
FACTA UNIVERSITATIS (NIŠ)
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Abstract. Let G be a connected graph and ζ the set of all cliques in G. In this paper we
introduce the concepts of unique (ζ, ζ)-eccentric clique graphs and self (ζ, ζ)-centered
graphs. Certain standard classes of graphs are shown to be self (ζ, ζ)-centered, and we
characterize unique (ζ, ζ)-eccentric clique graphs which are self (ζ, ζ)-centered.
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1. Introduction

By a graph G = (V,E) we mean a finite, undirected connected graph without
loops or multiple edges. The order and size of G are denoted by n and m, respec-
tively. For basic graph theoretic terminology we refer to Harary [3]. The distance
d(u, v) between two vertices u and v in a connected graph G is the length of a short-
est u-v path in G. It is known that the this distance function d is a metric on the
vertex set V . The eccentricity e(v) is the distance between v and a vertex farthest
from v. The set of all vertices for which e is minimized is called the center of G and
is denoted by Z(G). The set of all vertices for which e is maximized is called the
periphery of G and is denoted by P (G). The concept of the center of a graph arises
in the context of selection of a site at which to locate a facility in a graph. Taking
into account the situation that the nature of the facility to be constructed could
necessitate selecting a structure rather than a vertex to locate a facility, Slater [9]
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proposed four classes of locational problems, namely, vertex-serves-vertex, vertex-
serves-structure, structure-serves-vertex and structure-serves-structure. For subsets
S, T ⊆ V and any vertex v in V , let d(v, S) = min{d(v, u) : u ∈ S} and d(S, T ) =
min{d(x, y) : x ∈ S, y ∈ T }, respectively. The degree of a vertex v in a graph
G, denoted by dv or deg v, is the number of edges incident with v. Let S be a
set and F = {S1, S2, . . . , Sp} a nonempty family of distinct nonempty subsets of
S whose union is S. The intersection graph of F is denoted Ω(F ) and defined by
V (Ω(F )) = F , with Si and Sj adjacent whenever i 6= j and Sj ∩ Sj 6= φ. Then a
graph G is an intersection graph on S if there exists a family F of subsets of S for
which G ∼= Ω(F ).

Definition 1.1. [10] Let G = (V,E) be a connected graph. Let ζ = {Ci : i ∈ I}
and S = {Sj : j ∈ J}, where each of Ci and Sj is a subset of V . Let eS(Ci) =
max{d(Ci, Sj) : j ∈ J}; Ci is called a (ζ, S)-center if eS(Ci) ≤ eS(Ck) for all k ∈ I.

Slater [10] investigated the centrality of paths by taking S to be the collection
of all paths in G and ζ to be the collection of all single vertex sets in G, leading to
the concepts of the path center, path centroid and path median of G. Let r and d

represent respectively the radius and diameter of the graph G. A clique in G is a
set S of vertices of G such that the sub graph induced by S is a maximal complete
sub graph of G. Throughout the following, let ζ denote the set of all cliques in G.
Santhakumaran and Arumugam [5] introduced and studied the concepts of (V, ζ)-
center, (ζ, V )-center and (ζ, ζ)-center. Santhakumaran [7] introduced the concept
of (V, ζ)-periphery, (ζ, V )-periphery and (ζ, ζ)-periphery and investigated their
properties.

Definition 1.2. [5, 7] Let G = (V,E) be a connected graph. Let C ∈ ζ and
v ∈ V . We define the vertex-to-clique eccentricity by e1(v) = max{d(v, C) : C
is clique in G}. The clique-to-vertex eccentricity e2(C) is defined by e2(C) =
max{d(C, v) : v ∈ V }. The clique-to-clique eccentricity e3(C) is defined by
e3(C) = max{d(C,C′) : C′ ∈ ζ}. The set of all vertices for which e1(v) is minimum
is called the (V, ζ)-center of G and is denoted by Z1(G). The set of all vertices
for which e1(v) is maximum is called the (V, ζ)-periphery of G and is denoted by
P1(G). The set of all cliques C for which e2(C) is minimum is called the (ζ, V )-
center of G and is denoted by Z2(G). The set of all cliques C for which e2(C) is
maximum is called the (ζ, V )-periphery of G and is denoted by P2(G). The set
of all cliques C for which e3(C) is minimum is called the (ζ, ζ)-center of G and is
denoted by Z3(G). The set of all cliques C for which e3(C) is maximum is called
the (ζ, ζ)-periphery of G and is denoted by P3(G).

Santhakumaran and Arumugam [8] also introduced and studied the concepts
of (V, ζ)-radius, (V, ζ)-diameter, (ζ, V )-radius, (ζ, V )-diameter, (ζ, ζ)-radius, and
(ζ, ζ)-diameter of a graph G.

Definition 1.3. [8] Let G = (V,E) be a connected graph. The (V, ζ)-radius r1
of G and the (V, ζ)-diameter d1 of G are defined by r1 = min{e1(v) : v ∈ V } and
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d1 = max{e1(v) : v ∈ V }, respectively. The (ζ, V )-radius r2 of G and the (ζ, V )-
diameter d2 of G are defined by r2 = min{e2(C) : C ∈ ζ} and d2 = max{e2(C) :
C ∈ ζ}, respectively. The (ζ, ζ)-radius r3 of G and the (ζ, ζ)-diameter d3 of G are
defined by r3 = min{e3(C) : C ∈ ζ} and d3 = max{e3(C) : C ∈ ζ}, respectively.

We observe that for any graph G, d1 = d2. However r1 and r2 need not be
equal.

Parthasarathy and Nandakumar [4] introduced and studied unique eccentric
vertex graphs.

Definition 1.4. [4] A vertex v in a connected graphG is called an eccentric vertex

of u if d(u, v) = e(u). A vertex v is called an eccentric vertex if it is an eccentric
vertex of some vertex u, and is called a non-eccentric vertex, otherwise. A graph
G is called a unique eccentric vertex graph (a u.e.v. graph for short) if |E(u)| = 1
for every u ∈ V (G), where E(u) denotes the set of all eccentric vertices of u. The
unique eccentric vertex of u is denoted by u∗.

Santhakumaran [6] introduced and studied the concept of unique vertex-to-clique
eccentric clique graphs.

Definition 1.5. [6] Let G be a connected graph. Any clique C in G for which
e1(v) = d(v, C) is called a (V, ζ)-eccentric clique of the vertex v in G. We call a
clique C a (V, ζ)-eccentric clique if it is a (V, ζ)-eccentric clique of some vertex v

in G. Let E1(v) denote the set of all (V, ζ)-eccentric cliques of v. A graph G is said
to be a unique(V, ζ)-eccentric clique graph if |E1(v)| = 1 for every vertex v in G.

Santhakumaran [8] introduced the concept of unique clique-to-vertex eccentric
vertex graphs and investigated their properties.

Definition 1.6. [8] Let G be a connected graph. Any vertex v in G for which
e2(C) = d(C, v) is called a (ζ, V )-eccentric vertex of the clique C in G. We call a
vertex v a (ζ, V )-eccentric vertex if it is a (ζ, V )-eccentric vertex of some clique C

in G. Let E2(C) denote the set of all (ζ, C)-eccentric vertices of C. A graph G is
said to be a unique(ζ, V )-eccentric vertex graph if |E2(C)| = 1 for every clique C

in G.

A graph G is a self-centered graph if every vertex of G is in the center Z(G)
of G.

The following theorem is used in the sequel.

Theorem 1.1. [4] A u.e.v graph G is self-centered if and only if each vertex of G
is an eccentric vertex.



234 A. P. Santhakumaran

Centrality concepts have interesting applications in social networks [1, 2]. In a
social network a clique represents a group of individuals having “a common interest”
and hence centrality with respect to cliques, unique (ζ, ζ)-eccentric clique graphs
and self (ζ, ζ)-centered graphs will have interesting applications in social networks.
A (ζ, ζ)-eccentric clique is simply called an eccentric clique and a unique (ζ, ζ)-
eccentric clique graph simply a unique eccentric clique (u.e.c.) graph.

2. Unique Eccentric Clique (u.e.c.) Graphs

Definition 2.1. Let G be a connected graph and let C be a clique in G. Any
clique C′ in G for which e3(C) = d(C,C′) is called a (ζ, ζ)-eccentric clique of the
clique C in G. We call a clique C′ a (ζ, ζ)-eccentric clique if it is a (ζ, ζ)-eccentric
clique of some clique C in G. A graph G is said to be a unique(ζ, ζ)-eccentric
clique graph if |E3(C)| = 1 for every C in ζ, where E3(C) denotes the set of
all (ζ, ζ)-eccentric cliques of C. The unique (ζ, ζ)-eccentric clique of G is denoted
by C∗. A (ζ, ζ)-eccentric clique is simply called an eccentric clique and a unique
(ζ, ζ)-eccentric clique graph simply a unique eccentric clique (u.e.c.) graph.

Definition 2.2. A graph G is called a self(ζ, ζ)-centered graph if every clique of
G is in the (ζ, ζ)-center Z3(G) of G.
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Figure 2.1: G1

Example 2.1. For the graph G1 given in Figure 2.1, the cliques are C1 = {v1, v2, v3},
C2 = {v3, v4}, C3 = {v4, v5} and C4 = {v5, v6, v7}. It is easily seen that e3(C1) = 2,
e3(C2) = 1, e3(C3) = 1 and e3(C4) = 2. The eccentric cliques of C1, C2, C3 and C4 are
C4, C4, C1 and C1, respectively and G1 is a u.e.c graph. Also, Z3(G1) = {C2, C3} and
P3(G1) = {C1, C4}.
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Figure 2.2: G2

Example 2.2. For the graph G2 given in Figure 2.2, the cliques are C1 = {v1, v2, v3},
C2 = {v3, v4}, C3 = {v4, v5}, C4 = {v5, v6} and C5 = {v5, v6, v7}. It is easy to see that
e3(C1) = 3, e3(C2) = 2, e3(C3) = 1, e3(C4) = 2 and e3(C5) = 3. Thus E3(C3) = {C1, C5}
and so G2 is not a u.e.c graph. Also, Z3(G2) = {C3} and P3(G2) = {C1, C5}.
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Remark 2.1. If C is a (ζ, ζ)-peripheral clique in G, then it is a (ζ, ζ)-eccentric clique in
G. However, a (ζ, ζ)-eccentric clique need not be a (ζ, ζ)-peripheral clique. For the graph
G3 in Figure 2.3, the (ζ, ζ)-eccentricities are written alongside of the edges, C1 = {v1, u1}
and C2 = {u2, v2} are the (ζ, ζ)-peripheral cliques, C3 = {x1, x3} and C4 = {y1, y2} are
(ζ, ζ)-eccentric cliques which are not (ζ, ζ)-peripheral cliques.

A natural question that arises is whether E3(C)
⋂

P3(G) 6= φ for every C in ζ.
However, there are graphs which contain C such that E3(C)

⋂
P3(G) = φ. For the

graph G3 given in Figure 2.3, P3(G3) = {C1, C2} and E3(C4) = {C3}. We observe
that |P3(G)| ≥ 2 for any non-complete graph G.
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Figure 2.3: G3

For any connected graph G, the clique graph H of G is the intersection graph
of the family of all cliques in G. Thus, the vertices of H are the cliques of G.
Two vertices C and D in H are adjacent in H if and only if C and D have a vertex
common in G. Two cliques in G are called adjacent if they have a vertex in common.
The distance in H is denoted by dH .

The following theorem on the clique graph H of a graph G has several applica-
tions in facility location problems in real life situations.

Theorem 2.1. Let G be any connected graph and H its clique graph. Then
dH(C,D) = d(C,D) + 1 for any two cliques C and D in G.

Proof. Let C and D be two cliques in G. Suppose that C and D are adjacent in G.
Then d(C,D) = 0. Now, since C and D are adjacent vertices in H , dH(C,D) = 1
so that dH(C,D) = d(C,D) + 1. Now, suppose that C and D are not adjacent
in G. Let d(C,D) = p ≥ 1. Hence there exist vertices u0 ∈ C and up ∈ D such
that d(u0, up) = p. Let P : u0, u1, u2, . . . , up−1, up be a shortest u0 − up path in
G such that none of the ui(1 ≤ i ≤ p − 1) belongs to C or D. Let Ci be a clique
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containing the edge ui−1ui(1 ≤ i ≤ p). Since P is a shortest path in G, the cliques
C,C1, C2, . . . , Cp, D are all distinct and Q : C,C1, C2, . . . , Cp, D is a C−D shortest
path in H so that dH(C,D) = p+ 1 = d(C,D) + 1.

Theorem 2.2. Let G be any connected graph and H its clique graph. For any
clique C in G, let eH(C) denotes the eccentricity of the vertex C in H . Then

(i) e3(C) = eH(C)− 1

(ii) Z3(G) = Z(H)

(iii) P3(G) = P (H)

(iv) d3 = dH − 1

(v) r3 = rH − 1

Proof. (i) By definition e3(C) = max{d(C,C′) : C′ is a clique in G}

= max{dH(C,C′)− 1 : C′ is a vertex in H}

(by Theorem 2.1)

= max{dH(C,C′) : C′ is a vertex in H} − 1

= eH(C)− 1.

Thus (i) is proved and now (ii) and (iii) follow from the definitions of Z3(G),
Z(H), P3(G) and P (H). Also (iv) and (v) follow from (i).

Corollary 2.1. A connected graph G is self (ζ, ζ)- centered if and only if its clique
graph H is self-centered.

Theorem 2.3. If C1 and C2 are two adjacent cliques in a connected graph G,
then |e3(C1)− e3(C2)| ≤ 1.

Proof. We first prove that if u and v are two adjacent vertices in G, then |e(u) −
e(v)| ≤ 1. Suppose that e(u) ≥ e(v). Let u1 be an eccentric vertex of u so that
e(u) = d(u, u1). Then e(u) = d(u, u1) ≤ d(u, v) + d(v, u1) ≤ 1 + e(v), and so
e(u) − e(v) ≤ 1. It follows that |e(u) − e(v)| ≤ 1. Now, let H denote the clique
graph of G. If C1 and C2 are two adjacent cliques in G, then C1 and C2 are two
adjacent vertices in H and hence |eH(C1)− eH(C2)| ≤ 1. Hence by Theorem 2.2(i),
|e3(C1) + 1− e3(C2)− 1| ≤ 1 so that |e3(C1)− e3(C2)| ≤ 1.

Theorem 2.4. If C1 and C2 are two adjacent cliques in a u.e.c graph G and
e3(C1) 6= e3(C2), then C∗

1 = C∗
2 , where C∗

1 and C∗
2 denote respectively the unique

eccentric cliques of C1 and C2.
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Proof. We may assume without loss of generality that e3(C1) < e3(C2). Let ζ′ =
ζ − {e∗3(C1)}. Then d(C1, C

∗
1 ) = e3(C1) and since G is a u.e.c graph, d(C1, C) ≤

e3(C1) − 1 for all C in ζ′. Since C1 and C2 are adjacent and e3(C1) < e3(C2),
it follows that d(C2, C) ≤ 1 + d(C1, C) for all cliques C in G. Hence e3(C2) >

e3(C1) ≥ d(C2, C) for all C in ζ′. Thus e3(C1) > d(C2, C) for all C in ζ′ so that
C∗

2 = C∗
1 .

Corollary 2.2. In an u.e.c graph, any clique C with e3(C) = d3 − 1 is adjacent
to at most one (ζ, ζ)- peripheral clique.

Proof. Suppose that C is adjacent to two distinct (ζ, ζ)- peripheral cliques C1 and
C2. Since e3(C1) = e3(C2) = d3 and e3(C) = d3 − 1, it follows from Theorem 2.4
that C∗

1 = C∗ = C∗
2 . Hence d(C

∗, C1) = d(C∗, C2) = d3 so that C∗ has two distinct
eccentric cliques C1 and C2, which is a contradiction.

In the following part, we will give certain classes of graphs which are self (ζ, ζ)-
centered.

If a graph G is complete, then G is the only clique of G and e3(G) = 0 so that G
is self (ζ, ζ)- centered. If G is an even cycle C2p(p ≥ 2), then e3(C) = p− 1 for any
clique C in G. If G is an odd cycle C2p+1(p ≥ 2), then again e3(C) = p− 1 for any
clique C in G. If G = C3, then e3(G) = 0. Hence every cycle is self (ζ, ζ)-centered.

Theorem 2.5. Any complete bipartite graph G = Kp,q is self (ζ, ζ)-centered.

Proof. If G is a star, then each clique C is an edge and since e3(C) = 0, it follows
that Z3(G) = ζ so that G is self (ζ, ζ)-centered. It G is not a star, let the partite
sets of G be X = {x1, x2, . . . , xp} and Y = {y1, y2, . . . , yq}, p > 1 and q > 1. Then
any clique C in G is of the form C = xiyj (1 ≤ i ≤ p and 1 ≤ j ≤ q) and e3(C) = 1.
Hence Z3(G) = ζ so that G is self (ζ, ζ)- centered.

Remark 2.2. For a bipartite graph G, Theorem 2.5 is not true. For the graph G4

given in Figure 2.4, Z3(G4) = {{v1, v3}, {v3, v4}, {v6, v7}, {v3, v6}} and so G4 is not self
(ζ, ζ)-centered.
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Theorem 2.6. If G is a connected graph such that every pair of cliques in G has
a common vertex, then G is self (ζ, ζ)-centered.

Proof. Since d(C,C′) = 0 for any two cliques C and C′, it follows that e3(C) = 0
for any clique C in G. Thus Z3(G) = ζ so that G is self(ζ, ζ)- centered.

Corollary 2.3. If G is a graph with n vertices and maximum degree ∆ = n − 1,
then G is self (ζ, ζ) - centered.

Proof. Let S = {v ∈ V : deg v = n − 1}. Since S ⊆ C for any clique C, the result
follows.

The following theorem gives a characterization for a u.e.c graph to be self (ζ, ζ)-
centered.

Theorem 2.7. A u.e.c graph is self (ζ, ζ)-centered if and only if each clique of G
is eccentric.

Proof. Let G be a self (ζ, ζ)-centered graph. For any clique C in G, let C∗ be an
eccentric clique of C so that e3(C

∗) = e3(C) = d(C∗, C). Hence C is an eccentric
clique of C∗. Thus each clique of G is eccentric.

Let G be a u.e.c graph. Suppose that each clique of G is eccentric. First, we
prove that every vertex of H is eccentric in H . Let C be any vertex of H . Then C

is a clique in G. Since each clique of G is eccentric, there exists a clique C1 in G

such that e3(C1) = d(C1, C). By Theorem 2.2(i), eH(C1)− 1 = dH(C1, C)− 1 and
so eH(C1) = dH(C1, C). Thus every vertex in H is eccentric. Now, we prove that
H is u.e.v graph. Let C be a vertex in H having two distinct eccentric vertices, say
C1 and C2. Then eH(C) = dH(C,C1) = dH(C,C2). By Theorems 2.1 and 2.2(i),
e3(C) + 1 = d(C,C1) + 1 = d(C,C2) + 1, which gives e3(C) = d(C,C1) = d(C,C2)
so that C1 and C2 are two distinct eccentric cliques of C in G, contradicting the
hypothesis that G is a u.e.c graph. Thus H is a u.e.v graph such that every vertex
in H is an eccentric vertex. Hence by Theorem 1.1, H is self centered. By Corollary
2.1, G is self (ζ, ζ) - centered.

Corollary 2.4. A u.e.c graph G is self (ζ, ζ) - centered if and only if C∗∗ = C for
every clique C in G.

Proof. Suppose that G is self (ζ, ζ) - centered. In a self (ζ, ζ) - centered graph, C∗ is
an eccentric clique of C if and only if C is an eccentric clique of C∗. Hence it follows
that C∗∗ = C for every clique C in G. Conversely, suppose that C = C∗∗ for every
clique C in G. Then C is the unique eccentric clique of C∗. Thus e3(C

∗) = d(C∗, C)
so that each clique C in G is eccentric. Hence by Theorem 2.7, G is self (ζ, ζ) -
centered.

Characterizing all self (ζ, ζ) - centered graphs seems to be a very difficult problem
and we leave it as an open question.

Problem 2.1. Characterize self (ζ, ζ) - centered graphs.
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