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ON CLAUSEN SERIES 3F[—m, o, A+ 3; 8, \; 1] WITH APPLICATIONS*

Mohammad Idris Qureshi and Mahvish Ali
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Faculty of Engineering and Technology
Jamia Millia Islamia (A Central University), New Delhi-110025, India

Abstract. In this paper, a summation theorem for the Clausen series is derived. Fur-
ther, a reduction formula is obtained for the Kampé de Fériet double hypergeometric
function. Some special cases are given as applications. A generalization of the reduc-
tion and linear transformation formulas is also given in the form of the general double
series identity.
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1. Introduction and preliminaries

A natural generalization of the Gaussian hypergeometric series o Fi [a, §;7; 2], is
accomplished by introducing any arbitrary number of numerator and denominator
parameters. Thus, the resulting series
(1.1)

(ap)§ a1, Q2, ..., Qp; > (a1)n(2) (ap)n 2"
F _ F _ n mnoe.- p)n ~
s )T s | T A GG G

is known as the generalized hypergeometric series, or simply, the generalized hy-
pergeometric function. Here p and ¢ are positive integers or zero and we assume
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that the variable z, the numerator parameters oy, o, ..., o, and the denominator
parameters (1, B2, ..., 3, take on complex values, provided that
By # 0,—-1,-2,...: j=12...,4q.
In contracted notation, the sequence of p numerator parameters aq, o, ..., ap

is denoted by (o) with similar interpretation for others throughout this paper.

Supposing that none of the numerator and denominator parameters is zero or a
negative integer, we note that the ,F, series defined by equation (1.1):

(i) converges for |z| < oo, if p < g,
(ii) converges for |z| < 1,if p=q+1

(iii) diverges for all z, 2 £ 0, if p > g+ 1.
Chu-Vandermonde theorem [5, p.69, Q.No. 4]:

(1.2) a2 1| = M;
B . (B)m

i

M:0a1727"'7

such that ratio of Pochhammer symbols in r.h.s. is well defined and A, B € C\ Z .

Just as the Gaussian o F; function was generalized to ,F, by increasing the num-
ber of the numerator and denominator parameters, the four Appell functions were
unified and generalized by Kampé de Fériet [2, 1] who defined a general hypergeo-
metric function of two variables.

We recall here the definition of a more general double hypergeometric function
(than the one defined by Kampé de Fériet) in a slightly modified notation [6, p.423,
Eq.(26)]:

(1.3)
P q k
(ap) : (by); (ck): oo 11(a)res TT(05)r T1
Fp: q; k k oyl = Z jezl Jj=1 jzl Ty
I1

an (ae) = (Bm); (W) 7520 TT (a))rre T1(8))s
j=1 Jj=1 i=1

where, for convergence,

(14) (i) p+g<l+m+1l, p+k<l4+n+1l, |z|<oo, |y <oo, or
(1.5) (@) p+q=L+m+1, p+k={¢+n+1and

(1.6) ||/ PO 4 |y P <1, ifp >4
. max {|z|, [y|} < 1, itp </
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An important development has been made by various authors in generalizations
of the summation and transformation theorems, see [7, 4, 3]. In this work, our main
motive is to find the summation theorem for the Clausen series 3Fs[—m,a, A +
3; 8, A;1] and to find its applications.

We shall use the following definition in proving our results in Sections 2 to 5:

Definition 1.1. For A € C\ Z; and r € Z* U {0}, the following identity holds
true:

A+3), 3r 3r(r—1) r(r—-1)(r-2)

™, XTI D T2

(1.7)
The proof of the above identity can be obtained smoothly.

2. Summation theorem

Theorem 2.1. If~, §, o are the roots of the cubic equation Cm?>+ Dm? + Em +
G=0and o, B, \, =y, =6, —0 € C\ Zy ; m € Ny, then the following summation
theorem holds true:

(2.1)

B -m, o, A\ +3 ; . (A4 D (<64 D (0 + 1)y (B——3)1m
3472 — )

B, A - (=V)m (=0)m (=0)m (B)m

)

where the coefficients C', D, E and G are the polynomials in o, B, A given as follows:

(2.2) C = —2a+3a% —a®+2)\ — 60X + 3\ + 327 — 3aA? + A3,
D = 12a—90% —3a® — 603 + 6025 — 12X + 27a) + 30\
—303X + 68X — 158X + 328X — 18X\ + 6 + 602 \?
(2.3) +9B8X2 — 60822 — 613 — 3a\® + 363,
E = —22a—120% — 20® + 24af + 6028 — 6a8% + 22\ — 21a\

—270%\ — 603\ — 246\ + 3008\ + 15026\ + 662\ — 9a B2\
+33X0% + 18aA? — 60222 — 3a3)\? — 36672 — 3a8)? + 602 B\?
496222 — 308202 + 1123 + 12003 + 30223 — 12813
(2.4) —6a BN + 332\
G = —12)—22a) — 12a%)\ — 203\ + 2268\ + 2408\ + 6028\
—126%X\ — 602\ + 263\ — 182 — 33aA? — 18a2\? — 303 )\?
+336A2 + 36822 + 90262 — 186222 — 9a82A\2 + 38302 — 6)3
—11aX® — 60223 — X3 + 11802 + 120803 + 302 8A3 — 6523
(2.5) —3aB%\® + B2N°
= —Cvdo
= MA+DA+2) (B-a-1) (B-a—-2) (B-a—3).
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Proof. Suppose the Lh.s. of equation (2.1) is denoted by A, then we have

m—3

1 (—=m)py3 ()43
D2 Brearl TARTDOTY 2 (G

_(m_1)7 a+l ;
1]+

B+1

(2.6) +

AA+DA+2)  (B)s

Using Chu-Vandermonde theorem (1.2) in r.h.s. of equation (2.6), we obtain
A B=dm  3(=m ()1 (6= )m 3 (=m)2 (@) (B = a)m—2

+ 2 ( +
(ﬂ)m A (6)1 (ﬁ + 1)m—l )‘</\ + 1) (6)2 (6 + 2)m—2
1 (=m)3 (a)3 (B = @)m-—3
AA+DA+2) (B)s (B+3)m-s
(B—a)m n 3(=m)1 (@)1 (B—a)m-1 | 3(=m)2 ()2 (B—a)m—2
(B)m A (B)m AA+1) (B)m
(=m)s ()3 (B—)m-3
AA+DA+2)  (B)m
(8 —a)m 3m o 3(—m)a (a)2
B [1_ NB—atm—1 Ao+ B-atm—25 "
(=m)s (@)3
AMA+1D)A+2) (B—a+m—3)3
(B—a)m )
(B)m

+

+

+

+

+

Qa, B, A, m)
(2.7) 'L\(AJFU(,\JFQ) B—a+m—-1)(B—a+m—-2)(B—a+m—3)]’
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where

Qa, B,A,m) = MA+1)A+2)B-—a+m—-1)(B-—a+m—2)(8—a+m—3)
—3ma(A+1)(A+2)(B—a+m—2)(8—a+m—3)
+3(—m)(—m + 1)(a)(a + 1) (A +2)(8 —a+m — 3)
+(—m)(—m~+1)(—m + 2)(a)(a + 1)(a + 2).
Equation (2.7) can be written as
A =
(B—)m Cm? + Dm? + Em + G }

(B)m [/\(A+1)()\+2) B-—a+m—-1)(B-—a+m—2) (B—a+m-—3)
(2.8)

Since v, d, o are the roots of the cubic equation Cm? + Dm? + Em + G = 0,
therefore equation (2.8) can be written as:

A =
(B = @)m [ C(m —~)(m —6)(m — o) }
B)m [ AMA+1D)A+2) (B—a+m—-1)(B-—a+m—2)(B—a+m—3)]
(2.9)

On simplification, we get assertion (2.1). O

3. Application in reducibility of the Kampé de Fériet function
The application of summation Theorem 2.1 is given by proving the following

reduction formula:

Theorem 3.1. For by,--- ,bg, o, B, A\, —y, =0, —o € C\ Zg, the following
reduction formula holds true:

(aa) @ — 3 o A+3 ;
P —
(bp) = — 5 BiA
ai, - ,a4, —y+1, =0+1, —o+1, f—a—-3 ;
(31)  a4aFpia z |,

b17"'abB7 -7 _67 _0-76 ;

subject to the convergence conditions:

2| <1, fA=B+1
|z]| < o0, ifA<B,

where v, §, o are the roots of the cubic equation Cm3 + Dm? + Em + G =0 and
C,D,E,G are given by equations (2.2)-(2.5).
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Proof. Suppose Lh.s. of equation (3.1) is denoted by ®, then we have

o % y (@) man (@)n A+ 3),(=1)nzmtn
o = > > =
m=0n=0 l:ll(bi)m-HL (ﬂ)n ()‘)n m' TL'
A
= i igl(al)mﬁ i (=m)n (@) (A +3),
R [ 2 (B)n V1!
m= H(bi)m n=0
i=1
A
oo H (az)m om -m, Q, A+3 ;
(3.2) = Z 1;1 = 3 Fy 1
m=0 TT (bi)m Bs A ;
=1
Using Theorem 2.1 in r.h.s. of above equation, it follows that
A
(3 3)@ _ i il;ll(ai)m <_’7 + 1)m (—(5 + 1)m (—0’ + 1)m (ﬁ — o — 3)m ﬁ
. m=0 ﬁ (b3)m (=Y)m (=) m (=0)m (B)m ml’

«
I
A

In view of equation (3.3), reduction formula (3.1) follows. [J

4. Applications in linear transformations

If 7, 8, o are the roots of the cubic equation Cm3 + Dm? + Em + G = 0 and
C,D,E,G are given by equations (2.2)-(2.5), we prove the following consequences
of Theorem 3.1:

I. Taking A = B = 0 in equation (3.1), we get the following transformation

formula:
—-v+1, —-6+1, —o+1, B—a—-3 ;
aFy z | =
- 757 -0, 6 5
a, A\+3
(4.1) exp(z) oF -z |,
By A

where |z| < 00 and a, 8, A, =y, =0, —0c € C\ Z; .

II. Taking A =1, a; = a, B =0 in equation (3.1) and using binomial theorem,
we get the following transformation formula:
a, —v+1, =6+1, —o+1, f—a—-3 ;
5y z
-, — 57 — 0, /8 5
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a, a, A\+3
(42) = (1-2)"3F —=
By A ;

where

A, —y, =6, —0 € C\ Z; .

5. General double series identity

Theorem 5.1. Let {©({)}32, is bounded sequence of arbitrary complex numbers,
©(0) #0 and o, 8, A\, —v, =0, —0 € C\ Zy. Then

X 0(m+n) (@)n A+3), (~1)" zmEn
m,zn;o (()n (Mn — m! n!
o= Om) (74 D (=64 1) (o + 1) (B—a—=3)m2™
(5.1) = mZ::O —m (=0)m (=) B)m gl

where vy, 8, o are the roots of cubic equation Cm3 + Dm? + Em + G = 0 and
C,D, E,G are given by equations (2.2)-(2.5) with each of the multiple series involved
is absolutely convergent.

A
I1 (ai)e
Remark 5.1. For ©(¢) = Z , the above series identity reduces to the reduction
I (b:)e
i=1
formula (3.1).
Appendix

The roots v, d, o of the cubic equation Cm? + Dm? + Em + G = 0 are calculated
by using Wolfram Mathematica 9.0 Software. The values of v, § and o are given as
follows:

21/3 (-D? + 3CE)

1/3
3C (—2D3 +9CDE — 27C2G + \/4 (=D2 + 3CE)® + (-2D3 + 9CDE — 27020)2)

1/3
<72D3 +9CDE - 27C2G + \/4(~D? + 3CB)” + (~2D% + 9CDE — 2702G)2)

3 x 21/3C

(1+v3) (-D? +3CE)

1/3
3% 22/3C (—2D3 +9CDE — 27C2G + \/4 (=D? +3CE)® + (—2D3 + 9CDE — 2702G)2)
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1/3
(1-iv3) (7203 +9CDE - 27C2G + \/4(~D? + 3CE)* + (~2D% + 9CDE — 27026')2)

6 x 21/3C
_ D

- 3C
(1-v3) (-D%+3CE)

+

1/3
3% 22/3C (—2D3 +9CDE — 27C2G + \/4 (=D? +3CE)® + (—2D3 + 9CDE — 27020)2)

1/3
(1 + z\/E) (—21:)3 +9CDE — 27C%G + \/4 (=D2? + 3CE)® + (—2D3 + 9CDE — 2702G)2)

6 x 21/3C
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