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UNIQUE ECCENTRIC CLIQUE GRAPHS
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Abstract. Let G be a connected graph and ¢ the set of all cliques in G. In this paper we
introduce the concepts of unique (¢, ¢)-eccentric clique graphs and self ({, {)-centered
graphs. Certain standard classes of graphs are shown to be self (¢, {)-centered, and we
characterize unique (¢, ¢)-eccentric clique graphs which are self (¢, ¢)-centered.
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1. Introduction

By a graph G = (V, E) we mean a finite, undirected connected graph without
loops or multiple edges. The order and size of G are denoted by n and m, respec-
tively. For basic graph theoretic terminology we refer to Harary [3]. The distance
d(u,v) between two vertices u and v in a connected graph G is the length of a short-
est u-v path in G. It is known that the this distance function d is a metric on the
vertex set V. The eccentricity e(v) is the distance between v and a vertex farthest
from v. The set of all vertices for which e is minimized is called the center of G and
is denoted by Z(G). The set of all vertices for which e is maximized is called the
periphery of G and is denoted by P(G). The concept of the center of a graph arises
in the context of selection of a site at which to locate a facility in a graph. Taking
into account the situation that the nature of the facility to be constructed could
necessitate selecting a structure rather than a vertex to locate a facility, Slater [9]
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proposed four classes of locational problems, namely, vertex-serves-vertex, vertex-
serves-structure, structure-serves-vertex and structure-serves-structure. For subsets
S,T CV and any vertex v in V, let d(v,S) = min{d(v,u) : u € S} and d(S,T) =
min{d(z,y) : © € S,y € T}, respectively. The degree of a vertex v in a graph
G, denoted by d, or degv, is the number of edges incident with v. Let S be a
set and F' = {51,5%,...,5,} a nonempty family of distinct nonempty subsets of
S whose union is S. The intersection graph of F is denoted Q(F) and defined by
V(QUF)) = F, with S; and S; adjacent whenever i # j and S; NS; # ¢. Then a
graph G is an intersection graph on S if there exists a family F of subsets of S for
which G = Q(F).

Definition 1.1. [10] Let G = (V, E) be a connected graph. Let { = {C; : ¢ € I'}
and S = {S; : j € J}, where each of C; and S; is a subset of V. Let eg(C;) =
max{d(C;, S;) : j € J}; C; is called a (¢, S)-center if es(C;) < eg(Cy) for all k € I.

Slater [10] investigated the centrality of paths by taking S to be the collection
of all paths in G and ( to be the collection of all single vertex sets in GG, leading to
the concepts of the path center, path centroid and path median of G. Let r and d
represent respectively the radius and diameter of the graph G. A clique in G is a
set S of vertices of G such that the sub graph induced by S is a maximal complete
sub graph of G. Throughout the following, let { denote the set of all cliques in G.
Santhakumaran and Arumugam [5] introduced and studied the concepts of (V,()-
center, (¢,V)-center and (¢, ¢)-center. Santhakumaran [7] introduced the concept
of (V,()-periphery, (¢,V)-periphery and ((,()-periphery and investigated their
properties.

Definition 1.2. [5, 7] Let G = (V, E) be a connected graph. Let C € ¢ and
v € V. We define the vertex-to-clique eccentricity by ei(v) = max{d(v,C) : C
is clique in G}. The clique-to-vertex eccentricity es(C) is defined by ex(C) =
maz{d(C,v) : v € V}. The cique-to-clique eccentricity es(C) is defined by
e3(C) = max{d(C,C") : C" € (}. The set of all vertices for which e (v) is minimum
is called the (V,()-center of G and is denoted by Z;(G). The set of all vertices
for which e;(v) is maximum is called the (V, ()-periphery of G and is denoted by
Pi(G). The set of all cliques C for which e3(C) is minimum is called the (¢, V)-
center of G and is denoted by Z3(G). The set of all cliques C for which ex(C) is
maximum is called the ({,V)-periphery of G and is denoted by P2(G). The set
of all cliques C for which e3(C) is minimum is called the ((,{)-center of G and is
denoted by Z3(G). The set of all cliques C' for which e3(C) is maximum is called
the (¢, ¢)-periphery of G and is denoted by Ps(G).

Santhakumaran and Arumugam [8] also introduced and studied the concepts
of (V,{)-radius, (V,{)-diameter, (¢,V)-radius, (¢,V)-diameter, (¢, ¢)-radius, and
(¢, ¢)-diameter of a graph G.

Definition 1.3. [8] Let G = (V, E) be a connected graph. The (V,()-radius
of G and the (V,()-diameter dqi of G are defined by r1 = min{e;(v) : v € V} and
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dy = max{e1(v) : v € V'}, respectively. The (¢, V)-radius ro of G and the (¢, V)-
diameter dy of G are defined by 1o = min{es(C) : C € ¢} and dy = max{ez(C) :
C' € (}, respectively. The (¢, ¢)-radius r3 of G and the ({, ()-diameter d3 of G are
defined by r3 = min{es(C) : C € ¢} and d3 = maz{es(C) : C € (}, respectively.

We observe that for any graph G, di = d3. However r; and ry need not be
equal.

Parthasarathy and Nandakumar [4] introduced and studied unique eccentric
vertex graphs.

Definition 1.4. [4] A vertex v in a connected graph G is called an eccentric vertex
of w if d(u,v) = e(u). A vertex v is called an eccentric vertex if it is an eccentric
vertex of some vertex u, and is called a non-eccentric vertex, otherwise. A graph
G is called a unique eccentric vertex graph (a u.e.v. graph for short) if |E(u)| =1
for every u € V(G), where E(u) denotes the set of all eccentric vertices of u. The
unique eccentric vertex of u is denoted by u*.

Santhakumaran [6] introduced and studied the concept of unique vertex-to-clique
eccentric clique graphs.

Definition 1.5. [6] Let G be a connected graph. Any clique C in G for which
e1(v) = d(v,0) is called a (V,()-eccentric clique of the vertex v in G. We call a
clique C a (V,{)-eccentric clique if it is a (V, {)-eccentric clique of some vertex v
in G. Let Eq(v) denote the set of all (V, {)-eccentric cliques of v. A graph G is said
to be a unique(V, {)-eccentric clique graph if |E1(v)] = 1 for every vertex v in G.

Santhakumaran [8] introduced the concept of unique clique-to-vertex eccentric
vertex graphs and investigated their properties.

Definition 1.6. [8] Let G be a connected graph. Any vertex v in G for which
e2(C) = d(C,v) is called a (¢, V)-eccentric vertex of the clique C in G. We call a
vertex v a (¢, V)-eccentric vertex if it is a ({, V')-eccentric vertex of some clique C
in G. Let E(C) denote the set of all (¢, C)-eccentric vertices of C. A graph G is
said to be a unique((, V)-eccentric vertex graph if |E2(C)| = 1 for every clique C
in G.

A graph G is a self-centered graph if every vertex of G is in the center Z(G)
of G.

The following theorem is used in the sequel.

Theorem 1.1. [4] A u.e.w graph G is self-centered if and only if each vertex of G
is an eccentric vertex.
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Centrality concepts have interesting applications in social networks [1, 2]. In a
social network a clique represents a group of individuals having “a common interest”
and hence centrality with respect to cliques, unique (¢, ¢)-eccentric clique graphs
and self (¢, ¢)-centered graphs will have interesting applications in social networks.
A ((,¢)-eccentric clique is simply called an eccentric clique and a unique (¢, ¢)-
eccentric clique graph simply a unique eccentric clique (u.e.c.) graph.

2. Unique Eccentric Clique (u.e.c.) Graphs

Definition 2.1. Let G be a connected graph and let C' be a clique in G. Any
clique C" in G for which e3(C) = d(C,C") is called a (¢, {)-eccentric clique of the
clique C in G. We call a clique C’ a (¢, {)-eccentric clique if it is a ({, ¢)-eccentric
clique of some clique C' in G. A graph G is said to be a unique((, {)-eccentric
cligue graph if |E3(C)| = 1 for every C in (, where E3(C) denotes the set of
all (¢, ¢)-eccentric cliques of C. The unique (¢, ¢)-eccentric clique of G is denoted
by C*. A (¢, {)-eccentric clique is simply called an eccentric clique and a unique
(¢, ¢)-eccentric clique graph simply a unique eccentric clique (u.e.c.) graph.

Definition 2.2. A graph G is called a sel f((, {)-centered graph if every clique of

G is in the (¢, {)-center Z3(G) of G.
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Figure 2.1: G

Example 2.1. For the graph G; given in Figure 2.1, the cliques are C1 = {v1,v2,v3},
Cy = {vs,va}, C3 = {va,vs} and Cy = {vs,vs,v7}. It is easily seen that e3(Ch) = 2,
e3(C2) = 1, e3(C3) = 1 and e3(Cs) = 2. The eccentric cliques of Cy,C>,C3 and Cy are
C4,C4,Cq and C1, respectively and Gi is a u.e.c graph. Also, Z3(G1) = {C2,Cs} and
P3(G1) = {01704}.
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Figure 2.2: G,
Example 2.2. For the graph G2 given in Figure 2.2, the cliques are C1 = {v1,v2,v3},
Co = {vs,va}, C3 = {va,vs5}, Cs = {vs,v6} and Cs = {vs,ve,v7}. It is easy to see that
63(01) = 37 63(02) = 27 63(03) = 17 63(04) = 2 and 63(05) = 3. Thus Eg(Cg) = {01705}
and so Ga is not a u.e.c graph. Also, Z3(G2) = {C3} and P3(G2) = {C1,C5}.
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Remark 2.1. If C is a ({, {)-peripheral clique in G, then it is a (¢, ¢)-eccentric clique in
G. However, a (C, ¢)-eccentric clique need not be a ((, ¢)-peripheral clique. For the graph
G3 in Figure 2.3, the ((, )-eccentricities are written alongside of the edges, C1 = {v1,u1}
and C2 = {ugz,v2} are the (¢, ¢)-peripheral cliques, C3 = {z1,z3} and C4 = {y1,y2} are
(¢, ¢)-eccentric cliques which are not (¢, ¢)-peripheral cliques.

A natural question that arises is whether E5(C) () P5(G) # ¢ for every C in (.
However, there are graphs which contain C' such that E3(C) () P3(G) = ¢. For the
graph G35 given in Figure 2.3, P3(G3) = {C1,C2} and E5(Cy) = {C3}. We observe
that |P3(G)| > 2 for any non-complete graph G.
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Figure 2.3: G3

For any connected graph G, the clique graph H of G is the intersection graph
of the family of all cliques in G. Thus, the vertices of H are the cliques of G.
Two vertices C and D in H are adjacent in H if and only if C' and D have a vertex
common in G. Two cliques in G are called adjacent if they have a vertex in common.
The distance in H is denoted by dp.

The following theorem on the clique graph H of a graph G has several applica-
tions in facility location problems in real life situations.

Theorem 2.1. Let G be any connected graph and H its clique graph. Then
dp(C,D) = d(C, D) + 1 for any two cliques C' and D in G.

Proof. Let C and D be two cliques in G. Suppose that C' and D are adjacent in G.
Then d(C, D) = 0. Now, since C' and D are adjacent vertices in H, dg(C,D) =1
so that dy (C, D) = d(C,D) + 1. Now, suppose that C and D are not adjacent
in G. Let d(C,D) = p > 1. Hence there exist vertices uy € C and u, € D such
that d(ug,up) = p. Let P : ug,u1,u,...,up—1,up be a shortest ug — u, path in
G such that none of the u;(1 < i < p—1) belongs to C or D. Let C; be a clique



236 A. P. Santhakumaran

containing the edge u;—1u;(1 <14 < p). Since P is a shortest path in G, the cliques
C,Cq,Cs,...,Cp, D are all distinct and @ : C,C1,Cy,...,Cp, D is a C — D shortest
path in H so that dg(C,D) =p+1=d(C,D)+1. O

Theorem 2.2. Let G be any connected graph and H its clique graph. For any
clique C in G, let ey (C') denotes the eccentricity of the vertex C in H. Then

(i) es(C) =en(C) -1
(ii) Z3(G) = Z(H)
(ii) P3(G) = P(H)
(iv) ds = dy — 1

(v) rg=ryg—1

Proof. (i) By definition e5(C) = maz{d(C,C") : C' is a clique in G}
=maz{dy(C,C") —1:C" is a vertex in H}
(by Theorem 2.1)
= maz{dy(C,C") : C" is a vertex in H} — 1
=ey(C) - 1.

Thus (i) is proved and now (ii) and (iii) follow from the definitions of Z5(G),
Z(H), P3(G) and P(H). Also (iv) and (v) follow from (i). O

Corollary 2.1. A connected graph G is self (, ¢)- centered if and only if its clique
graph H is self-centered.

Theorem 2.3. If C; and C5 are two adjacent cliques in a connected graph G,
then |63(Cl) — 63(02)| S 1.

Proof. We first prove that if u and v are two adjacent vertices in G, then |e(u) —
e(v)] < 1. Suppose that e(u) > e(v). Let u; be an eccentric vertex of u so that
e(u) = d(u,u1). Then e(u) = d(u,u1) < d(u,v) + d(v,u1) < 1+ e(v), and so
e(u) —e(v) < 1. It follows that |e(u) — e(v)| < 1. Now, let H denote the clique
graph of G. If '} and Cy are two adjacent cliques in G, then C; and Cy are two
adjacent vertices in H and hence |ey(C1) —en(C2)| < 1. Hence by Theorem 2.2(i),
|€3(Cl) +1-— 63(02) - 1| S 1 so that |63(Cl) — 63(02)| S 1. O

Theorem 2.4. If C; and C5 are two adjacent cliques in a u.e.c graph G and
e3(Cy) # e3(Cs), then Cf = C3, where C7 and C5 denote respectively the unique
eccentric cliques of C7 and Cs.
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Proof. We may assume without loss of generality that e3(Cy) < es(Ca). Let ¢/ =
¢ —{e4(Cy)}. Then d(C1,C5) = e3(Ch) and since G is a u.e.c graph, d(Cq,C) <
e3(Cy) — 1 for all C in ¢’. Since C; and Cs are adjacent and e3(C7) < e3(C2),
it follows that d(C2,C) < 1+ d(Cy,C) for all cliques C' in G. Hence e3(Cs) >
e3(C1) > d(Cq,C) for all C in ¢’. Thus e3(Ci) > d(Cs, C) for all C in ¢’ so that
Cy=Cr O

Corollary 2.2. In an u.e.c graph, any clique C with e3(C) = d3 — 1 is adjacent
to at most one (¢, ¢)- peripheral clique.

Proof. Suppose that C' is adjacent to two distinct (¢, ¢)- peripheral cliques C; and
C5. Since e3(Cy) = e3(Cy) = d3 and e3(C) = d3z — 1, it follows from Theorem 2.4
that C7 = C* = C5. Hence d(C*,C1) = d(C*,C3) = ds so that C* has two distinct
eccentric cliques C7 and Cs, which is a contradiction. [

In the following part, we will give certain classes of graphs which are self ({, ¢)-
centered.

If a graph G is complete, then G is the only clique of G and e3(G) = 0 so that G
is self (¢, ¢)- centered. If G is an even cycle Cop(p > 2), then e3(C') = p — 1 for any
clique C'in G. If G is an odd cycle Copy1(p > 2), then again e3(C') = p — 1 for any
clique C' in G. If G = Cs, then e3(G) = 0. Hence every cycle is self ((, {)-centered.

Theorem 2.5. Any complete bipartite graph G = K, , is self ({, ¢)-centered.

Proof. If G is a star, then each clique C is an edge and since e3(C) = 0, it follows
that Z3(G) = ¢ so that G is self (¢, ({)-centered. It G is not a star, let the partite
sets of G be X = {x1,x2,...,2p} and Y = {y1,y2,...,y4}, p > 1 and ¢ > 1. Then
any clique C in G is of the form C' = z;y; (1 <i<pand 1 < j <g) and e3(C) = 1.
Hence Z3(G) = ¢ so that G is self (¢, ()- centered. O

Remark 2.2. For a bipartite graph G, Theorem 2.5 is not true. For the graph G4
given in Figure 2.4, Z3(G4) = {{v1,vs}, {vs,va},{ve,v7},{vs,v6}} and so G4 is not self

(¢, ¢)-centered.
U7 \UG Us

U1

Figure 2.4: G4
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Theorem 2.6. If G is a connected graph such that every pair of cliques in G has
a common vertex, then G is self ({, {)-centered.

Proof. Since d(C,C") = 0 for any two cliques C and C’, it follows that e3(C) = 0
for any clique C in G. Thus Z3(G) = ¢ so that G is self((, ¢)- centered. O

Corollary 2.3. If G is a graph with n vertices and maximum degree A =n — 1,
then G is self ((, () - centered.

Proof. Let S ={v €V :degv=n—1}. Since S C C for any clique C, the result
follows. O

The following theorem gives a characterization for a u.e.c graph to be self ({, ¢)-
centered.

Theorem 2.7. A u.e.c graph is self ({,{)-centered if and only if each clique of G
is eccentric.

Proof. Let G be a self ({,()-centered graph. For any clique C in G, let C* be an
eccentric clique of C so that e3(C*) = e3(C) = d(C*,C). Hence C is an eccentric
clique of C*. Thus each clique of G is eccentric.

Let G be a u.e.c graph. Suppose that each clique of G is eccentric. First, we
prove that every vertex of H is eccentric in H. Let C be any vertex of H. Then C'
is a clique in G. Since each clique of G is eccentric, there exists a clique Cy in G
such that e3(Cy) = d(Cy,C). By Theorem 2.2(i), ey (C1) — 1 =dn(C1,C) — 1 and
so eg(Cy) = dug(Cy,C). Thus every vertex in H is eccentric. Now, we prove that
H is u.e.v graph. Let C be a vertex in H having two distinct eccentric vertices, say
Cy and C3. Then ey (C) = duy(C,C1) = dg(C,C3). By Theorems 2.1 and 2.2(i),
es(C)+1=d(C,C1) +1=d(C,Cq) + 1, which gives e3(C) = d(C,C1) = d(C, Cs)
so that C7 and Cs are two distinct eccentric cliques of C' in G, contradicting the
hypothesis that G is a u.e.c graph. Thus H is a u.e.v graph such that every vertex
in H is an eccentric vertex. Hence by Theorem 1.1, H is self centered. By Corollary
2.1, G is self (¢, () - centered. O

Corollary 2.4. A u.e.c graph G is self (¢, () - centered if and only if C** = C for
every clique C in G.

Proof. Suppose that G is self (¢, ¢) - centered. In a self ({, () - centered graph, C* is
an eccentric clique of C' if and only if C' is an eccentric clique of C*. Hence it follows
that C** = C for every clique C in G. Conversely, suppose that C' = C** for every
clique C'in G. Then C is the unique eccentric clique of C*. Thus e3(C*) = d(C*, C)
so that each clique C in G is eccentric. Hence by Theorem 2.7, G is self ({,() -
centered. O

Characterizing all self (¢, ¢) - centered graphs seems to be a very difficult problem
and we leave it as an open question.

Problem 2.1. Characterize self ((,() - centered graphs.
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