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Abstract. In this paper, we investigate generalized helices in the sense of Hayden in
(2n 4 1)-dimensional Euclidean space E?"*!. We obtain some results for such curves in
E2"*!. Thereafter, we obtain two families of generalized helices which are hyperspher-
ical and hypercylindrical generalized helices in the sense of Hayden. In addition, we
give examples of hyperspherical and hypercylindrical generalized helices in the sense of
Hayden in E°. Finally, we give examples of hyperspherical and hypercylindrical gener-
alized helices in the sense of Hayden in E? and plot the graphics of these curves with
Mathematica 10.0.
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1. Introduction

Helical structures have many applications to the various branches of science
such as biology, architecture, engineering, etc. [1]. One of the important research
problem for differential geometry is helices. The notion of helix is stated in 3-
dimensional Euclidean space by M. A. Lancret in 1802. Helix is a curve whose
tangent vector field makes a constant angle with a fixed direction called the axis of
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the helix. The necessary and sufficient condition for a curve to be a general helix
is that the ratio of curvature to torsion should be constant, which is given by B. de
Saint Venant in 1845 [2, 4]. If both curvature and torsion are non-zero constants,
then the curve is called circular helix [2]. Also, in the n-dimensional Euclidean
space, a general helix is defined similarly i.e., whose tangent vector field makes a
constant angle with a fixed direction [9].

In [6], generalized helix notion is more restrictive in the n-dimensional Euclidean
space for n > 3; a fixed direction makes a constant angle with all Frenet vector fields
of the curve. This type of curves are called the generalized helix in the sense of
Hayden [4]. In [6], the generalized helix in the sense of Hayden has the property that
the ratios £, 72, ... %, zzj are constants if n is odd, where r; (1 <i < n—1)
denote ith curvature function of the curve. In this work, we study generalized
helices in the sense of Hayden. For the sake of brevity, we call them generalized
helices.

Notice that, a curve 3 is called a W-curve, if the curve has constant curvatures.
Also, W-curves in E2"*! are generalized helices [4].

This study is organized as follows: In section 2, we review differential geometry
of regular curves in E™. In Section 3, we give a theorem for generalized helix. Af-
ter that, we obtain some results for generalized helices based on angles which are
between the Frenet vector fields of the curve and a fixed direction. In Section 4, we
show that the family of curves in [2] are hyperspherical generalized helices. There-
after, we obtain hypercylindrical generalized helices in E?"*! by using a different
method from [2]. Finally we give examples for such curves in E° and E3.

2. Preliminary

In this section, we give the basic theory of local differential geometry of curves in
the n-dimensional Euclidean space. For more detail and background about this
space, see [3, 5.

Let « : I C R — E" be an arbitrary curve in the n-dimensional Euclidean space
denoted by E™. Recall that (,) denotes the standard inner product of R™ given by

(2.1) (z,y) = leyz

for each x = (21, 22,23,...24), ¥ = (Y1,Y2,Y3, - --Yn) € R™. The norm of a vector
x € R™ is defined by ||z|| = v/(x,z). Let {V1, V2, V5,...V,,} be the moving Frenet
frame along the arbitrary curve a, where V; (1 < @ < n) is Frenet vector field. Then,
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the matrix form of Frenet formulas are given by

Vll 0 VK1 0 cee 0 0 Vl

vy —VK1 0 VKo -+ 0 0 Vs

vy 0 —vKky 0 .- 0 0 Vs
)] I = B : .

Vrifl 0 0 0 s 0 —VKn—1 Vn—l

V! 0 0 0 - —vkp_1 0 Vi,
where v = (o/,a/) and k; (1 <i<n—1) denote the ith curvature function of
the curve a [1]. To obtain Vi, Vs, Va,...V, it is sufficient to apply the Gramm-
Schmidt orthogonalization process to o (t),a” (t),...,a(™ (t). More precisely,

Vi(1<i<n)and k; (1 <i<n-—1) are determined by the following formulas [8]:

Fi(t) = o),
Ft) = o/(t)—SMF»(t) for2<i<n
' S (F (1), F (1) 7 ’
[Fit1 (2)]] .

ki (t) = ————=— forl1<i<n,

[1E ()1 [1F5 ()]
Vi = ' for 1 <i1<n
[l
where o/, a”,...,a™ are linearly independent. Let 8 : I — S™ be a unit speed

hyperspherical curve in E**! where I is an open interval in R. In [10], [zumiya and
Nagai defined generalized Sabban frame {8, t,n;,ns,...,n,,_1} of the unit speed
curve 8 which is determined by the following formulas:

_ t+B
N Tk
ko= It +8,
. n’l—i—klﬁ’
2T T RAT
kr = |[n}+kp,
ki = |nj_; +kicini o,
0 — n,_, +ki_1n;_o

/ )
an‘—l +ki71ni72H

for3<i<n—2andk; #0 for all ¢ and

Bxt xny X - Xn,_g
BXxt xng X Xn, s

kn1 = (n,_o,mp_1)
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where k; (1 <4 < n— 1) denote ith curvature function of the curve 5. Also, in the
same paper, Izumiya and Nagai gave the following Frenet-Serret type formula for
the generalized Sabban frame of the spherical curve .

8 0 1 0o .- 0 0 154
t’ -1 0 Kk - 0 0 t
(2 3) 1’1/1 0 —kl 0 T 0 0 1y
n;,Q 0 0 0 cee 0 kn,1 n, »-
1’1;171 0 0 0 s kn—l 0 n, 1
Definition 2.1. A Frenet curve of rank r for which k1, ks, ..., K, are constants is

called W-curve [7].

A unit speed W-curve of rank 2n has the parameterization of the form

n

(2.4) B(s) =ag+ Z (a; cos ;s + b; sin p;8)
i=1

and a unit speed W-curve of rank 2n + 1 has the parameterization of the form

n
(2.5) B(s) =aop+bos+ Z (a; cos pis + b; sin ;)
i=1
where ag, bg, a1, - ..,ar, b1, ..., b, are constant vectors in R™ and p1 < po < ... < pin

are positive real numbers. So, a W-curve of rank 1 is a straight line, a W-curve of
rank 2 is a circle, a W-curve of rank 3 is a right circular helix [8].

3. Generalized Helix in E2"t!

Hayden gave the following theorems in [6].

Theorem 3.1. Let o be a curve in a Riemannian (2n + 1)-space, the Frenet vector
fields V3, Vs, ..., Vapy1 of the curve make constant angle with a parallel vector-field
along the curve, then the curve o is generalized helix; moreover, Vi also make a
constant angle with the given vector-field, and Vo, Vy, ..., Vo, are each perpendicular
to the given vector-field [6].

Theorem 3.2. Let a be a curve in a Riemannian (2n + 1)-space, the Frenet vector
fields V1, Vs, ..., Vop_1 of the curve make constant angle with a parallel vector-field
along the curve, then the curve « is generalized helix; moreover, Va,+1 also make a
constant angle with the given vector-field, and Vo, Vy, ..., Vo, are each perpendicular
to the given vector-field [6].

In the light of the theorems mentioned above, we can give the following theorem.
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Theorem 3.3. Let a be a curve in E>" 1. If the Frenet vector fields

V1, Va, Vs, ..., Va1, Vajxa, ..., Vang1, (1 < j < n) of the curve o make constant an-
gle with a unit vector U, then the curve o is generalized helix; moreover, the vector
field Voj 41 makes a constant angle with the given vector U, and Va,Vy, ..., Vo, are
each perpendicular to the given vector U.

Proof. Assume that the Frenet vector fields Vi, Vs, Vs, ..., Vaj_1, Vajqs, ..., Vantt,
(1 <j < n) of the curve o make constant angle with a unit vector U. Then, we
have

(3.1) (V,,U) =cos;, i=1,35,...,2j—12j+1,...,2n+1.

If we take the derivative of 3.1 for ¢ = 1 by using Frenet formulas in 2.2, we obtain
that V5 is perpendicular to U.

If we take the derivative of 3.1 for ¢ = 3 by using Frenet formulas in 2.2 and the
fact that Vo LU, we obtain that Vj is perpendicular to U.

Similarly, we take the derivative of 3.1 for ¢ = 5,7, ...,25 — 1 we obtain Vs, Vg, ... Vy;
each are perpendicular to U.

If we take the derivative of 3.1 for ¢ = 2n + 1 by using Frenet formulas in 2.2, we
get Vb, is perpendicular to U.

If we take the derivative of 3.1 for i = 2n — 1 by using Frenet formulas in 2.2 and
the fact that V5, LU, we obtain that V5, _s is perpendicular to U.

Similarly, we take the derivative of 3.1 for ¢ = 2n — 3,2n — 5, ...,25 + 3 we obtain
Von—4,Van—¢, ... Vo412 each are perpendicular to U.

Finally, for i = 2j 4+ 1 from 2.2 we have
(32) (Voj1,U)' = kajir (Vajsa, U) = rzj (Va;,U) = 0

since (Vaj1+2,U) = 0 and (Va;,U) = 0. So, (Va,41,U) is a constant. Therefore, Va;
makes a constant angle with U. O

The vector U is called the axes of generalized helix. It is obvious; if we take the
derivative of 3.1 for ¢ = 2,4, ...2n by using 2.2 we have

(3.3) K2 _ cOs 01 K4 _ COS 03 Kop  cosflan 1
K1 cosfs’ k3  cosfs’ ’ Kon—1  €oSfa,y1

From 3.3, we give the following corollary.

Corollary 3.1. Let o be a generalized helix with curvatures Ki,ka,...,Kan N
E2 L Then,

KRoK4 ...K2n COSs 91

- )
KR1R3...Roan—1 COS 92n+1
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cost; = %COSHJ‘JFQ forj=1,3,5,....2n—1
K

and the axis of a generalized heliz has the form

U =cos0 V1 +cosbsVs + - + cosbani1Vopii-

Theorem 3.4. Let o be a generalized heliz with curvatures k1, Ka, . . . Koy, tn E2"HL
Then,

n
KR1R3...R2;—-1
U=costh |Vi+) —2Vhy
— KoKR4 ...RK9;
i=1

and

- K1k, K 2

13- 29—1
tany = 3 (M)
=1 RoR4 ...R2;

where 01 is the angle between Vi and U.
Proof. Tt is clear from equation 3.3 and Corollary 3.1. O

Similarly, we have the following theorem.

Theorem 3.5. Let o be a generalized heliz with curvatures ki, Ka, . . . Koy in E2nHL
Then,
"\ Kok K
2K4 - . K2
(3.4) U =cosblapii | Vant1 + Z — T Vo
izl R1R3...R2;—1

and

n 2
(3.5) tan20, 1 = 3 (M)

— R1K3...K2;—1
=1

where o, 11 15 the angle between Vo411 and U.

Proof. Tt is clear from equation 3.3 and Corollary 3.1. [

4. Families of Generalized Hypercylindrical and Hyperspherical
Generalized Helices in E?"+!

In this section, we show that the curve in [2] is a hyperspherical generalized helix.
Also, we used a W-curve to obtain a hypercylindrical generalized helix.

Lemma 4.1. 3:I CR — §?7,

B(t) = (Br(t), B2(t), - - -, Banta (1))
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is given by

Bai—1(t) =

Bai(t) =

fori=1,2,...n and

&4 2
> ent—ck
k=1

_— is a constant. Then, 3 is a W-curve of rank 2n.
> er?—2ckt+cx’
k=1

where A =

Proof. Tt is clear from equation 2.4. [

Theorem 4.1. Let a: I C R — E?"+1
O‘(t) = (al(t)v O‘Q(t)v cee =O‘2n+l(t))

be a regular curve given by

1
agi—1(t) = 7z (¢; cos (t) cos (¢;t) + sin (¢) sin (¢;t)) ,
(Zie)
1
ag(t) = ——1 (cos (¢;t) sin (t) — ¢; cos (t) sin (¢;t)) ,
(Z?:l Cj
fori=1,2,...n and
1/2
agpi1 ()= 1- nn sin (t)
> ¢
j=1
where c1,¢2,...,cn > 1 with ¢; # ¢, 1 <4 < j < n. Then, o is a general heliz

which lies on S [2].

By means of the Teorem 4.1, we can give the following theorem.
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Theorem 4.2. Let a: I C R — E?"+1

Oé(t) = (041(0, OéQ(t), e ,a2n+1(t))

be a regular curve given by

a9;—1 (t) = ;1/2 (Ci COS (At) (¢{0)] (CZ)\t) + sin (At) sin (CZAt)) y
(57)
anlt) = s (cos (esM) sin (M) — ¢ cos (M) sin (e;M)

fori=1,2,...n and

1/2
n .
oy (B) = |1 - — sin (At)
> ¢
j=1
i ent—ep? 2
where ¢1,¢2,...,cn > 1 with ¢; #¢j, 1 <i<j<nand A= k=l

n
> er?—2ckt+ex’
K=1

Then, the curve o : I C R — E?"*1 is a hyperspherical generalized heliz on S®™.

Proof. After straightforward calculations, we obtain
la@®ll =1, o (t) =wcostB(2),

1
i ext—ci? :
where w = [ 2=5——— | and j is the W-curve in Lemma 4.1. Since ||a(t)|| =1
> ok’
k=1
the curve « lies on S2™. If we apply the Gramm-Schmidt orthogonalization process

to the curve «

Fi(t) = wecostp(t),
Fy(t) = wcostt(t),
Fi(t) = wecostky(t)ka(t).. . ki—a(t)n;—2(t) for 3<i<n

where k; (1 <i<n—1) is the curvature functions of the curve 5. Now, we can
calculate the curvature functions «;, (1 < i < n — 1) of the curve a.

k1(t) = 7||F2(t)|‘ =w lsect
17 (1)) ’
ki(t) = M:w*ki,l(t)sect

IE @I E: @]
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for 2 < ¢ < 2n. Since the curvature functions k; are constants for 1 <1 < 2n—1, the
ratios %, Kz ., %2-1 are constants. Therefore, o is a hyperspherlcal generahzed
27’ K4 Kan

helix on S2*. O

Corollary 4.1. From Theorem 4.2, the Frenet vector fields of the curve o are

(4.1) Vi =5, Vo =t, Va=mi, ..., Vopy1=m2, 1
where {B,t,n1,n9,...,N3,_1} is the generalized Sabban frame of the unit speed
curve 3.

Example 4.1. If we choose ¢1 = 2 and c2 = 4 in Theorem 4.2, then

cos(At) cos(2At) + sin(2Xt) sin(At) cos(2At) sin(At) cos(At) sin(2Xt)
Q@ (t) - ( 2 cos()\t)scos(él/\t) + sm(éf/\\{;sm()\t) cos(4)t/t;sm(/\t) 2 cos&%) sin(4Xt) 3sin(At) )
NG 2V5 ’ 2V5 V5 > V10

[ 7
where A\ = |/ 157

After straightforward calculations, we obtain the Frenet vector fields of the curve «

Vi(t) = (_

sin (2A\f)  cos (2At)  5sin(4\t) 5cos(4Mt) 1
27T T T 2T 2T Vi )
cos (2At) sin (2At)  10cos (4At) 10sin (4A¢) 0)
VAT VAT I viot = oyior )
73 sin ( 2)\t _ 73cos (2At) 55sin (4At) 55cos(4At) 101 )

Va(t)

21/7189 27189 ~ 27189 = 2/7189 /14378
10 cos (2At) 10sin (2Xt) cos (4Xt)  sin (4At) 0>

V101 V101 T V10l T V101
Vs(t) = 4/ % <20 sin (2At), 20 cos (2At) , —sin (4At) , — cos (4At) ,

It is clear that the Frenet vector fields Vi, V3 and Vs of the curve @ make constant angles

01 = arccos\/_ 03 = arccos\/llg,% and 05 = arccos \/1157 with vector U = (0,0,0,0,1),

respectively.

Va(t) =

-
v = (-
(-

2)

Also, after straightforward calculations, we have the curvatures of the curve «

1 /5135 /[ 5
4 At t) = —1\| —— At 3(t) =4 At
ki(t) = 21 \/505 sec (At), ka(t) 51\ To1 sec (At), ka(t) 0 103757 sec (At)
and
4 /1010
Ka (t) = g TSQ sec ()\t) .

5

Since, « lies on hypersphere S* = {(m17:c27:c37:c47:c5) S IE5| > z? = 1}7 then « is a hy-
i=1
perspherical generalized helix in ES.

Now, we have the following theorem for a curve « which is integration of the curve
[ in Lemma 4.1.
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Theorem 4.3. Let~y:1 C R — E*H!
(@) = (i (0),v2(t)s - -+ Yn41 (1))

be a regular curve given by

N

(012 — 1) (Z er? — 201t + ck6>
k:nl cos (¢;At) ,
>

Y2i-1(t) =
ci cpt — ck2>
k=1
L
n 2
(1 - CZQ) (Z cr? — 2c + ck6>
k=1 .
Y2ilt) = — sin (¢;At) ,
ci| 2 at— Ck2>
k=1
fori=1,2,...n and
1
n 3
Seat-n
| k=
FYQn‘Fl(t) - n t
S ent — cp?
k=1
N 1
Z Ck4*Ck2 2
= and c1,¢2,...,¢p > 1 with ¢; #¢j, 1 <i<j<n.

where A = —
> er?—2ckt4ci®

k=1
Then, v is a generalized helix which lies on hypercylinder

2 2

1 af +af | aftad 23,1+ 23,
2 n 4 2 c2—1 2+ c2—-1 2 o c2—1 2
_ -1 - -2 — Sn— 2
ey at-a \(52) (%) (%)

Proof. After straightforward calculations, we have v/ (t) = S (t) where /5 is a W-
curve in Lemma 4.1. If we apply the Gramm-Schmidt orthogonalization process to

the curve =, we have

() = B(1),

E(t) = t(t),
Fz(t) kl (t)kQ(t) NN ki,g(t)ni,g(t) for 3 g ) § 2n — 1,

where k; (1 <i<n—1) is the curvature functions of the curve 5. Now, we can

calculate the curvature functions x;, (1 < i < n — 1) of the curve .
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= Bl
= 5 =1,
(31|
[ Fis1]]
o o= Al g
' IFNET

for 2 < ¢ < 2n. Since the curvature functions k; are constants for 1 < < 2n—1, the
ratios &L g 23 sy % are constants. Therefore, 7y is a hypercyhndrlcal generahzed
helix. O !

Corollary 4.2. From Theorem 4.3, the Frenet vector fields of the curve v are

(4.2) Vi =5, Vo =1t, Va=mi, ..., Vopy1=m2, 1
where {B,t,n1,n9,...,N3,_1} is the generalized Sabban frame of the unit speed
curve (3.

Example 4.2. If we choose ¢; = 3 and c2 = 4 in Theorem 4.3, then

429 Vv _4\/ V39
" (t) = =35 Cos (Wt) =5~ sin \/ﬁt
15v29 2V 15v29 s 2+/26 V2
104 COS (Wt) > T 7104 S (Wt) , 2\/—t

After straightforward calculations, we obtain the Frenet vector fields of the curve ~y

=22 gipy @t) R =22 (g (ﬁt)

Vi (t) _ V39 V58 V39 V58
! =5V3 gin (2264 =53 cog w—t 23 ’
2v/26 NCI 2f ) 2\/78
-2 V39
—= cos | Y=t sm
Vat) = V29 V58 \/7
—5 cos (2264 5 sm 2‘ﬁt
V29 V87 » V29 0
—19V2 iy (ﬁt —19v2 ﬂt
Vs (t) _ \/4043 V587)? 4043 58 )7
85 : 226 85 2\/% 2923 ’
28086 O ( /87 t) ' 2v/8086 °08 ( 87 t) ’ 21/8086
—%cos(\/@t)7msm<\/‘/§t)7
Valt) = ;
2 cos(2264) 2 gin (2264 0
V29 V87 ’ V29 87 )
523 s V39 5123 V39
Vs(t) = \/933 sim (\/%t) » Vo33 08 \/ﬁt) )
° B sin 2‘/%15 —/69 cos 2‘/%15
2\/3T V87 7)) 24311 VBT V) ZM
It is clear that the Frenet vector fields Vi, V3 and Vs of the curve v make constant angles
01 = 2\/@, 03 = 2237*/% and , 05 \/Sﬁ with vector U = (0,0, 0,0, 1), respectively.
Also, after straightforward calculations, we have the curvatures of the curve
. L = V311 . 455 . 299
1= 9 = ——— 3 = —— 4 = _
’ 293’ 291/933’ 622
2 2 2 2
Since, v lies on the hypercylinder {(1:175027:037:047:05) S IE5| % + xﬁ“ = 1} then v
351 1664

is a hypercylindrical generalized helix in E5.



820 H. Altinbag, B. Altunkaya and L. Kula

Remark 4.1. Even if the curve a and « have different curvatures, they have same Frenet
vectors.

Example 4.3. If we choose ¢1 = 2 and in Theorem 4.2, then

; 2 in L sin 2t 2t ot t o 2t
a(t): <2cos%cosﬁ+sm%sm% cos%sm%—2cosﬁsmﬁ \/g
V4

2 ’ 2

) = (-G P L),

n , cos ,
2 V3 2 V32

No(t) = <— cos 275111 270> ,

Ba(t) = —s1nE 1cos——
“ To\2T V32 T3 2 )

It is clear that the Frenet vector fields T, and B, of the curve o make constant angles

01 = arccos% and 03 = arccos? with vector U = (0,0, 1), respectively. Also, after

straightforward calculating, we have the curvatures of the curve «
t t
K1 =sec—, Kz = ——sec—.

V3 V3 V3

3
Since, a lies on S% = {(:c17m27x3) S IE3| > z? = 1}7 then « is a spherical generalized
i=1

helix in E3.

Example 4.4. If we choose ¢; = 2 and in Theorem 4.3, then

) = <§ cosﬁ —§sin£ E)
’y 4 \/g? 4 \/§72 .

After straightforward calculations, we obtain the Frenet vector fields of the curve ~y

( VB 2 V3 2 1)
2 N3 2 m2)
N,(t) = (—cos%,sin%ﬂ),
(lsin_t Lo 2L @)
2 B2 3 2 )

It is clear that the Frenet vector fields T, and B, of the curve makes constant angles

0 = arccos% and 03 = arccos@ with vector U = (0,0, 1), respectively. Also, after
straightforward calculating, we have the curvatures of
1

,‘£1=17 Ko =

V3
CL‘%+.’EQ

Since, v lies on (3)22 =1, then « is a circular helix in E2.
1
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F1a. 4.1: Frenet vectors of the curves a and v for t = £ in Example 4.3 and 4.4.

6
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