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Abstract. This paper is devoted to investigating some system of mixed coupled gener-
alized Sylvester operator equations. The block operator matrix decomposition is used
to find the necessary and sufficient conditions for the solvability to these systems. The
solutions of the system are expressed in terms of the Moore–Penrose inverses of the
coefficient operators.
Keywords: Sylvester operator equations, Matrix equations, C∗-modules

1. Introduction and Preleminaries

The generalized Sylvester matrix equations have been attracting much attention
from both practical and theoretical importance. The Sylvester matrix equation
AX−XB = C or generalized Sylvester matrix equation AX−Y B = C has massive
applications in control theory [16, 15], singular system control [11], and widely used
in many other fields such as signal and color image processing, orbital mechanics,
robust control, neural network, computer graphics.
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Wimmer in [15] gave a necessary and sufficient condition for the existence of a
simultaneous solution of {

A1X + Y B1 = C1,
A2X + Y B2 = C2.

(1.1)

Kägström in [7] obtained a solution of (1.1) by using generalized Schur methods.
Recently, some mixed Sylvester matrix equations have been investigated in some
papers (see [12]). Lee and Vu [8] gave some solvability conditions to mixed Sylvester
matrix equations {

A1X + Y B1 = C1,
A2Z + Y B2 = C2.

(1.2)

The general solution of systems of coupled generalized Sylvester matrix equations
to (1.2) was established by He and Wang in [1, 2, 3, 4, 5, 13, 14].

In this paper, by using the block operator matrix decomposition, we present
a new approach to find the necessary and sufficient conditions for the solvability
of mixed generalized coupled Sylvester operator equations. We obtain an arbitrary
solutions of these systems that it is expressed in terms of the Moore–Penrose inverses
of the coefficient operators.

Throughout this paper, we use H and Hi for denote Hilbert spaces. Also,
L(Hi,Hj) instate the set of all bounded Linear operators from Hi to Hj . For any
A ∈ L(Hi,Hj), the null and the range space of A are denoted by ker(A) and ran(A),
respectively. In the case Hi = Hj , L(Hi,Hi) which is abbreviated to L(Hi). The
identity operator on H is denoted by 1H or 1 if there is no ambiguity.

Definition 1.1. Let H be Hilbert space and A ∈ L(H). The Moore-Penrose
inverse A† of A is an element X ∈ L(H) which satisfies

(1)AXA = A, (2)XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

From the definition of Moore-Penrose inverse, it can be proved that the Moore-
Penrose inverse of an operator (if it exists) is unique and A†A and AA† are orthog-
onal projections, in the sense that they are self adjoint and idempotent operators.
More precisely A ∈ L(Hi,Hj) have a closed range. Then AA† is the orthogonal
projection from Hj onto ran(A) and A†A is the orthogonal projection from Hi onto
ran(A∗).

Clearly, A is Moore-Penrose invertible if and only if A∗ is Moore-Penrose invert-
ible, and in this case (A∗)† = (A†)∗. By Definition 1.1, it is concluded ran(A) =
ran(AA†), ran(A†) = ran(A†A) = ran(A∗), ker(A) = ker(A†A) and ker(A†) =
ker(AA†) = ker(A∗). For more related results, we refer the interested readers to [6]
and [9] and references therein.

2. Solutions for the mixed Sylvester operator equations

In this section, by using some block matrix technique we find the conditions for
solvability of the linear system equations (1.2) where Ai, Bi ( i ∈ {1, 2}) are given
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matrices, X, Y and Z be arbiterary. First, we establish necessary and sufficient
conditions for the solvability of (1.2) and the expression of the general solutions to
the system when it is solvable.

When Ai, Bi ( i ∈ {1, 2}) are invertible operators. It can straightforward be
seen that the proof of the following Theorem is valid in rings with involution.

So let Ai, Bi ( i ∈ {1, 2}) be Moore-Penrose invertible operators.

Theorem 2.1. Suppose that {Hi}4i=1 are Hilbert spaces and Bi ∈ B(H1,H2) and
Ai ∈ B(H4,H3); i ∈ {1, 2} are invertible operators and C1, C2 ∈ B(H1,H3). Then
the following statements are equivalent:

(a) There exists solutions X,Z ∈ B(H1,H4) and Y ∈ B(H2,H3) of the system
(1.2),

(b) C1 = C2B
−1
2 B1.

In which case, the general solutions X,Y, Z to the system (1.2) are of the form

X =
1

2
(A−11 C1 + Z1B1),(2.1)

Y =
1

2
(C2B

−1
2 + A2Z

∗
2 ),(2.2)

Z =
1

2
(A−12 C2 − Z∗2B2),(2.3)

where Z1 ∈ B(H2,H4), Z2 ∈ B(H4,H2) satisfy Z2 = −Z∗1A∗1(A∗2)−1.

Proof. (a)⇒ (b) It is clear.

(b)⇒ (a): By matrix representations, the system (1.2) become into the following
form[

A1 0
0 B∗2

] [
0 X
Y ∗ 0

]
+

[
0 Y
Z∗ 0

] [
A∗2 0
0 B1

]
=

[
0 C1

C∗2 0

]
.

Let X,Z ∈ B(H1,H4) and Y ∈ B(H2,H3) be the general solutions to the system
(1.2). Then[

0 X
Y ∗ 0

]
=

1

2

[
A−11 0

0 (B∗2)−1

] [
0 C1

C∗2 0

]
+

(
1

2

[
A−11 0

0 (B∗2)−1

] [
0 C1

C∗2 0

] [
(A∗2)−1 0

0 B−11

]
−

[
A−11 0

0 (B∗2)−1

] [
0 Y
Z∗ 0

])
×

[
A∗2 0
0 B1

]
=

1

2

[
A−11 0

0 (B∗2)−1

] [
0 C1

C∗2 0

]
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+

(
1

2

([
A−11 0

0 (B∗2)−1

] [
0 Y
Z∗ 0

]
+

[
0 X
Y ∗ 0

] [
(A∗2)−1 0

0 B−11

])
−

[
A−11 0

0 (B∗2)−1

] [
0 Y
Z∗ 0

])[
A∗2 0
0 B1

]
=

1

2

[
A−11 0

0 (B∗2)−1

] [
0 C1

C∗2 0

]
+

1

2

([
0 X
Y ∗ 0

] [
(A∗2)−1 0

0 B−11

]
−
[

A−11 0
0 (B∗2)−1

] [
0 Y
Z∗ 0

])
×

[
A∗2 0
0 B1

]
=

1

2

[
A−11 0

0 (B∗2)−1

] [
0 C1

C∗2 0

]
+

1

2

[
0 Z1

Z2 0

] [
A∗2 0
0 B1

]
=

1

2

[
0 A−11 C1 + Z1B1

(B∗2)−1C∗2 + Z2A
∗
2 0

]
.

Where, Z1, Z2 take in the following matrix[
0 Z1

Z2 0

]
=

[
0 X
Y ∗ 0

] [
(A∗2)−1 0

0 B−11

]
−
[

A−11 0
0 (B∗2)−1

] [
0 Y
X∗ 0

]
=

[
0 XB−11 −A−11 Y

Y ∗(A∗2)−1 − (B∗2)−1X∗ 0

]
.

Then,

X =
1

2
(A−11 C1 + Z1B1),(2.4)

Y =
1

2
(C2B

−1
2 + A2Z

∗
2 ).(2.5)

Also, [
0 Y
Z∗ 0

]
=

[
0 C1

C∗2 0

] [
(A∗2)−1 0

0 B−11

]
−

[
A1 0
0 B∗2

] [
0 X
Y ∗ 0

] [
A−11 0

0 (B∗2)−1

]
,

and [
0 X
Y ∗ 0

] [
(A∗2)−1 0

0 B−11

]
=

[
A−11 0

0 (B∗2)−1

] [
0 C1

C∗2 0

] [
(A∗2)−1 0

0 B−11

]
−

[
A−11 0

0 (B∗2)−1

] [
0 Y
X∗ 0

]
.
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We have,[
0 Y
Z∗ 0

]
=

1

2

[
0 C1

C∗2 0

] [
(A∗2)−1 0

0 B−11

]
+

[
A1 0
0 B∗2

](
1

2

[
A−11 0

0 (B∗2)−1

] [
0 C1

C∗2 0

] [
(A∗2)−1 0

0 B−11

])
−

[
A1 0
0 B∗2

]([
0 X
Y ∗ 0

] [
(A∗2)−1 0

0 B−11

])
=

1

2

[
0 C1

C∗2 0

] [
(A∗2)−1 0

0 B−11

]
+

[
A1 0
0 B∗2

]
(
1

2

([
0 X
Y ∗ 0

] [
(A∗2)−1 0

0 B−11

]
+

[
A−11 0

0 (B∗2)−1

] [
0 Y
Z∗ 0

])
−

[
0 X
Y ∗ 0

] [
(A∗2)−1 0

0 B−11

]
)

=
1

2

[
0 C1

C∗2 0

] [
(A∗2)−1 0

0 B−11

]
+

[
A1 0
0 B∗2

]
(

1

2

([
A−11 0

0 (B∗2)−1

] [
0 Y
Z∗ 0

]
−
[

0 X
Y ∗ 0

] [
(A∗2)−1 0

0 B−11

]))
=

1

2

[
0 C1

C∗2 0

] [
(A∗2)−1 0

0 B−11

]
− 1

2

[
A1 0
0 B∗2

] [
0 Z1

Z2 0

]
=

1

2

[
0 C1B

−1
1 −A1Z1

C∗2 (A∗2)−1 −B∗2Z2 0

]
.

Therefore,

Z =
1

2
(A−12 C2 − Z∗2B2),(2.6)

Y =
1

2
(C1B

−1
1 −A1Z1).(2.7)

Since C1 = C2B
−1
2 B1 and Z2 = −Z∗1A∗1(A∗2)−1 imply that Eqs. (1.2) and (2.7)

coincide with other. This completes the proof.

Theorem 2.2. Let {Hi}4i=1 be Hilbert spaces and Bi ∈ B(H1,H2) and Ai ∈
B(H4,H3); i ∈ {1, 2} be invertible operators and C1, C2 ∈ B(H1,H3). Then the
following statements are equivalent:

(a) There exists solutions X ∈ B(H1,H4) and Y ∈ B(H2,H3) of the system (1.1),

(b) C1 = C2B
−1
2 B1, and C2 = A2A

−1
1 C1.
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If (a) or (b) is satisfied, then any solutions of the system (1.1) has the form

X =
1

2
(A−11 C1 + Z1B1),(2.8)

Y =
1

2
(C2B

−1
2 + A2Z

∗
2 ),(2.9)

where Z1 ∈ B(H2, H4), Z2 ∈ B(H4,H2) satisfy Z2 = −Z∗1A∗1(A∗2)−1 and Z1 =
−Z∗2B2B

−1
1 .

Proof. The proof is quite similar to the proof of the previous theorem.

Theorem 2.3. Let {Hi}4i=1 be Hilbert spaces and Ai ∈ B(H4,H3) and Bi ∈
B(H1,H2) ( i ∈ {1, 2}) have closed range operators such that ran(B∗1) = ran(B∗2),
ran(B1) = ran(B2) and ran(A1) = ran(A2). If C1, C2 ∈ B(H1,H3) such that

(1−B†1B1)C1B
†
1 = (1−B†1B1)C2B

†
2, then the following statements are equivalent:

(a) There exists solutions X,Z ∈ B(H1,H4) and Y ∈ B(H2,H3) of the system
(1.2),

(b) (1−AiA
†
i )Ci(1−B†iBi) = 0 (i ∈ {1, 2}) and B†1B1C1A1A

†
1 = B†1B1C2B

†
2B1

If (a) or (b) is satisfied, then the general solutions to the system (1.2) has the form

X = −1

2
A†1C1B

†
1B1 +

1

2
A†1A1Z1B1 + A†1C1 + (1−A†1A1)Z3,

Y = −1

2
A1A

†
1C2B

†
2 +

1

2
A2Z

∗
2B1B

†
1 + C2B

†
2 + Z4(1−B1B

†
1),

Z = −1

2
A†2C2B

†
2B2 −

1

2
A†2A2Z

∗
2B2 + A†2C2 + (1−A†2A2)Z5,

where Z1 ∈ B(H2,H4), Z2 ∈ B(H4,H2) satisfy

B1B
†
1Z2A

†
1A1 = −B1B

†
1Z
∗
1A
∗
1(A∗2)†,

and Z3, Z5 ∈ B(H1,H4) and Z4 ∈ B(H2,H3) are arbitrary.

Proof. (a)⇒ (b) It is clear.

(b)⇒ (a) In view of [10, Corollary 1.2.] we can consider the matrix forms of the
operators as follows

A1 =

[
A11 0
0 0

]
:

[
ran(A∗1)
ker(A1)

]
→
[

ran(A1)
ker(A∗1)

]
,

A2 =

[
A21 0
0 0

]
:

[
ran(A∗2)
ker(A2)

]
→
[

ran(A1)
ker(A∗1)

]
,

X =

[
X11 X12

X13 X14

]
:

[
ran(B∗1)
ker(B1)

]
→
[

ran(A∗1)
ker(A1)

]
,
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Z =

[
Z11 Z12

Z13 Z14

]
:

[
ran(B∗1)
ker(B1)

]
→
[

ran(A∗2)
ker(A2)

]
,

B1 =

[
B11 0
0 0

]
:

[
ran(B∗1)
ker(B1)

]
→
[

ran(B1)
ker(B∗1)

]
,

B2 =

[
B21 0
0 0

]
:

[
ran(B∗1)
ker(B1)

]
→
[

ran(B1)
ker(B∗1)

]
,

Y =

[
Y11 Y12

Y13 Y14

]
:

[
ran(B1)
ker(B∗1)

]
→
[

ran(A1)
ker(A∗1)

]
,

where A11, A21, B11 and B21 are invertible. In addition, conditions (1 −
AiA

†
i )Ci(1−B†iBi) = 0, (i ∈ {1, 2}) in (b) implies that C14 = C24 = 0. Therefore,

C1 =

[
C11 C12

C13 0

]
:

[
ran(B∗1)
ker(B1)

]
→
[

ran(A1)
ker(A∗1)

]
,

C2 =

[
C21 C22

C23 0

]
:

[
ran(B∗1)
ker(B1)

]
→
[

ran(A1)
ker(A∗1)

]
.

Hence, the mixed Sylvester operator equations (1.2) obtain as follow.

[
A11X11 A11X12

0 0

]
+

[
Y11B11 0
Y13B11 0

]
=

[
C11 C12

C13 0

]
,

[
A21Z11 A21Z12

0 0

]
+

[
Y11B21 0
Y13B21 0

]
=

[
C21 C22

C23 0

]
.

Then, the following relations hold.{
A11X11 + Y11B11 = C11,
A21Z11 + Y11B21 = C21.

(2.10)

A11X12 = C12,(2.11)

A21Z12 = C22,(2.12)

Y13B11 = C13,(2.13)

Y13B21 = C23.(2.14)

[10, Corollary 1.2.] implies that Ai1, Bi1 for i ∈ {1, 2} are invertible and also

condition B†1B1C1A1A
†
1 = B†1B1C2B

†
2B1 and their matrix representations on the

following forms

B†1B1C1A1A
†
1 = B†1B1C2B

†
2B1.

Namely,

[
1 0
0 0

] [
C11 C12

C13 0

] [
1 0
0 0

]
=

[
1 0
0 0

] [
C21 C22

C23 0

]
×

[
B−121 0

0 0

] [
B11 0
0 0

]
,
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which is implies that C11 = C21B
−1
21 B11.

Now, by applying Theorem 2.1, general solutions of the system (2.10) can be
stated as

X11 =
1

2
(A−111 C11 + (Z1)11B11),

Y11 =
1

2
(C21B

−1
21 + A21(Z∗2 )11),

Z11 =
1

2
(A−121 C21 − (Z∗2 )11B21),

where, (Z1)11 and (Z2)11 satisfy (Z2)11 = −(Z∗1 )11A
∗
11(A∗21)−1.

Condition B1B
†
1Z2A

†
1A1 = −B1B

†
1Z
∗
1A
∗
1(A∗2)† is equal to

(Z2)11 = −(Z∗1 )11A
∗
11(A∗21)−1,

where Z1 ∈ B(H2,H4), Z2 ∈ B(H4,H2).

Since with rewrite their matrix representations on the following forms

B1B
†
1Z2A

†
1A1 = −B1B

†
1Z
∗
1A
∗
1(A∗2)†.

In fact,[
1 0
0 0

] [
(Z2)11 (Z2)12
(Z2)21 (Z2)22

] [
1 0
0 0

]
= −

[
1 0
0 0

] [
(Z∗1 )11 (Z∗1 )21
(Z∗1 )12 (Z∗1 )22

]
×

[
A∗11 0
0 0

] [
(A∗21)−1 0

0 0

]
,

Thus, [
(Z2)11 0

0 0

]
= −

[
(Z∗1 )11A

∗
11(A∗21)−1 0
0 0

]
.

Eqs. (2.11) and (2.12) imply that X12 = A−111 C12 and Z12 = A−121 C22.

Also, the condition (1−B†1B1)C1B
†
1 = (1−B†1B1)C2B

†
2 ensures that C13B

−1
11 =

C23B
−1
21 . Therefore, Eqs. (2.13) and (2.14) are solvable and Y13 = C13B

−1
11 =

C23B
−1
21 .

Hence,

X =

[
1
2 (A−111 C11 + (Z1)11B11) A−111 C12

X13 X14

]
,

Y =

[
1
2 (C21B

−1
21 + A21(Z∗2 )11) Y12

C23B
−1
21 Y14

]
,

and

Z =

[
1
2 (A−121 C21 − (Z∗2 )11B21) A−121 C22

Z13 Z14

]
,
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X13, X14, Y12, Y14, Z13 and Z14 can be taken arbitrary.

By using the matrix forms, we get

1

2
(A†1C1B

†
1B1 + A†1A1Z1B1) =

[
1
2 (A−111 C11 + (Z1)11B11) 0

0 0

]
,

A†1C1(1−B†1B1) =

[
0 A−111 C12

0 0

]
.

By taking Z3 =

[
Z31 Z32

X13 X14

]
:

[
ran(B∗1)
ker(B1)

]
→
[

ran(A∗1)
ker(A1)

]
we conclude (1 −

A†1A1)Z3 =

[
0 0

X13 X14

]
. Then

X =
1

2
(A†1C1B

†
1B1 + A†1A1Z1B1) + A†1C1(1−B†1B1) + (1−A†1A1)Z3.

Also,

1

2
(A1A

†
1C2B

†
2 + A2Z

∗
2B1B

†
1) =

[
1
2 (C21B

−1
21 + A21(Z∗2 )11) 0

0 0

]
,

(1−A1A
†
1)C2B

†
2 =

[
0 0

C23B
−1
21 0

]
.

By taking Z4 =

[
Z41 Y12

Z43 Y14

]
:

[
ran(B1)
ker(B∗1)

]
→
[

ran(A1)
ker(A∗1)

]
, we derive Z4(1 −

B1B
†
1) =

[
0 Y12

0 Y14

]
. Then

Y =
1

2
(A1A

†
1C2B

†
2 + A2Z

∗
2B1B

†
1) + (1−A1A

†
1)C2B

†
2 + Z4(1−B1B

†
1).

By using the matrix forms, we get

1

2
(A†2C2B

†
2B2 −A†2A2Z

∗
2B2) =

[
1
2 (A−121 C21 − (Z∗2 )11B21) 0

0 0

]
,

A†2C2(1−B†2B2) =

[
0 A−121 C22

0 0

]
.

By taking Z5 =

[
Z51 Z52

Z13 Z14

]
:

[
ran(B∗1)
ker(B1)

]
→
[

ran(A∗1)
ker(A1)

]
, we conclude (1 −

A†2A2)Z5 =

[
0 0

Z13 Z14

]
. Then

Z =
1

2
(A†2C2B

†
2B2 −A†2A2Z

∗
2B2) + A†2C2(1−B†2B2) + (1−A†2A2)Z5.
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In the following theorem, consider the solvability and the expressions of the
general solutions to the following systems of four coupled one sided Sylvester-type
operator equations.

Theorem 2.4. Suppose that H is Hilbert space and where Ai, Bi, Ci ∈ B(H)
( i ∈ {1, 2, 3, 4}) are given operators such that C3 = A2C2B

−1
3 and X1, ..., X5 ∈

B(H) are unknowns operator Ai, Bi (i ∈ {1, 2, 3, 4}) are invertible operators. Then
the following statements are equivalent:

(a) The system 
A1X1 + X2B1 = C1,
A2X3 + X2B2 = C2,
A3X4 + X3B3 = C3,
A4X4 + X5B4 = C4,

(2.15)

is solvable,

(b) C1 = C3B
−1
2 B1 and C∗4 = C∗2 (A∗3)−1A∗4.

In which case, the general solution to the system (2.15) are of the form

X1 =
1

2
(A−11 C1 + Z1B1),

X2 =
1

2
(C3B

−1
2 + A2Z

∗
4 ),

X3 =
1

2
(A−12 C3 − Z∗4B2),

X4 =
1

2
(A−13 C2 + Z3B

∗
3),

X5 =
1

2
(C4B

−1
4 + A4Z

∗
2 ),

where Z1, Z2, Z3, Z4 ∈ B(H) satisfy Z3 = −Z∗2B4B
−1
3 , Z4 = −Z∗1A∗1(A∗2)−1 and

Z3 = A−13 Z∗4B2.

Proof. By taking T1 =

[
A1 0
0 B∗4

]
, T2 =

[
A2 0
0 B∗3

]
, S1 =

[
A∗4 0
0 B1

]
, S2 =[

A∗3 0
0 B2

]
, U1 =

[
0 C1

C∗4 0

]
and U2 =

[
0 C2

C∗3 0

]
that are given operators

and X =

[
0 X1

X∗5 0

]
, Y =

[
0 X2

X∗4 0

]
, Z =

[
0 X3

X∗3 0

]
are unknowns opera-

tors. Hence system (2.15) get into{
T1X + Y S1 = U1,
T2Z + Y S2 = U2,

(2.16)
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Condition (b) is equal to[
0 C1

C∗4 0

]
=

[
0 C3

C∗2 0

] [
(A∗3)−1 0

0 (B2)−1

] [
A∗4 0
0 B1

]
. By applying Theo-

rem 2.1, implies that system 2.15 are solvable, then any solutions have the following
form[

0 X1

X∗5 0

]
=

1

2
(

[
A−11 0

0 (B∗4)−1

] [
0 C1

C∗4 0

]
+ W1

[
A∗4 0
0 B1

]
),[

0 X2

X∗4 0

]
=

1

2
(

[
0 C3

C∗2 0

] [
(A∗3)−1 0

0 (B2)−1

]
+

[
A2 0
0 B∗3

]
W ∗2 ),[

0 X3

X∗3 0

]
=

1

2
(

[
A−12 0

0 (B∗3)−1

] [
0 C3

C∗2 0

]
−W ∗2

[
A∗3 0
0 B2

]
),

where W1 =

[
0 Z1

Z2 0

]
and W2 =

[
0 Z3

Z4 0

]
.

Which is satisfy that W2 = −W ∗1 T ∗1 (T ∗2 )−1 that is,[
0 Z3

Z4 0

]
= −

[
0 Z∗2
Z∗1 0

] [
A∗1 0
0 B4

] [
(A∗2)−1 0

0 (B3)−1

]
that

Z3 = −Z∗2B4B
−1
3 and Z4 = −Z∗1A∗1(A∗2)−1. Since, C3 = A2C2B

−1
3 and Z3, Z4

satisfy Z3 = A−13 Z∗4B2. Therefore,

X1 =
1

2
(A−11 C1 + Z1B1),

X2 =
1

2
(C3B

−1
2 + A2Z

∗
4 ),

X3 =
1

2
(A−12 C3 − Z∗4B2),

X∗3 =
1

2
((B∗3)−1C∗2 − Z∗3A

∗
3),

X∗4 =
1

2
(C∗2 (A∗3)−1 + B3Z

∗
3 ),

X∗5 =
1

2
((B∗4)−1C∗4 + Z2A

∗
4).

3. Conclusion

We have used the block operator matrix decomposition to find the general solutions
of mixed Sylvester operator equations with three unknowns (1.2) and five unknowns
(2.15) . We have provided some necessary and sufficient conditions for the existence
of a solution to this system based on matrix representation. We have also derived
the general solution to this system when it is solvable.
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7. B. Kägström: A Perturbation Analysis of the Generalized Sylvester Equation (AR−
LB,DR − LE) = (C,F ). SIAM Journal on Matrix Analysis and Applications. 15(4)
(1994), 1045–1060.

8. S.-G. Lee and Q.-P. Vu: Simultaneous solutions of matrix equations and simultaneous
equivalence matrices. Linear Algebra Appl. 437 (2012), 2325–2339.

9. M. Mohammadzadeh Karizaki, D. S. Djordjević, A. Hosseini and M. Jalaeian:
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