, 29, 23].
Arrowhead matrices arise in the description of modelling of radiationless transitions
in isolated molecules [1], oscillators vibrationally coupled with a Fermi liquid [3]
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and quantum optics [19]. One can also find arrowhead matrices in the models of
telecommunication systems (MIMO) [27, 14] and neural networks [18], as well as in
robotics and in modern control theory. Motivated by wide applications of arrowhead
matrices we are interested in solving linear system of differential equations with the
system matrix in the symmetric arrowhead form.

In our previous papers we have considered a partial and a total reduction of non-
homogenous linear systems of the first order operator equations with system matrix
in an arbitrary form. In [16] the idea was to use the rational canonical form to reduce
such a system to an equivalent partially reduced one. The partially reduced system
obtained in this fashion consists of higher-order linear operator equations in one
variable and first-order linear operator equations in two variables. Another method
for solving a linear systems of operator equations, which does not require a change of
basis, is discussed in [17]. Obtained totally reduced system consists of higher order
operator equations which only differ in the variables and in the non-homogeneous
terms. In [12] and [11] we have considered a partial and a total reduction of linear
systems of operator equations with the system matrix in the companion form. Papers
[12, 11, 10] and [13] expand our research to non-homogeneous linear systems of
operator equations involving more than one operator.

This paper deals with both types of reductions, a partial and a total, of linear
systems of the first order differential equations with the system matrix in the
arrowhead form. We will look more closely at the form of invariant factors of the
arrowhead matrix, which we will use for partial reduction. The adjugate matrix of
characteristic matrix of the arrowhead matrix presented as polynomial with matrix
coefficients will be used to establish the form for the totally reduced system.

In what follows we propose some important properties of arrowhead matrices,
and we will start with definition of the arrowhead matrix.

2. Some properties of symmetric arrowhead matrices

A matrix B ∈ Rn×n is called a symmetric arrowhead matrix if it has a form

a1 b2 b3 . . . bn−1 bn
b2 a2 0 . . . 0 0
b3 0 a3 . . . 0 0
...

...
...

. . .
...

...
bn−1 0 0 . . . an−1 0
bn 0 0 . . . 0 an


.(2.1)

It is a symmetric matrix obtained by bordering the diagonal matrix with a row and
a column with the same elements. The characteristic polynomial of the arrowhead
matrix B is

∆B(λ) = det(λI −B) =

n∏
i=1

(λ− ai)−
n∑

i=2

b2i

n∏
j = 2
j 6= i

(λ− aj).(2.2)
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This formula can be easily derived by expanding the determinant of the matrix
λI −B by the first row. The proof of this can be found in [20] and therefore it is
omitted here. We denote by dk, 0 ≤ k ≤ n, the coefficient of the term of degree
n− k of the characteristic polynomial ∆B(λ). Therefore, we have

d0 = 1, d1 = −
n∑

i=1

ai, d2 =
∑

1≤i<j≤n

ai aj −
n∑

i=2

b2i and

dk = (−1)k

 ∑
1≤i1<i2<...<ik≤n

ai1 ai2 . . . aik −
n∑

j=2

b2j
∑

2 ≤ i1 < i2 < . . . < ik−2 ≤ n

i1, i2, . . . , ik−1 6= j

ai1 ai2 . . . aik−2


for 3 ≤ k ≤ n.

Suppose that a2 > a3 > . . . > an and bi 6= 0, for 2 ≤ i ≤ n. Then by Cauchy’s
Interlacing Theorem the eigenvalues λi of the matrix B, 1 ≤ i ≤ n, are distinct.
Moreover, if λ1 > λ2 > . . . > λn, then λ1 > a2 > λ2 > a3 > . . . > an > λn. For
more details, we refer the reader to [24]. If for some i, 2 ≤ i ≤ n, bi = 0, then ai is
eigenvalue of the matrix B. If the number of repetition of the element ai along the
diagonal except on the position (1, 1) of the matrix B is ki, then the element ai is
an eigenvalue of the matrix B with algebraic multiplicity at least ki − 1. The result
follows directly from the equation (2.2), since (λ− ai)ki−1 is a factor of ∆B(λ). If
the matrix B is of the form



a1 b2 . . . bi−1 bi1 . . . biki
bi+ki

. . . bn−1 bn
b2 a2 . . . 0 0 . . . 0 0 . . . 0 0
...

...
. . .

...
...

. . .
...

...
. . .

...
...

bi−1 0 . . . ai−1 0 . . . 0 0 . . . 0 0
bi1 0 . . . 0 ai . . . 0 0 . . . 0 0
...

...
. . .

...
...

. . .
...

...
. . .

...
...

biki
0 . . . 0 0 . . . ai 0 . . . 0 0

bi+ki
0 . . . 0 0 . . . 0 ai+ki

. . . 0 0
...

...
. . .

...
...

. . .
...

...
. . .

...
...

bn−1 0 . . . 0 0 . . . 0 0 . . . an−1 0
bn 0 . . . 0 0 . . . 0 0 . . . 0 an



,

for ai 6= aj , 2 ≤ j ≤ i − 1, i + ki ≤ j ≤ n, we will say that elements bi1 , . . . , biki

correspond to the diagonal element ai. According to Corollary 4 in [27] we have
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∆B(λ) = (λ− ai)ki−1∆B̃(λ), where

B̃ =



a1 b2 . . . bi−1

√∑ki

j=1 b
2
ij

bi+ki
. . . bn−1 bn

b2 a2 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

bi−1 0 . . . ai−1 0 0 . . . 0 0√∑ki

j=1 b
2
ij

0 . . . 0 ai 0 . . . 0 0

bi+ki
0 . . . 0 0 ai+ki

. . . 0 0
...

...
. . .

...
...

...
. . .

...
...

bn−1 0 . . . 0 0 0 . . . an−1 0
bn 0 . . . 0 0 0 . . . 0 an


.

Characteristic polynomial of the matrix B̃ is polynomial

∆B̃(λ) =

i∏
j=1

(λ− aj)
n∏

j=i+ki

(λ− aj)−
n+1−ki∑

j=2

b̃2j

i∏
k = 2
k 6= j

(λ− ak)

n∏
k = i + ki

k 6= j

(λ− ak),

where b̃j = bj for 2 ≤ j ≤ i− 1, b̃i =
√∑ki

j=1 b
2
ij

and b̃j−ki+1 = bj for i+ ki ≤ j ≤ n.

We would like to investigate under what condition ai is an eigenvalue of the matrix

B̃. We have ∆B̃(ai) = −b̃2i
i−1∏
k=2

(ai − ak)

n∏
k=i+ki

(ai − ak), and since ai 6= aj for

2 ≤ j ≤ i− 1 and i+ ki ≤ j ≤ n we deduce that ai is an eigenvalue of B̃ if and only

if b̃2i =
√∑ki

j=1 b
2
ij

= 0, i.e., if and only if bij = 0 for all j, 1 ≤ j ≤ ki. Therefore,

ai is an eigenvalue of B̃ if and only if all corresponding elements to the diagonal
element ai in B are zeros. So, in this case algebraic multiplicity of the element ai
in the matrix B is ki. If there is at least one non-zero corresponding element to ai,
algebraic multiplicity of ai is ki − 1. Let ai1 , ai2 , . . . , aip be different elements along
the diagonal with corresponding elements all equal to zero and let aj1 , aj2 , . . . , ajq
be different elements along the diagonal with at least one corresponding element
different from zero. Let kit and kjs , 1 ≤ t ≤ p, 1 ≤ s ≤ q, be the numbers of
repetition of the elements ait and ajs along the diagonal except on the position

(1, 1) and define mjs by mjs =

{
1, kjs > 1
0, kjs = 1.

Then the minimal polynomial of

the matrix B is of the form

µB(λ) =

p∏
s=1

(λ− ais)

q∏
s=1

(λ− ajs)mjs ∆B̃(λ),
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where B̃ is completely reduced arrowhead matrix, i.e., it is a matrix of the form
a1 b̃j1 . . . b̃jq
b̃j1 aj1 . . . 0
...

...
. . .

...

b̃jq 0 . . . ajq

 ,

b̃js =
√∑kjs

t=1 b
2
jst

and bjst are corresponding elements of the element ajs in the

matrix B, 1 ≤ s ≤ q. If the elements a2, a3, . . . , an are all different, then the
minimal and characteristic polynomials of the matrix B are the same. Otherwise,
since matrix B is symmetric the number of its invariant factors is equal to k =
max{ki1 , . . . , kip , kj1 − 1, . . . , kjq − 1}. The k-th invariant factor of the matrix B is
µB(λ). The m-th invariant factor of the matrix B, 1 ≤ m ≤ k − 1 is the polynomial

τm(λ) =

p∏
s=1

(λ− ais)gis
q∏

s=1

(λ− ajs)gjs ,

where gis =

{
1, kis − (k −m) > 0
0, otherwise

and gjs =

{
1, kjs − (k −m) > 1
0, otherwise.

From now on we will be concern with the coefficients of the adjugate matrix of
the characteristic matrix of the symmetric arrowhead matrix B. Suppose that the
adjugate matrix of the characteristic matrix λI −B is written in the form

adj(λI− B) = λn−1B0 + λn−2B1 + . . .+ λBn−2 + Bn−1.

Let us determine the coefficients Bk using recurrences Bk = B ·Bk−1 + dk I, for
1 ≤ k ≤ n− 1, and B0 = I. The recurrences are obtained by equating coefficients at
the same powers of λ on both sides of the equality adj(λI−B) · (λI−B) = ∆B(λ)I.

Lemma 2.1. The coefficient Bk = [bkij ]n×n, 2 ≤ k ≤ n−1, of the matrix adj(λI−B)
is matrix with entries

bk11 = (−1)k
∑

2 ≤ i1 < i2 < . . . < ik ≤ n

ai1 ai2 . . . aik bk1j = (−1)k−1 bj
∑

2 ≤ i1 < i2 < . . . < ik−1 ≤ n
i1, i2, . . . , ik−1 6= j

ai1 ai2 . . . aik−1

bkj1 = (−1)k−1 bj
∑

2 ≤ i1 < i2 < . . . < ik−1 ≤ n
i1, i2, . . . , ik−1 6= j

ai1 ai2 . . . aik−1
bkij = (−1)k−2 bi bj

∑
2 ≤ i1 < i2 < . . . < ik−2 ≤ n

i1, i2, . . . , ik−2 6= i, j

ai1 ai2 . . . aik−2

bkjj = (−1)k

 ∑
1 ≤ i1 < i2 < . . . < ik ≤ n

i1, i2, . . . , ik 6= j

ai1 ai2 . . . aik −
∑
i = 2
i 6= j

n

b2i
∑

2 ≤ i1 < i2 < . . . < ik−2 ≤ n
i1, i2, . . . , ik−2 6= i, j

ai1 ai2 . . . aik−2


for 2 ≤ i, j ≤ n and i 6= j.
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Proof. The proof proceeds by induction on k. We have B0 = I. For coefficient
B1 holds B1 = B · I + d1I, i.e.,

B1 =



−
n∑

i=2

ai b2 . . . bn−1 bn

b2 −
n∑

i=1,i6=2

ai . . . 0 0

...
...

. . .
...

...

bn−1 0 . . . −
n∑

i=1,6=n−1

ai 0

bn 0 . . . 0 −
n−1∑
i=1

ai


.

Coefficient B1 is also arrowhead matrix. Let (B)→j stand for the j-th row of the
matrix B, and let (Bk−1)↓j denote the j-th column of the matrix Bk−1, 1 ≤ j ≤ n.
Assume that coefficients of the matrix Bk−1 satisfy required form. Then we have

bk11 = (B)→1 · (Bk−1)↓1 + dk = a1 b
k−1
11 +

n∑
j=2

bj b
k−1
j1 + dk

= (−1)k−1 a1
∑

2 ≤ i1 < i2 < . . . < ik−1 ≤ n

ai1 ai2 . . . aik−1
+ (−1)k−2

n∑
j=2

b2j
∑

2 ≤ i1 < i2 < . . . < ik−2 ≤ n

i1, i2, . . . , ik−2 6= j

ai1 ai2 . . . aik−2

+ (−1)k
∑

1 ≤ i1 < i2 < . . . < ik ≤ n

ai1 ai2 . . . aik + (−1)k−1
n∑

j=2

b2j
∑

2 ≤ i1 < i2 < . . . < ik−2 ≤ n

i1, i2, . . . , ik−2 6= j

ai1 ai2 . . . aik−2

= (−1)k
∑

2 ≤ i1 < i2 < . . . < ik ≤ n

ai1 ai2 . . . aik

bkj1 = (B)→j · (Bk−1)↓1 = bj b
k−1
11 + aj b

k−1
j1

= (−1)k−1bj
∑

2 ≤ i1 < i2 < . . . < ik−1 ≤ n

ai1 ai2 . . . aik−1
+ (−1)k−2aj bj

∑
2 ≤ i1 < i2 < . . . < ik−2 ≤ n

i1, i2, . . . , ik−2 6= j

ai1 ai2 . . . aik−2

= (−1)k−1bj
∑

2 ≤ i1 < i2 < . . . < ik−1 ≤ n

i1, i2, . . . , ik−1 6= j

ai1 ai2 . . . aik−1

bkij = (B)→i · (Bk−1)↓j = bi b
k−1
1j + ai b

k−1
ij

= (−1)k−2bi bj
∑

2 ≤ i1 < i2 < . . . < ik−2 ≤ n

i1, i2, . . . , ik−2 6= j

ai1 ai2 . . . aik−2
+ (−1)k−3ai bi bj

∑
2 ≤ i1 < i2 < . . . < ik−3 ≤ n

i1, i2, . . . , ik−3 6= i, j

ai1 ai2 . . . aik−3

= (−1)k−2bi bj
∑

2 ≤ i1 < i2 < . . . < ik−2 ≤ n

i1, i2, . . . , ik−2 6= i, j

ai1 ai2 . . . aik−2
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bk1j = (B)→1 · (Bk−1)↓j = a1b
k−1
1j +

∑
i = 2
i 6= j

n

bib
k−1
ij + bjb

k−1
jj

= (−1)k−2a1 bj
∑

2 ≤ i1 < i2 < . . . < ik−2 ≤ n
i1, i2, . . . , ik−2 6= j

ai1 ai2 . . . aik−2
+ (−1)k−3

∑
i = 2
i 6= j

n

b2i bj
∑

2 ≤ i1 < i2 < . . . < ik−3 ≤ n
i1, i2, . . . , ik−3 6= i, j

ai1 ai2 . . . aik−3

+ (−1)k−1bj
∑

1 ≤ i1 < i2 < . . . < ik−1 ≤ n
i1, i2, . . . , ik−1 6= j

ai1 ai2 . . . aik−1
+ (−1)k

∑
i = 2
i 6= j

n

b2i bj
∑

2 ≤ i1 < i2 < . . . < ik−3 ≤ n
i1, i2, . . . , ik−3 6= i, j

ai1 ai2 . . . aik−3

= (−1)k−1bj
∑

2 ≤ i1 < i2 < . . . < ik−1 ≤ n
i1, i2, . . . , ik−1 6= j

ai1 ai2 . . . aik−1

bkjj = (B)→j · (Bk−1)↓j + dk = bjb
k−1
1j + ajb

k−1
jj + dk

= (−1)k−2b2j
∑

2 ≤ i1 < i2 < . . . < ik−2 ≤ n
i1, i2, . . . , ik−2 6= j

ai1 ai2 . . . aik−2
+ (−1)k−1aj

∑
1 ≤ i1 < i2 < . . . < ik−1 ≤ n

i1, i2, . . . , ik−1 6= j

ai1 ai2 . . . aik−1

+ (−1)k−2
∑
i = 2
i 6= j

n

b2i aj
∑

2 ≤ i1 < i2 < . . . < ik−3 ≤ n
i1, i2, . . . , ik−3 6= i, j

ai1 ai2 . . . aik−3
+ (−1)k

∑
1 ≤ i1 < i2 < . . . < ik ≤ n

ai1 ai2 . . . aik

+ (−1)k−1
n∑

i=2

b2i
∑

2 ≤ i1 < i2 < . . . < ik−2 ≤ n
i1, i2, . . . , ik−2 6= i

ai1 ai2 . . . aik−2

= (−1)k−1
∑
i = 2
i 6= j

n

b2i
∑

2 ≤ i1 < i2 < . . . < ik−2 ≤ n
i1, i2, . . . , ik−2 6= i

ai1 ai2 . . . aik−2
+ (−1)k

∑
1 ≤ i1 < i2 < . . . < ik ≤ n

i1, i2, . . . , ik 6= j

ai1 ai2 . . . aik

+ (−1)k−2
∑
i = 2
i 6= j

n

b2i aj
∑

2 ≤ i1 < i2 < . . . < ik−3 ≤ n
i1, i2, . . . , ik−3 6= i, j

ai1 ai2 . . . aik−3

= (−1)k−1
∑
i = 2
i 6= j

n

b2i
∑

2 ≤ i1 < i2 < . . . < ik−2 ≤ n
i1, i2, . . . , ik−2 6= i, j

ai1 ai2 . . . aik−2
+ (−1)k

∑
1 ≤ i1 < i2 < . . . < ik ≤ n

i1, i2, . . . , ik 6= j

ai1 ai2 . . . aik

Therefore, we have shown that coefficients of the matrix Bk are of the required
form.

3. The reduction formulas for linear systems of differential equations
with the system matrix in the arrowhead form

Let C∞(R) be a vector space of all infinitely differentiable functions and let
D : C∞(R)→ C∞(R) be a differential operator on the vector space C∞(R). We will
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consider non-homogeneous linear system of differential equations with the system
matrix in the symmetric arrowhead form

D(x1) = a1x1 + b2x2 + b3x3 + . . .+ bn−1xn−1 + bnxn + ϕ1

D(x2) = b2x1 + a2x2 + ϕ2

D(x3) = b3x1 + a3x3 + ϕ3

...

D(xn−1) = bn−1x1 + an−1xn−1 + ϕn−1

D(xn) = bnx1 + anxn + ϕn,

(3.1)

for ai, bi ∈ R, ϕi ∈ C∞(R), 1 ≤ i ≤ n.

Since symmetric arrowhead matrix is diagonalizable, we can find a general solution
of our system by rewriting it in a basis formed by eigenvectors. The obtained system
is completely decoupled, so we get a system of n linear differential equations of
the first order in one variable. This method is very convenient theoretically, but in
actual calculations usually requires quite a few steps. Furthermore, while there are
some approaches for finding eigenvalues and eigenvectors of arrowhead matrix it can
be a difficult job.

Applying Theorem 3.7 from the paper [16] and taking into consideration the
form of the invariant factors of the symmetric arrowhead matrix we obtain the
partially reduced system. Partially reduced system consists of k subsystems, where
k is a number of invariant factors of system matrix. Every subsystem corresponds
to one invariant factor. The first equation of subsystems is non-homogeneous linear
differential equation in one unknown, with the characteristic polynomial equal to the
invariant factor and with the non-homogenous term equal to the sum of principal
minors of some doubly companion matrices obtained by replacing the first column
of the companion matrix of the invariant factor by a column of the first and higher
order derivatives of non-homogeneous terms involved in subsystem. Remaining
equations are linear differential equations of the first order in two variables. This
method also requires the change of basis.

The simple form of our system matrix inspire us to try to derive partial reduction
formulas directly. In this manner we state following theorem, a direct method for
transforming system (3.1) into partially reduced system.

Theorem 3.1. The linear system of the first order differential equations (3.1) can
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be transformed into the partially reduced system

∆B(D)(x1) =

n∏
j=2

(D − aj)(ϕ1) +

n∑
i=2

bi

n∏
j = 2
j 6= i

(D − aj)(ϕi)

(D − a2)(x2) = b2x1 + ϕ2

(D − a3)(x3) = b3x1 + ϕ3

...
(D − an−1)(xn−1) = bn−1x1 + ϕn−1

(D − an)(xn) = bnx1 + ϕn,

(3.2)

where the linear operator ∆B(D) is define by replacing λ by D in (2.2).

Proof. Let us denote by

n∏
i=2

(D − ai) composition of operators D − ai, for

2 ≤ i ≤ n. The partially reduced system (3.2) is obtained by acting

n∏
i=2

(D − ai) on

the first equation of the system (3.1) and by substituting expressions (D − ai)(xi)
appearing on the right sides of equality with bix1 + ϕi, for 2 ≤ i ≤ n. Mind that
operators D − ai and D − aj commute, for every i and j such that 2 ≤ i, j ≤ n.
Thus we have

n∏
j=1

(D − aj)(x1) =

n∑
i=2

bi

n∏
j=2

(D − aj)(xi) +

n∏
j=2

(D − aj)(ϕ1) =

=

n∑
i=2

bi

n∏
j = 2
j 6= i

(D − aj)(bix1 + ϕi) +

n∏
j=2

(D − aj)(ϕ1) =

=

n∑
i=2

b2i

n∏
j = 2
j 6= i

(D − aj)(x1)

+
n∑

i=2

bi

n∏
j = 2
j 6= i

(D − aj)(ϕi) +
n∏

j=2

(D − aj)(ϕ1).

Rearranging the equation, we get the first equation from (3.2), i.e., we obtain

∆B(D)(x1) =

n∏
j=2

(D − aj)(ϕ1) +

n∑
i=2

bi

n∏
j = 2
j 6= i

(D − aj)(ϕi).

Finally we are considering total reduction of our arrowhead form system. As an
immediate consequence of Theorems 4.1 from the paper [17] we can transform the
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system (3.1) into the totally reduced system

∆B(D)(x1) =

n∑
k=1

n∑
j=1

b
(k)
1j D

n−k(ϕj)

∆B(D)(x2) =

n∑
k=1

n∑
j=1

b
(k)
2j D

n−k(ϕj)

...

∆B(D)(xn) =

n∑
k=1

n∑
j=1

b
(k)
nj D

n−k(ϕj),

(3.3)

where the linear operator ∆B(D) is define by replacing λ by D in (2.2) and coefficients

b
(k)
ij are calculated in Lemma 2.1.

4. An example

We will illustrate the previous results by the example. Consider the system of the
differential equations

D(x1) = x1 + x2 + 2x3 + 2x4 + 18et

D(x2) = x1 + x2

D(x3) = 2x1 + x3

D(x4) = 2x1 + x4.

(4.1)

The vector form of the system (4.1) is D(~x) = B~x+ ~ϕ, where ~x = [x1 x2 x3 x4]
T

and

~ϕ = [18et 0 0 0]
T

. The system matrix is arrowhead matrix B =


1 1 2 2
1 1 0 0
2 0 1 0
2 0 0 1

,

the reduced form of the matrix B is B̃ =

[
1 3
3 1

]
, the characteristic polynomial of

the matrix B̃ is ∆B̃(λ) =

∣∣∣∣ λ− 1 3
3 λ− 1

∣∣∣∣ = (λ− 1)2 − 9 = (λ− 4)(λ+ 2), and for

the characteristic polynomial of the matrix B

∆B(λ) = (λ− 1)2∆B̃(λ) = (λ− 1)2(λ− 4)(λ+ 2) = λ4 − 4λ3 − 3λ2 + 14λ− 8

holds. Coefficients of the characteristic polynomial of the matrix B are d0 = 1,
d1 = −4, d2 = −3, d3 = 14 and d4 = −8. The eigenvalues of the matrix B are
λ1 = λ2 = 1, λ3 = −2 and λ4 = 4. Corresponding eigenvectors are v1 = [0 − 2 1 0]T ,
v2 = [0 − 2 0 1]T , v3 = [−3 1 2 2]T and v4 = [3 1 2 2]T . The Jordan normal
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form of the matrix B is J =


1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 4

, the transformation matrix is P =


0 0 −3 3
−2 −2 1 1

1 0 2 2
0 1 2 2

 and its inverse is matrix P−1 = 1
18


0 −4 10 −8
0 −4 −8 10
−3 1 2 2

3 1 2 2

.

The system (4.1) can be transformed to equivalent system D (~y) = J~y + ~ψ, where

~y = [y1 y2 y3 y4]
T

= P−1~x and ~ψ = P−1~ϕ, i.e., we have

D(y1) = y1

D(y2) = y2

D(y3) = −2y3 − 3et

D(y4) = 4y4 + 3et.

Solution of the previous system is
y1

y2

y3

y4

 =


C1e

t

C2e
t

C3e
−2t − et

C4e
4t − et

 .

and the solution of the system (4.1) is
x1

x2

x3

x4

 =


−3C3e

−2t + 3C4e
4t

−2(C1 + C2 + 1)et + C3e
−2t + C4e

4t

(C1 − 4)et + 2C3e
−2t + 2C4e

4t

(C2 − 4)et + 2C3e
−2t + 2C4e

4t

 .

The arrowhead matrix B has two invariant factors τ1(λ) = λ− 1 and τ2(λ) =
µB(λ) = (λ − 1)(λ + 2)(λ − 4) = λ3 − 3λ2 − 6λ + 8. The rational normal form

of the matrix B is C =


1 0 0 0
0 0 1 0
0 0 0 1
0 −8 6 3

, the transformation matrix is T =

1
9


0 −3 6 −3

−18 −13 −7 2
0 14 −4 −1
9 6 −6 0

 and its inverse is matrix T−1 = 1
9


0 −2 −4 5
−3 −2 5 −4
−3 −5 −1 −10
−30 −8 −7 −16

.

The system (4.1) can be transformed to equivalent system D (~z) = C~z + ~ν, where
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~z = [z1 z2 z3 z4]
T

= T−1~x and ~ν = T−1~ϕ, i.e., we have

D(z1) = z1

D(z2) = z3 − 6et

D(z3) = z4 − 6et

D(z4) = −8z2 + 6z3 + 3z4 − 60et.

Previous system can be transformed into equivalent partially reduced system

D(z1)− z1 = 0

D3(z2)− 3D2(z2)− 6D(z2) + 8z2 = 0

z3 = D(z2) + 6et

z4 = D(z3) + 6et.

Solution of the previous system is
z1

z2

z3

z4

 =


C1e

t

C2e
t + C3e

−2t + C4e
4t

C2e
t − 2C3e

−2t + 4C4e
4t + 6et

C2e
t + 4C3e

−2t + 16C4e
4t + 12et

 .
and the solution of the system (4.1) is

x1

x2

x3

x4

 =


−3C3e

−2t − 3C4e
4t

−2(C1 + C2 + 1)et + C3e
−2t − C4e

4t

(C2 − 4)et + 2C3e
−2t − 2C4e

4t

(C1 − 4)et + 2C3e
−2t − 2C4e

4t

 .

By Theorem 3.1 system (4.1) can be transformed into the system

D4(x1)− 4D3(x1)− 3D2(x1) + 14D(x1)− 8x1 = 0

D(x2)− x2 = x1

D(x3)− x3 = 2x1

D(x4)− x4 = 2x1.

Solution of the reduced system is
x1

x2

x3

x4

 =


C1e

t + C2te
t + C3e

−2t + C4e
4t

C5e
t + C1e

t + C2

2 te
t − C3

3 e
−2t + C4

3 e
4t

C6e
t + 2C1e

t + C2te
t − 2C3

3 e−2t + 2C4

3 e4t

C7e
t + 2C1e

t + C2te
t − 2C3

3 e−2t + 2C4

3 e4t

 .(4.2)
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To obtain the solution of the system (4.1) we need to find connection between
constants Ci, 1 ≤ i ≤ 7. Substituting (4.2) into (4.1) we obtain

(C1 + C2)et + C2te
t − 2C3e

−2t + 4C4e
4t =

C1e
t + C2te

t + C3e
−2t + C4e

4t + (C1 + C5)et + C2

2 te
t − C3

3 e
−2t + C4

3 e
4t+

(4C1 + 2C6)et + 2C2te
t − 4C3

3 e−2t + 4C4

3 e4t+

(4C1 + 2C7)et + 2C2te
t − 4C3

3 e−2t + 4C4

3 e4t + 18et

(C1 + C5 + C2

2 )et + C2

2 te
t + 2C3

3 e−2t + 4C4

3 e4t =

(C1 + C5)et + C2

2 te
t − C3

3 e
−2t + C4

3 e
4t + C1e

t + C2te
t + C3e

−2t + C4e
4t

(2C1 + C2 + C6)et + C2te
t + 4C3

3 e−2t + 8C4

3 e4t =

(2C1 + C6)et + C2te
t − 2C3

3 e−2t + 2C4

3 e4t + 2C1e
t + 2C2te

t + 2C3e
−2t + 2C4e

4t

(2C1 + C2 + C7)et + C2te
t + 4C3

3 e−2t + 8C4

3 e4t =

(2C1 + C7)et + C2te
t − 2C3

3 e−2t + 2C4

3 e4t + 2C1e
t + 2C2te

t + 2C3e
−2t + 2C4e

4t.

Comparing both sides of the equalities, we have C1 = 0, C2 = 0 and C2 =
9C1 + C5 + 2C6 + 2C7 + 18, i.e., we get the solution of the system (4.1)


x1

x2

x3

x4

 =


C3e

−2t + C4e
4t

−2(C6 + C7 + 9)et − C3

3 e
−2t + C4

3 e
4t

C6e
t − 2C3

3 e−2t + 2C4

3 e4t

C7e
t − 2C3

3 e−2t + 2C4

3 e4t

 .

From now on, we will focus on the total reduction method. We will start
with calculation of the coefficients of the matrix adj(λI − B): B0 = I, B1 =

B + d1I =


−3 1 2 2
1 −3 0 0
2 0 −3 0
2 0 0 −3

, B2 = B · B1 + d2I =


3 −2 −4 −4
−2 −5 2 2
−4 2 −2 4
−4 2 4 −2


and B3 = B ·B2 + d3I =


−1 1 2 2
1 7 −2 −2
2 −2 4 −4
2 −2 −4 4

. Totally reduced system obtained

from the system (4.1) is completely decoupled homogenous system of four fourth
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order differential equations which differ only in variables

D4(x1)− 4D3(x1)− 3D2(x1) + 14D(x1)− 8x1 = 0

D4(x2)− 4D3(x2)− 3D2(x2) + 14D(x2)− 8x2 = 0

D4(x3)− 4D3(x3)− 3D2(x3) + 14D(x3)− 8x3 = 0

D4(x4)− 4D3(x4)− 3D2(x4) + 14D(x4)− 8x4 = 0.

Solution of the totally reduced system is
x1

x2

x3

x4

 =


C1e

t + C2te
t + C3e

−2t + C4e
4t

C5e
t + C6te

t + C7e
−2t + C8e

4t

C9e
t + C10te

t + C11e
−2t + C12e

4t

C13e
t + C14te

t + C15e
−2t + C16e

4t

 .

Our last task is to find relations between constants Ci for 1 ≤ i ≤ 16. As we have
seen in the previous consideration, we can do that by plugging the solution of the
totally reduced system into the original system (4.1). We obtain

(C1 + C2)et + C2te
t − 2C3e

−2t + 4C4e
4t =

C1e
t + C2te

t + C3e
−2t + C4e

4t + C5e
t + C6te

t + C7e
−2t + C8e

4t+

2C9e
t + 2C10te

t + 2C11e
−2t + 2C12e

4t+

2C13e
t + 2C14te

t + 2C15e
−2t + 2C16e

4t + 18et

(C5 + C6)et + C6te
t − 2C7e

−2t + 4C8e
4t =

C1e
t + C2te

t + C3e
−2t + C4e

4t + C5e
t + C6te

t + C7e
−2t + C8e

4t

(C9 + C10)et + C10te
t − 2C11e

−2t + 4C12e
4t =

2C1e
t + 2C2te

t + 2C3e
−2t + 2C4e

4t + C9e
t + C10te

t + C11e
−2t + C12e

4t

(C13 + C14)et + C14te
t − 2C15e

−2t + 4C16e
4t =

2C1e
t + 2C2te

t + 2C3e
−2t + 2C4e

4t + C13e
t + C14te

t + C15e
−2t + C16e

4t.

Combining like terms for each equation yields

C2 − C1 = C5 + 2C9 + 2C13 + 18 0 = C6 + 2C10 + 2C14

−3C3 = C7 + 2C11 + 2C15 3C4 = C8 + 2C12 + 2C16

C6 = C1 C2 = 0 −3C7 = C3 3C8 = C4

C10 = 2C1 C2 = 0 −3C11 = 2C3 3C12 = 2C4

C14 = 2C1 C2 = 0 −3C15 = 2C3 3C16 = 2C4.
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By substituting C6 = C1, C10 = 2C1 and C14 = 2C1 into C6 + 2C10 + 2C14 =
0, we obtain that C1 = 0. Together with C2 = 0 the first equation becomes
C5 + 2C9 + 2C13 + 18 = 0. The equation −3C3 = C7 + 2C11 + 2C15 is direct
consequence of equations −3C7 = C3, −3C11 = 2C3 and −3C15 = 2C3. Same holds
for equations 3C4 = C8 + 2C12 + 2C16, 3C8 = C4, 3C12 = 2C4 and 3C16 = 2C4.
Therefore, we get C1 = C2 = C6 = C10 = C14 = 0, C5 = −2(C9 + C13 + 9),
C7 = −C3

3 , C11 = C15 = − 2C3

3 , C8 = C4

3 and C12 = C16 = 2C4

3 . Hence, solution of
the system (4.1) is

x1

x2

x3

x4

 =


C3e

−2t + C4e
4t

−2(C9 + C13 + 9)et − C3

3 e
−2t + C4

3 e
4t

C9e
t − 2C3

3 e−2t + 2C4

3 e4t

C13e
t − 2C3

3 e−2t + 2C4

3 e4t

 .
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10. I. Jovović: Formulae of reduction for some systems of operator equations. Pro-
ceedings of International Conference Mathematical and Informational Technologies,
MIT-2011, 2011., pp. 161–165.
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