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Abstract. In this paper, we study Weyl type theorems for f(T), where T is alge-
braically class p-wA(s,t) operator with 0 < p < 1 and 0 < s,t,s+¢t <1 and f is an
analytic function defined on an open neighborhood of the spectrum of 7. Also we show
that if A, B* € B(H) are class p-wA(s,t) operators with0 < p < 1land 0 < s,t, s+t < 1,
then generalized Weyl’s theorem , a-Weyl’s theorem, property (w), property (gw) and
generalized a-Weyl’s theorem holds for f(dap) for every f € H(o(dagr), where dap
denote the generalized derivation d4p : B(H) — B(H) defined by 64p(X) = AX — XB
or the elementary operator Aap : B(H) — B(H) defined by Aap(X) = AXB — X.
Keywords: class p-wA(s,t) operator, polaroid operator, Bishop’s property (beta),
Weyl type theorems, elementary operator.

1. Introduction and Preliminaries

Let B(#H) be the algebra of all bounded linear operators acting on infinite
dimensional separable complex Hilbert space H. Throughout this paper R(T),
ker(T), o(T) denotes range, null space and spectrum of T' € B(H) respectively.
Every operator T can be decomposed into T' = U|T| with a partial isometry U,
where |T| is the square root of T*T. If U is determined uniquely by the kernel
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condition ker U = ker |T|, then this decomposition is called the polar decomposi-
tion, which is one of the most important results in operator theory. In this pa-
per, T = U|T| denotes the polar decomposition satisfying the kernel condition
kerU = ker |T'| . An operator T' € B(H) is said to be hyponormal if T*T > TT*.
The Aluthge transformation introduced by Aluthge[5] is defined by T' = |T|2U|T|2
where T = U|T| be the polar decomposition of T € B(H). The generalized
Aluthge transformation T'(s,t) ( s,t > 0) is given by T'(s,t) = |T|*U|T|". Re-
call that an operator T' € B(#H) is said to be p-hyponormal if (T*T)? > (TT*)P
(0 < p < 1), w-hyponormal if |T| > |T| > |T*|, class Aif |T?| > |T|?, class A(s,t) if
(|T[*|T || T[") 7 > | T ([13]) and class wA(s, t) if (|T*[!|T]?*|T*[*) 75 > [T*]*
and |T|?* > (|T|*|T*|?*|T)°)=+ ([16]). Prasad and Tanahashi [19] introduced class
p-wA(s,t) operators as follows:

Definition 1.1. ([19]) Let T = U|T| be the polar decomposition of T" and let
s,t>0and 0 <p<1. T is called class p-wA(s,t) if

(T |7 > [T and (T[T 2| T)*) 7 < |72
In general the following inclusions hold:
p-hyponormal C w-hyponormal C class wA(s,t) C class p-wA(s,t).

Many interesting results for class p-wA(s,t) has been studied in [10, 11, 19, 20,
21, 22, 24].

Let a(T') and 3(T') denote the nullity and the deficiency of T' € B(H), defined by
a(T)= dim(ker(T)) and 8(T)=dim(ker(T*). An operator T is said to be upper semi-
Fredholm (resp.,lower semi- Fredholm) if R(T) of T € B(H) is closed and a(T") < o0
(resp., B(T) < o0). Let SFy(H) (resp., SF_(H)) denote the semigroup of upper
semi-Fredholm (resp., lower semi-Fredholm) operators on . An operator T' € B(H)
is said to be semi-Fredhom, T € SF(H), if T € SF(H)USF_(H) and Fredholm,
T e F(H),f T € SFL(H)NSF_(H). The index of semi-Fredholm operator 7T is
defined by ind (T') = a(T) — B(T"). Recall[14], the ascent of an operator T € B(H),
a(T), is the smallest non negative integer p such that ker(TP) = ker(T®+1). Such
p does not exist, then p(T) = co. The descent of T € B(H), d(T), is defined as
the smallest non negative integer q such that R(7T9) = R(T(@+D). An operator
T € B(H) is Weyl, T € W(H) it is Fredholm of index zero and Browder if T is
Fredholm of finite ascent and descent. The Weyl spectrum of T', denoted by ow (T'),
is given by

ow(T)={AeC:T—-X¢g W(H)}.
We say that T' € B(H) satisfies Weyl’s theorem if
o(T)\ ow (T) = Eo(T).

where Ey(T) denote the set of eigenvalues of T of finite geometric multiplicity iso-
lated in o(T). Let SF_ (H) = {T € SF{(H) : ind(T) < 0}. essential approximate
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point spectrum Tsp- (T') of T is defined by
USF;(T) ={AeC:T-X¢SF_(H)}.

Let 0,(T) denote the approximate point spectrum of T' € B(#H). An operator
T € B(#) holds a-Weyl’s theorem if,

IsF; (T) = 04(T) \ EG(T),

where E§(T) ={A € C: XA € iso 0,(T) and 0 < (T — \) < oo}. We say that
an operator T' € B(H) satisfies a-Browder’s theorem if Tsp- (T) = o,(T) \ TI&(T),
where TI%(T") denote the set the left poles of T of finite rank. An operator T' € B(H)
is called B-Fredholm, T € BF(H) if there exist a non negative integer n for which
the induced operator

Tty : R(T1n)) — R(T1n))( in particular Tig) = T)).

is Fredholm in the usual sense (see [7]). An operator T' € B(H) is called B-Weyl,
T € BW(H), if it is B-Fredholm with ind(7},,;) = 0. The B-Weyl spectrum opw (T')
is defined by opw (T) ={A € C: T — X ¢ BW(H)} (see [7]). Let E(T) is the set of
all eigenvalues of T' which are isolated in o(T'). We say that T satisfies generalized
Weyl’s theorem if opw (T) = o(T)\ E(T). A bounded operator T € B(H) is said to
satisfy generalized Browders’s theorem if o(T)\ opw (T') = II(T), where II(T') is the
set of poles of T' ( See [8]). We refer the readers to [1], where Weyl type theorems
are extensively treated.

Recall that an operator T' € B(H) is said to have the single-valued extension
property (SVEP) if for every open subset U of C and any analytic function f : U —
H such that (T'—2)f(z) = 0on U, we have f(z) = 0on U. A Hilbert space operator
T € B(H) satisfies Bishop’s property () if for every open subset U of C and every
sequence f,, : U — H of analytic functions with (T — z) f,,(z) converges uniformly
to 0 in norm on compact subsets of U, f,,(z) converges uniformly to 0 in norm on
compact subsets of U. For T' € B(H) and « € H, the local resolvent set of T at
x pr(z) is defined to consist of elements zy € C such that there exists an analytic
function f(z) defined in a neighborhood of zg, with values in H, which verifies (T —
2) f(z) = x. We denote the complement of pr(x) by or(x) , called the local spectrum
of T at x. For each subset F' of C, the local spectral subspace of T', Hy(F), is given
by Hr(F) ={z € H:or(x) C F}. Anoperator T € B(H) is said to have Dunford’s
property (C) if Hy(F) is closed for each closed subset F' of C. It is well known that

Bishop’s property () = Dunford’s property (C) = SVEP.
See [1, 17] for more details.

Weyl’s theorem for class p-wA(s,t) has been studied in [22]. In this paper, we
focus Weyl type theorems for algebraically class p-wA(s, t) operators and elementary
operator with class p-wA(s,t) operator entries.
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2. algebraically class p-wA(s,t) operators and Weyl type theorem

We say that T € B(H) is algebraically class p-wA(s,t) operator with 0 < p <1
and 0 < s,t,s +t < 1 if there exists a non- constant complex polynomial ¢ such
that ¢(7T) is class p-wA(s,t) operator with 0 <p <1and 0< s,t,s+t<1.
In general, the following inclusions hold:
p-hyponormal C class p-wA(s,t) C algebraically class p-wA(s,t)

Lemma 2.1. [20] Let T € B(H) be a class p-wA(s,t) operator with 0 < p <1
and 0 < s,t, s+t <1 and o(T) ={\}. Then T = X.

Theorem 2.1. Let T € B(H) be a quasinilpotent algebraically class p-wA(s,t)
operator with 0 < p <1 and 0 < s,t, s+t <1. Then T is nilpotent.

Proof. Suppose T € B(H) is algebraically class p-wA(s, t) operator with 0 < p <1
and 0 < s,t, s+t < 1. Then there exists a non- constant complex polynomial ¢ such
that ¢(T) is class p-wA(s,t) operator with 0 <p <1 and 0 < s,t,s+¢ < 1. Since
o(q(T)) = q(o(T)) and o(T) = {0}, the operator ¢(T') — ¢(0) is quasinilpotent. By
Lemma 2.1, o(¢(T) — ¢(0)) = {0} implies that ¢(T") — ¢(0) = 0. Hence it follows
that,

0= 4(T) — q(0) = ™ (T~ MI)(T — Ao) -+ (T — AuT)

where m > 1. Since T'— \;I is invertible for every A; # 0, we must have T = 0. O

It is well known that if both ascent and descent of T are finite then they are
equal (see, [14, Proposition 38.3]). Moreover, 0 < a(T — ul) = d(T — pl) < o©
precisely when p is a pole of the resolvent of T (see, [14, Proposition 50.2]).

An operator T' € B(H) is polaroid if the isolated points of the spectrum of T
are poles of the resolvent T'. Evidently, T is polaroid implies T is isoloid (ie., every
isolated point of ¢(7T') is an eigenvalue of T').

Theorem 2.2. Let T € B(H) be an algebraically class p-wA(s,t) operator with
O<p<landO<s,t, s+t <1. Then T 1is polaroid.

Proof. Assume that T € B(H) is algebraically class p-wA(s,t) operator with 0 <
p<land0<s,t,s+t<1andlet u be an isolated point of o(7T). To prove that
T is polaroid, it is enough to show that a(T — pI) < oo and d(T — pl) < oo. Let
E,, denote the spectral projection associated with A. Then the Riesz idempotent £
of T with respect to z is defined by

1
E, = — I-7)"%4
nT o /M,(Z )" dz,

where D is a closed disk centered at p which contains no other points of the spectrum
of T. We can represent 7' on H = R(E,,) @ ker(E,,) as follows

(o 5)
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where 0(A) = {u} and o(B) = o(T) \ {u}.

Since T' € B(H) is algebraically class p-wA(s, t) operator with 0 < p < land 0 <
sty s+t <1, ¢(T) is class p-wA(s,t) operator with 0 < p <land 0 < s,t,s+¢t <1
for some non constant complex polynomial ¢. Thus, o(q(4)) = q(c(4)) = q(u).
Therefore, q(A) — q(u) is quasi nilpotent. Then by Lemma 2.1, ¢(A4) — ¢(un) = 0.
Put 7(2) = ¢(A) — q(u), then 7(A) = 0 and so A is algebraically class p-wA(s,t)
operator with 0 < p<1and 0 < s,t,s+t<1. Since o(A) = {u}, it follows from
Theorem 2.1 that A — pI is nilpotent and so a(A — ul) < oo and d(A — pl) < .
Also, a(B — pl) < oo and d(B — pul) < oo follows from the invertibility of B — ul.
Consequently, T' — pI has finite ascent and descent. This completes the proof. [

Theorem 2.3. Let T be an algebraically class p-wA(s,t) operator with 0 < p <1
and 0 < s,t, s+t <1. Then T satisfies generalized Weyl’s theorem.

Proof. Suppose that T is algebraically class p-wA(s,t) operator with 0 < p < 1
and 0 < s,t,s +t < 1. From Theorem 2.2, T is polaroid . Since T is algebraically
class p-wA(s,t) with s,t < 1, p(T') is class p-wA(s,t) operator with 0 < p <1
and 0 < s,t,s +t < 1 for some nonconstant polynomial ¢, it follows that ¢(T) has
Bishop’s property (8) by [24, Theorem 2.4 ] or [22]. Therefore, ¢(T) has SVEP.
Then by [17, Theorem 3.3.9] T has SVEP . Hence the required result follows from
[3, Theorem 4.1]. O

Corollary 2.1. Let T € B(H) be an algebraically class p-wA(s,t) operator with
0<p<land0<s,t,s+t<1. Then T satisfies Weyl’s theorem.

According to Berkani and Koliha [8], an operator T' € B(H) is said to be Drazin
invertible if 7' has finite ascent and descent. The Drazin spectrum of T € B(H),
denoted by op(T), is defined op(T) = {A € C : T — X is not Drazin invertible}
(See, [7]). Let H(o(T)) denote the set of analytic functions which are defined on
an open neighborhood of (7).

Theorem 2.4. Let T be an algebraically class p-wA(s,t) operator with 0 < p <1
and 0 < s,t,s+t < 1. Then the equality opw (f(T)) = f(osw (T)) holds for every
feH(o(T)).

Proof. Since T is algebrically class p-wA(s,t) with 0 < p<1land 0 < s,t,s+t <1,
T has SVEP. Hence, f(T) satisfies generalized Browder’s theorem. Then by [12,
Theorem 2.1] we have

opw (f(T)) = op(f(T)).

By [12, Theorem 2.7]), op(f(T)) = f(op(T)) and hence opw (f(T)) = f(op(T)).
Since T is algebraically class p-wA(s,t) with 0 < s,¢,s +¢ < 1, T satisfies gen-
eralized Weyl’s theorem. Thus, T satisfies generalized Browder’s theorem and so
flop(T)) = f(opw(T)). Therefore, opw (f(T)) = f(opw(T)). This completes
the proof. [J
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Theorem 2.5. Let T be an algebraically class p-wA(s,t) operator with 0 < p <1
and 0 < s,t,s +t < 1. Then f(T) satisfies generalized Weyl’s theorem for every

feH(o(T)).

Proof. Suppose T is algebraically class p-wA(s,t) operator with 0 < p < 1 and
0 < s,t,s+t <1s. Since the equality opw (f(T)) = f(ocpw(T)) holds for every
f € H(o(T)) by Theorem 2.4, it follows that f(T') satisfies generalized Weyl’s
theorem for every f € H(o(T)). O

Theorem 2.6. Let T* be an algebraically class p-wA(s,t) operator with0 < p <1
and 0 < s,t,s+t < 1. Then a-Weyl’s theorem holds for T.

Proof. Since T* is algebraically class p-wA(s,t) operator with 0 < p < 1 and
0 <s,t,s+t<1,q(T*) is class p-wA(s,t) operator with 0 < p < 1 and 0 <
s,t,s +t < 1 for some nonconstant polynomial ¢q. It follows from [22] that ¢(T™)
has SVEP. Therefore, T* has SVEP by [17, Theorem 3.3.9]. By Theorem 2.2, T*
is polaroid. Since T* is polaroid, T is polaroid. By applying [4, Theorem 3.10], it
follows that a-Weyl’s theorem holds for 7. [

Theorem 2.7. Let T be an algebraically class p-wA(s,t) operator with 0 < p <1
and 0 < s,t,s+t <1 . Then Tsr (f(T)) = f(aSF; (T)) for every f € H(o(T)).

Proof. Let f € H(o(T)). Recall that for every T € B(#), the following inclusion
osp- (f(T)) € flogp-(T))

is always true. Now it suffices to show that ogp- (f(T)) 2 f(ogp-(T)). Let A ¢

0sp- (F(T). Then f(T) — M € SET(H). Let

(2.1) FT) =M =o(T = pa)(T = p2) ey (T = 1) 9(T),

where ¢, 1, pto...., i, € C and ¢(T') is invertible. Since T is algebraically class p-
wA(s,t) operator with 0 < p <1 and 0 < s,t,s+¢ < 1, T has SVEP. It follows
from [1, Corollary 3.19] that ind(7T — p) < 0 for all p for which 7' — p is Fredholm,
T — p; is Fredholm of index zero for each i = 1,2,..,n. Therefore, u; ¢ Tspy (T)

for all 1 <7 < n. Hence,
A= fl) ¢ f(USF; (T))-
This completes the theorem. [

Recall that an operator T' € B(H) is said to be a-isoloid if every isolated point
of 0,(T) is an eigenvalue of T. Evidently, if T is a-isoloid, then it is isoloid.

Theorem 2.8. Let T* be an algebraically class p-wA(s,t) operator with 0 < p <1
and 0 < s,t, s+t < 1. Then a-Weyl’s theorem holds for f(T') for every f € H(o(T)).
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Proof. Suppose T* is algebraically class p-wA(s,t) operator with 0 < p < 1 and
0 < s,t,s+t<1. From Theorem 2.6, a-Weyl’s theorem holds for 7. Hence, T
satisfies a-Browder’s theorem. Since T™ is algebraically class p-wA(s,t) operator
with 0 < p < 1land 0 < s,t,s+t <1, T* has SVEP. If f € H(o(T)), then
by [17, Theorem 3.3.9], f(T), or f(T') satisfies the SVEP. Applying [18, Theorem
2.4], it follows that f(7T') satisfies a- Browder’s theorem. To prove a-Weyl’s theorem
holds for f(T') it is enough to show that E§(f(T)) = IIZ(f(T)). The inclusion
IE(f(T)) C E§(f(T)) is trivial. To prove the reverse inclusion let A € E§(f(T)).
Then A is an isolated point of o, (f(T)) and a(f(T)—AI) < co. Since A is an isolated
point of f(o4(T)), if u; € 64(T), then u; is an isolated point of o, (T") by (2.1). That
is, T is a-isoloid. Thus, 0 < a(f(T) — pu;I) < oo for each ¢ = 1,2,...,n. Since T
satisfies a-Weyl’s theorem , T' — pu;I € SF (H)for each i = 1,2,...,n. Therefore
f(T) =M € SFL(H) and

n

ind(f(T) — M) = Y ind(f(T) — wil) <0.

i=1

Hence, A\ ¢ Tspr (f(T)). Since f(T) satisfies a-Browder’s theorem, A\ € TI(f(T)).
This completes the proof. [

Theorem 2.9. Let T be an algebraically class p-wA(s,t) operator with 0 < p <1
and 0 < s,t,s +t <1 . Then Weyl’s theorem holds for T + R for any finite rank
operator F' € B(H) commuting with T.

Proof. Suppose T is algebraically class p-wA(s,t) operator with 0 < p < 1 and
0 < s,t,s+t < 1. Then from Theorem 2.2, isolated point of spectrum of T are
eigenvalues. By Theorem 2.1, T satisfies Weyl’s theorem. Then it follows that
Weyl’s theorem holds for T' 4+ R for any finite rank operator R € B(H) by [15,
Theorem 3.3],. O

Theorem 2.10. Let T be an algebraically class p-wA(s,t) operator with 0 < p <1
and 0 < s, t,s+t < 1. Then for any function f € H(o(T)) and any finite rank
operator R € B(H) commuting with T, Weyl’s theorem holds for f(T) + R.

Proof. Suppose T is algebraically class p-wA(s,t) operator with 0 < p < 1 and
0 < s,t,s+t < 1. Then T is polaroid by Theorem 2.2 and hence T is isoloid.
Therefore, f(T) is isoloid for any function f analytic on a neighborhood of o(T)
by [15, Lemma 3.6]. Then f(T') obeys generalized Weyl theorem for any function
f € H(o(T)) by Theorem 2.5. Then from [15, Theorem 3.3], it follows that Weyl’s
theorem holds for f(T') + R for any finite rank operator R. [

3. elementary operator dsp and Weyl type theorem

Let dap denote the generalized derivation 645 : B(H) — B(H) defined by dap(X) =
AX — X B or the elementary operator Ap : B(H) — B(H) defined by Ap(X) =
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AXB — X. In this section we show that if A, B* € B(H) are class p-wA(s,t) op-
erator with 0 < p <1 and 0 < s,t,s +t < 1, then generalized Weyl’s theorem ,
a-Weyl’s theorem, property (w), property (gw) and generalized a-Weyl’s theorem
holds for f(dap) for every f € Ho(dap). Recall that an operator T € B(H)
is said to have the property (9) if for every open covering (U,V) of C, we have
H="HrU)+Hr(V).

Lemma 3.1. Let A,B € B(H). If A and B* are class p-wA(s,t) operators with
0<p<land0<s,t,s+t <1, then dap has SVEP.

Proof. Suppose that A and B* are class p-wA(s,t) operators with 0 < p < 1 and
0<s,t,s+t<1. Then A and B* satisfies Bishop’s property (8) by [24, Theorem
2.4 ] or [22]. Hence B satisfies property (§) by [17, Theorem 2.5.5]. Since both
AX and X B satisfies property (C) by Corollary 3.6.110f [17]. Then SVEP holds
for both AX — XB and AXB — X by [17, Theorem 3.6.3] and [17, Note 3.6.19].
Then, d4p has SVEP.

O

Lemma 3.2. Let A,B € B(H). If A and B* are class p-wA(s,t) operators with
0<p<1land0<s,t,s+t <1, then dap s polaroid.

Proof. Since A and B* are class p-wA(s,t) operators with 0 < p < 1 and 0 <
s,t,s+t <1, A and B* are polaroid by Proposition 2.2. It is known that if B*
is polaroid then B is polaroid. Hence the required result follows by [26, Lemma
41] O

Theorem 3.1. If A, B* € B(H) are class p-wA(s,t) operators with0 < p <1 and
0<s,t,s+1t <1, then generalized Weyl’s theorem holds for dap.

Proof. Since A and B* are class p-wA(s,t) operators with 0 < p < 1 and 0 <
s,t,s+t <1, dap has SVEP by Lemma 3.1. By Lemma 3.2, d4p is polaroid. Then
by applying [4, theorem 3.10], it follows that generalized Weyl’s theorem holds for
dap O

Theorem 3.2. If A, B* € B(H) are class p-wA(s,t) operators with 0 < p < 1
and 0 < s,t,s +1 < 1, then generalized Weyl’s theorem holds for f(dag) for every
fe€H(o(dag)).

Proof. Since A and B* are class p-wA(s,t) operators with 0 < p < 1 and 0 <
s,t,s+t <1, dap has SVEP by Lemma 3.1. By Lemma 3.2 the operator d4p is
polaroid and so d4p is isoloid. Then by applying [25, theorem 2.2], it follows that
generalized Weyl’s theorem holds for f(dag) for every f € Ho(dag). O

We say that T' € B(H) possesses property (w) if o4 (T) \O’SF; (T) = E%T) [23]. In
Theorem 2.8 of [2], it is shown that property (w) implies Weyl’s theorem, but the
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converse is not true in general. We say that T' € B(H) possesses property (gw) if
oa(T) \JSBF; (T) = E(T). Property (gw) has been introduced and studied in [6].

Property (gw) extends property (w) to the context of B-Fredholm theory, and it is
proved in [6] that an operator possessing property (gw) possesses property (w) but
the converse is not true in general.

Theorem 3.3. Let A, B* € B(H) are class p-wA(s,t) operators with 0 < p <1
and 0 < s,t,s +t < 1. Then a-Weyl’s theorem, property (w), property (gw) and
generalized a-Weyl’s theorem hold for every f € H(o(dag)).

Proof. By Lemma 3.1, the operator d 4 g has SVEP. The operator d 45 is polaroid by
Lemma 3.2,. Then by applying [4, theorem 3.12], it follows that a-Weyl’s theorem,
property (w), property (gw) and generalized a-Weyl’s theorem hold for every f €
H(O’(dAB)). [}

Acknowledgment. Tam grateful to the referee for his valuable comments and
helpful suggestions.
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