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Abstract. In this paper, fractional differential equations in the sense of Caputo-Fabrizio
derivative are transformed into integral equations. Then a high order numerical method
for the integral equation is investigated by approximating the integrand with a piece-
wise quadratic interpolant. The scheme is capable of handling both linear and nonlinear
fractional differential equations. A detailed error analysis and stability region of the
numerical scheme is rigorously established.
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1. Introduction

The definition of the fractional derivative with a smooth kernel takes on two different
representations for the temporal and spatial variables. The first works on the time
variables; thus it is suitable to use the Laplace transform. The second definition
is related to the spatial variables, by a non-local fractional derivative, for which
it is more convenient to work with the Fourier transform. The interest for this
new approach with a regular kernel was born from the prospect that there is a
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class of non-local systems, which can describe the material heterogeneities and the
fluctuations of different scales, which cannot be well described by classical local
theories or by fractional models with singular kernel [3].

Li et al in [14], applied the Simpson’s rule instead of the trapezoidal quadra-
ture formula to achieve higher order numerical algorithm for fractional differential
equations. The authors of [6], established using the quadratic interpolation ap-
proximation using three points (tj−2, f(tj−2)), (tj−1, f(tj−1)) and (tj , f(tj)) for the
integrand f(t) on each small interval [tj−1, tj ](j ≥ 0), while the linear interpolation
approximation is applied on the first small interval. In [24], The authors pro-
posed a new fractional derivative without a singular kernel. Losada and Nieto [16],
introduced the fractional integral corresponding to the new concept of fractional
derivative recently presented by Caputo and Fabrizio and we study some related
fractional differential equations. Mohammed and Kamal [1], considered classes of
linear and nonlinear fractional differential equations involving the Caputo - Fabrizio
fractional derivative of the non-singular kernel. They transformed the fractional
problems to equivalent initial value problems with integer derivatives. Then il-
lustrate the obtained results by presenting two mathematical models of fractional
differential equations and their equivalent initial value problems. In [8], to bring a
broader outlook on some unusual irregularities observed in wave motions and liq-
uids movements, they explored the possibility of extending the analysis of Korteweg
deVries Burgers equation with two perturbations levels to the concepts of fractional
differentiation with no singularity. They made use of the newly developed Caputo
- Fabrizio fractional derivative with no singular kernel to establish the model.

The authors of [2], proposed the idea of Caputo-Fabrizio time-fractional deriva-
tives to magneto hydro dynamics (MHD) free convection flow of generalized Walters’-
B fluid over a static vertical plate. Free convection is caused due to combined
gradients of temperature and concentration. Hence, heat and mass transfers are
considered together. The fractional model of Walters’-B fluid is used in the mathe-
matical formulation of the problem. Garrappa and Roberto [7], described different
approaches to generalize the trapezoidal method to fractional differential equations.
A new definition for the fractional-order operator called the Caputo-Fabrizio (CF)
fractional derivative operator without singular kernel has been numerically approx-
imated using the two-point finite forward difference formula for the classical first-
order derivative of the function f(t) appearing inside the integral sign of the defi-
nition of the CF operator [18].

The monograph provides the most recent and up-to-date developments on frac-
tional differential and fractional integro-differential equations involving many dif-
ferent potentially useful operators of fractional calculus. The subject of fractional
calculus and its applications (that is, calculus of integrals and derivatives of any ar-
bitrary real or complex order) has gained considerable popularity and importance
during the past three decades or so, due mainly to its demonstrated applications in
numerous seemingly diverse and widespread [12].

In [19], the main purpose of this work is to study the dynamics of a fractional-
order Covid-19 model. An efficient computational method, which is based on



A New Numerical Method for Solving Fractional Differential Equations 53

the discretization of the domain and memory principle, is proposed to solve this
fractional-order corona model numerically and the stability of the proposed method
is also discussed. The efficiency of the proposed method is shown by listing the
CPU time. It is shown that this method will work also for long-time behavior.
The authors of [13], studied two fractional models in the Caputo-Fabrizio sense and
Atangana-Baleanu sense, in which the effects of malaria infection on mosquito bit-
ing behavior and attractiveness of humans are considered. Using Lyapunov theory,
we prove the global asymptotic stability of the unique endemic equilibrium of the
integer-order model, and the fractional models, whenever the basic reproduction
number R0 is greater than one.
In [5], a fractional-order mathematical model of the Caputo-Fabrizio type is pre-
sented for an alcoholism model. The existence and uniqueness of the alcoholism
model were investigated by using a fixed-point theorem.

The authors of [9], considered a new fractional derivative with nonsingular kernel
introduced by Caputo-Fabrizio (CF) and propose a finite difference method for
computing the CF fractional derivatives.
In [17], recently a new fractional differentiation was introduced to get rid of the
singularity in the Riemann-Liouville and Liouville-Caputo fractional derivative. The
new fractional derivative has then generated a new class of ordinary differential
equations. These class of fractional ordinary differential equations cannot be solved
using conventional Adams-Bashforth numerical scheme, thus, in this paper, a new
three-step fractional Adams-Bashforth scheme with the Caputo-Fabrizio derivative
is formulated for the solution linear and nonlinear fractional differential equations.

Recently [15], introduced Caputo and Fabrizio operator, which this new oper-
ator was derived by replacing the singular kernel in the classical Liouville-Caputo
derivative with the regular kernel. We introduce some useful properties based on
the definition by Caputo and Fabrizio for a general order n < α < n+ 1, n ∈ N .

In [23], new results related to the Marichev-Saigo-Maeda a fractional integral and
fractional derivative operators are proposed. Izadi and Srivastava [11], proposed a
numerical approximation to the nonlinear fractional-order logistic population model
with fractional-order Bessel and Legendre bases. The primary focus of [10], is to
propose a computationally effective approximation algorithm to find the numerical
solution of the so-called a new design of second-order Lane–Emden pantograph de-
layed problem with singularity and nonlinearity.
In [25], the authors proposed a new numerical technique based on a certain two-
dimensional extended differential transform via local fractional derivatives and de-
rive its associated basic theorems and properties.

In [21], a potentially useful new method based on the Gegenbauer wavelet ex-
pansion, together with operational matrices of fractional integral and block-pulse
functions, is proposed in order to solve the Bagley–Torvik equation.
The authors of [20], introduced a numerical algorithm for the solution of the frac-
tional vibration equation (FVE).

In [4], the Bernoulli wavelet method for the numerical solution of anomalous
infiltration and diffusion modeling by nonlinear fractional differential equations of
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variable order. The main object of this survey-cum-expository article is to present a
brief elementary and introductory overview of the theory of the integral and deriva-
tive operators of fractional calculus and their applications especially in developing
solutions of certain interesting families of ordinary and partial fractional “differin-
tegral” equations [22].

The paper is organized as follows. Section 2 contains some basic definitions.
Derivation of the new numerical method for solving fractional differential equations
is presented in Section3. Truncation error analysis is presented in Section 4, which
contains the new an analysis of linear stability and stability regions an analysis
method is presented in Section 5. Finally, in Section 6 the results of some numerical
tests are presented to compare the methods under investigation and some concluding
remarks is presented at the end of the paper.

2. Mathematical Preliminaries

In this section, we mainly recall some definitions which will be used later.

Definition 2.1. [12] The fractional derivative of order α > 0 for y(t) in the clas-
sical Liouville-Caputo sense is defined as

LC
0 Dα

t y(t) =
1

Γ(m− α)

∫ t

0

(t− x)m−α−1y(m)(x)dx, t > 0,(2.1)

where m − 1 < α ≤ m, m ∈ N , t > 0, y ∈ Cm−1[0, t] and k(t) = tm−α−1 is the
singular kernel.

To get rid of this singular kernel, a new definition was introduced in [3] that fa-
cilitates solving various natural and physical laws without being caught by the
convoluted integrals.

Definition 2.2. [3]. The new operator called the Caputo-Fabrizio operator for
fractional derivatives of order α > 0 is defined as follows:

CF
0 Dα

t y(t) =
M(α)

1− α

∫ t

0

y
′
(x) exp

(
− α t− x

1− α

)
dx, t > 0,(2.2)

where M(α) is the normalization function (any smooth positive function) such that
M(0) = M(1) = 1, and b > a. Furthermore, note the absence of any singular
kernel in the definition above. Also Losada and Nieto suggested the new fractional
Caputo-Fabrizio derivative operator [16]

CF
0 Dα

t y(t) =
1

1− α

∫ t

0

y
′
(x) exp (

−α(t− x)

1− α
)dx.(2.3)

Formula (2.3) forms most of the work presented in the subsequent sections.
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3. Derivation of the new numerical method for solving fractional
differential equations

In this section, we consider and investigate the numerical solution for the following
initial value problem:{

CF
0 Dαty(t) |t=tk= f(t, y(t)) = u(t), 0 ≤ t ≤ T, 0 < α ≤ 1,

y(t0) = y0.
(3.1)

Throughout the forthcoming analysis, it is assumed that f(t, y(t)) is a continuous
function that satisfies a Lipschitz condition with respect to the second argument,
that is, |f(t, y) − f(t, x)| ≤ L|y − x|, which L > 0. Notice that continuity and
Lipschitz conditions are sufficient to ensure the existence of a unique solution to the
problem (3.1) on the interval [0, T ] [14].
From the definition of the Caputo-Fabrizio fractional derivative (2.3), for any α(0 <
α < 1), we have

CF
0 Dα

t y(t) = 1
1−α

∫ t
0
y
′
(x) exp (−α(t−x)1−α )dx

1
1−α

∫ t
0
y
′
(x) exp (−α(t−x)1−α )dx = u(t)

therefor ∫ t

0

y
′
(x) exp (−µx)dx =

−α
µ
u(t) exp (−µt).

Where µ = −α
1−α By derivating from both sides we have

y
′
(t) exp (−µt) = −α

µ [−µ exp (−µt)u(t) + exp (−µt)u′(t)]

and by eliminating exp (−µt) from both sides we gain

y
′
(t) = −α

µ [u
′
(t)− µu(t)],∫ t

0
y
′
(x)dx = −α

µ

∫ t
0
[u
′
(x)− µu(x)]dx,

y(t)− y(0) = −α
µ [u(t)− u(0)] + α

∫ t
0
u(x)dx,

y(t) = y(0)− (α− 1)[f(t, y(t))− f(0, y(0))] + α
∫ t
0
f(x, y(x))dx.

For t = tk, one obtains

y(tk) = y(0)− (α− 1)[f(tk, y(tk))− f(0, y(0))]

+ α

k∑
j=1

∫ tj

tj−1

f(x, y(x))dx.
(3.2)

The main problem is to solve the integral on the right-hand side of (3.2) by numerical
method. To construct the high order scheme, For solving Eq.(3.2) on [0, T ] the
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interval is divided into N subintervals. Let ∆t = T/N , tj = j∆t, j = 0, 1, . . . , N .
For notational convenience, F (tj) = f(tj , y(tj)) and Fj = f(tj , yj), where yj is
the numerical approximation to y(tj). On each small interval [tj−1, tj ](1 ≤ j ≤
k), the piecewise Lagrange interpolation polynomial of degree one will be used to
approximate of F (t) as γ1,jF (t),

γ1,jF (t) = F (tj−1)
tj − t

∆t
+ F (tj)

t− tj−1
∆t

.

For j ≥ 2, we make a quadratic interpolation function γ2,jF (t) of F (t) using three
points (tj−1, F (tj−1)), (tj−2, F (tj−2)) and (tj , F (tj)) and obtaining a constraint of
the result onto small interval [tj , F (tj)], we get

γ2,jF (t) = F (tj−2)
(t− tj−1)(t− tj)

2∆t2

+ F (tj−1)
(t− tj−2)(tj − t)

∆t2
+ F (tj)

(t− tj−1)(t− tj−2)

2∆t2

= γ1,jF (t) +
1

2
(δ2tFj−1)(t− tj−1)(t− tj), t ∈ [tj−1, tj ].

In(3.2), we use γ1,1F (t) to approximate F (t) on the first interval [t0, t1] and γ2,jF (t)
to approximate F (t) on the first interval [tj−1, tj ](j ≥ 2). We have

∫ t1

t0

γ1,1F (x)dx =

∫ t1

t0

(
F (t0)

t1 − x
∆t

+ F (t1)
x− t0

∆t

)
dx

=
1

2
∆t(F (t0) + F (t1))

(3.3)

and

∫ tj

tj−1

γ2,jF (x)dx =

∫ tj

tj−1

(γ1,jF (x) +
1

2
δ2tFj−1(x− tj−1)(x− tj))dx

=
1

2
∆t(F (tj−1) + F (tj))

− 1

12
∆t3δ2tFj−1.

(3.4)

From (3.3) and (3.4), we can obtain a new numerical method for solving the Caputo-
Fabrizio fractional differential equations of order α(0 < α < 1) in the following
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formula to calculate y(tk):

y(tk) = y0 − (α− 1)(Fk − F0) + α

k∑
j=1

∫ tj

tj−1

F (x)dx

≈ y0 − (α− 1)(Fk − F0) + α
[ ∫ t1

t0

γ1,1F (x)dx+

k∑
j=2

∫ tj

tj−1

Π2,jF (x)dx
]

= y0 − (α− 1)(Fk − F0) + α

[
1

2
∆t(F0 + F1) +

k∑
j=2

(
1

2
∆t(Fj−1 + Fj)−

1

12
∆t3δ2tFj−1)

]

= y0 − (α− 1)(Fk − F0) + α

[
1

2
∆t

k∑
j=1

(Fj−1 + Fj)−
1

12
∆t3

k∑
j=2

δ2tFj−1

]

= y0 − (α− 1)(Fk − F0) + α

[
1

2
∆t

k∑
j=1

(Fj−1 + Fj)−
1

12
∆t2

k∑
j=2

(δtFj− 1
2
− δtFj− 3

2
)

]

= y0 − (α− 1)(Fk − F0) + α∆t

[
1

2

k∑
j=1

(Fj−1 + Fj)−
1

12

k∑
j=2

(Fj−2 − 2Fj−1 + Fj)

]
then

y(tk) = y0 + ((α− 1) +
5

12
α∆t)F0

+ (
5

12
α∆t− (α− 1))Fk

+

[
13

12
F1 +

k−2∑
j=2

Fj +
13

12
Fk−1

]
α∆t

(3.5)

Finally, the new numerical method for solving Eq (3.1), is completely described by
(3.5).

4. Truncation error analysis

Now, truncation errors of the new formula (3.5) are explained in the following
theorem.

Theorem 4.1. Assume that F (t) ∈ C3[0, tk]. and for any α(0 < α < 1), y(tk) is
defined by (3.5). Define R̂(y(tk)) := y(tk)− ỹ(tk). Then we have

|R̂(y(t1))| ≤ α

12
max

t0≤t≤t1
|F ′′(t)|∆t3(4.1)

and

|R̂(y(tk))| ≤ α

12
max

t0≤t≤t1
|F ′′(t)|∆t3

+
α

3
max

t0≤t≤tk
|F ′′′(t)|(tk − t1)∆t3

(4.2)
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Proof. According to [7, Theorem 2.1.4.1]

F (t)− γ1,jF (t) =
F
′′
(ζj)

2
(t− tj−1)(t− tj),

t ∈ [tj−1, tj ], ζj ∈ (tj−1, tj), 1 ≤ j ≤ k.
(4.3)

and for t ∈ [tj−1, tj ]

F (t)− γ2,jF (t) =
F
′′′

(ηj)

6
(t− tj−2)(t− tj−1)(t− tj),(4.4)

where ηj ∈ (tj−2, tj), 2 ≤ j ≤ k.
From (4.3), we have

R̂(y(t1)) = α

∫ t1

t0

(F (x)− γ1,1F (x))dx

= α

∫ t1

t0

F
′′
(ζ1)

2
(x− t0)(x− t1)dx

=
α

2
F
′′
(η1)

∫ t1

t0

(x− t0)(x− t1)dx

=
−α
12

F
′′
(η1)∆t3

where ζ1 ∈ (t0, t1). Hence, (4.1) holds.
For k ≥ 2, from (3.2), we get

R̂(y(tk)) = α

(∫ t1

t0

[F (x)− γ1,1F (x)]dx

+

k∑
j=2

∫ tj

tj−1

[F (x)− γ2,jF (x)]dx

)(4.5)

From (4.3), it follows

∣∣∣∣ ∫ t1

t0

[F (x)− γ1,1F (x)]dx

∣∣∣∣ =

∣∣∣∣ ∫ t1

t0

F ′′(ζ1)

2
(x− t0)(x− t1)dx

∣∣∣∣
=

∣∣∣∣F ′′(η1)

2

∫ t1

t0

(x− t0)(t1 − x)dx

∣∣∣∣
≤ 1

12
|F ′′(η1)|∆t3,

(4.6)
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where ζ1 ∈ (t0, t1). From (4.4), we know∣∣∣∣ k−1∑
j=2

∫ tj

tj−1

[F (x)−Π2,jF (x)]dx

∣∣∣∣ =

∣∣∣∣ k−1∑
j=2

∫ tj

tj−1

F ′′′(ηj)

6
(x− tj−2)(x− tj−1)(x− tj)dx

∣∣∣∣
=

1

6

∣∣∣∣ k−1∑
j=2

F
′′′

(ϑj)

∫ tj

tj−1

(x− tj−2)(x− tj−1)(x− tj)dx
∣∣∣∣

=
1

6
|F ′′′(ϑ)|

k−1∑
j=2

∫ tj

tj−1

(x− tj−2)(x− tj−1)(tj − x)dx

≤ 1

3
|F ′′′(ϑ)|∆t3

k−1∑
j=2

∫ tj

tj−1

dx

≤ 1

3
|F ′′′(ϑ)|∆t3

k−1∑
j=2

(tj − tj−1)

≤ 1

3
|F ′′′(ϑ)|(tk−1 − t1)∆t3

then ∣∣∣∣ k−1∑
j=2

∫ tj

tj−1

[F (x)−Π2,jF (x)]dx

∣∣∣∣ ≤ 1

3
|F ′′′(ϑ)|(tk−1 − t1)∆t3(4.7)

where ϑj ∈ (tj−2, tj), 2 ≤ j ≤ k − 1, ϑ ∈ (t0, tk−1). In addition, For j = k∫ tk

tk−1

[F (x)− γ2,kF (x)]dx =

∫ tk

tk−1

F ′′′(ηk)

6
(x− tk−2)(x− tk−1)(x− tk)dx

=
−1

6
F ′′′(ϑk)

∫ tk

tk−1

(x− tk−2)(x− tk−1)(tk − x)dx

=
−1

3
F ′′′(ϑk)(tk − tk−1)∆t3,

(4.8)

where ϑk ∈ (tk−2, tk). The substitution of (4.6), (4.7) and (4.8) into (4.5) will lead
to (4.2). The proof ends.

5. Linear stability analysis

To study linear stability of new method, consider the linear test problem

CF
0 Dα

t y(t) |t=tk = λy(t), y(t0) = y0, 0 < α < 1.(5.1)

Theorem 5.1. [7] The steady-state y = 0 of (5.1) is stable if and only if

λ ∈ {ν ∈ C : |arg(ν)| > α
π

2
}.
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We consider test problem (5.1), to investigate the stability region of the presented
numerical method. The new method gives the following iteration formula for solving
the test problem:

yk = y0 + ((α− 1) +
5

12
αh)F0 + (

5

12
αh− (α− 1))Fk

+

[
13

12
F1 +

k−2∑
j=2

Fj +
13

12
Fk−1

]
αh

= y0 + ((α− 1) +
5

12
αh)λy0 + (

5

12
αh− (α− 1))λyk

+

[
13

12
λy1 +

k−2∑
j=2

λyj +
13

12
λyk−1

]
αh.

(5.2)

Suppose that z = λh, then we have

z =
(1 + (α− 1)λ)(yk − y0)

α

[
5
12 (y0 + yk) + 13

12 (y1 + yk−1) +
∑k−2
j=2 yj

] .
(5.3)

Let yj = ξj , then by assumming ξ = eiθ with 0 ≤ θ ≤ 2π we get the stability region

S = {z : z =
(1 + (α− 1)λ)(ξk − ξ0)

α[ 5
12 (ξ0 + ξk) + 13

12 (ξ1 + ξk−1) +
∑k−2
j=2 ξ

j ]
}.(5.4)

6. Numerical results and discussion

Now, with an example, let’s examine the accuracy of the obtained formulas. Take
a positive integer N. Let T0 = 1, ∆t = T0/N = 1/N.

Example 6.1. y(t) = exp(t)

CF
0 Dα

t y(t) = exp(t) − exp( α
α−1

)t

Taking different temporal stepsizes ∆t = 1/10, 1/20, 1/40, 1/80, 1/160, 1/320, 1/640,
1/1/1280, we compute the example by the formula (3.5), respectively.
Table 1 lists the computational results with different parameters α = 0.9, 0.5, 0.1. From
the results presented in Table 1, the accuracy of the approximate solution increases by
increasing the number of nodes points tk.

Example 6.2. y(t) = sin(t)

CF
0 Dα

t y(t) =
−α exp( α

α−1
)t+αcos(t)+(1−α)sin(t)
1−2α+2α2

Example 6.3. y(t) = t exp(t)

CF
0 Dα

t y(t) = exp( α
α−1

)t[−α+ (α+ t) exp( 1
α−1

)t]
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Example 6.4. y(t) = sin(t)cos(t)

CF
0 Dα

t y(t) =
−α exp( α

α−1
)t+αcos(2t)−2(α−1)sin(2t)

4−8α+5α2

The absolute error of [18] and presented scheme are shown in Tables 2–4 and they are
compared for different values of h and α for t = 1. From Tables 2–4, it can be seen
that the errors of the presented scheme are improved significantly compared with the
literature. It is noteworthy that error of the presented scheme is always smaller than the
error of literature in all given cases. So the new formula is more accurate. The codes are
written in Matlab software.

7. Conclusion

In this paper, we have discussed a new numerical method for solving fractional dif-
ferential equations in the sense of Caputo- Fabrizio derivative. The integral equation
of the new method is solved using the quadratic interpolation approximation using
three points (tj−2, y(tj−2)), (tj−1, y(tj−1)) and (tj , y(tj)) for the integrand F (t) on
each interval [tj−1, tj ](j ≥ 0), while the linear interpolation approximation is ap-
plied on the first interval [t0, t1]. We demonstrate the efficiency and accuracy of the
proposed method by applying it to four typical examples. The stability region of
the new numerical method of fractional order 0 < α < 1 has been addressed. More-
over, because of its simplicity, our method applies to a wide class of initial-boundary
value problems occurring in applied sciences.
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Table 1: Absolute errors with different temporal stepsizes for Example 6.1.

α ∆t EN (3.5)
0.9 1/10 1.3719e− 04

1/20 1.7285e− 05
1/40 2.1696e− 06
1/80 2.7176e− 07
1/160 3.4006e− 08
1/320 4.2530e− 09
1/640 5.3176e− 10
1/1280 6.6479e− 11

0.5 1/10 7.6216e− 05
1/20 9.6030e− 06
1/40 1.2053e− 06
1/80 1.5098e− 07
1/160 1.8892e− 08
1/320 2.3628e− 09
1/640 2.9543e− 10
1/1280 3.6933e− 11

0.1 1/10 1.5243e− 05
1/20 1.9206e− 06
1/40 2.4106e− 07
1/80 3.0196e− 08
1/160 3.7784e− 09
1/320 4.7255e− 10
1/640 5.9085e− 11
1/1280 7.3861e− 12

Table 2: Absolute errors of the present scheme (3.5) and the numerical method of
[18] for Example 6.2.

α = 0.25 α = 0.5 α = 0.75
h Our scheme (3.5) E[18] Our scheme (3.5) E[18] Our scheme (3.5) E[18]

10−2 8.7828e− 09 4.1345e− 03 1.7566e− 08 7.4921e− 04 2.6348e− 08 6.0877e− 03
10−3 8.7672e− 12 4.0793e− 04 1.7534e− 11 6.7530e− 05 2.6302e− 11 6.1385e− 04

Table 3: Absolute errors of the present scheme (3.5) and the numerical method of
[18] for Example 6.3.

α = 0.25 α = 0.5 α = 0.75
h Our scheme (3.5) E[18] Our scheme (3.5) E[18] Our scheme (3.5) E[18]

10−2 1.0548e− 07 6.1334e− 02 2.1096e− 07 6.9383e− 02 3.1644e− 07 7.5564e− 0
10−3 1.0575e− 10 6.1716e− 03 2.1150e− 10 6.9755e− 03 3.1725e− 10 7.5842e− 03
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Table 4: Absolute errors of the present scheme (3.5) and the numerical method of
[18] for Example 6.4.

α = 0.25 α = 0.5 α = 0.75
h Our scheme (3.5) E[18] Our scheme (3.5) E[18] Our scheme (3.5) E[18]

10−2 1.9159e− 08 7.0012e− 03 3.8319e− 08 1.2357e− 02 5.7478e− 08 2.0529e− 02
10−3 1.8965e− 11 7.0960e− 04 3.7931e− 11 1.2451e− 03 5.6896e− 11 2.0530e− 03
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Fig. 1: The absolute errors with (α = 0.25 by the scheme (a) and α = 0.75 by the
scheme (b)) for different N for Example 6.3.
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Fig. 2: The absolute errors for different α and N = 1000 for Example 6.4.
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Fig. 3: Numerical and Exact solution with (α = 0.1, N = 50 by the scheme (a)
and α = 0.9, N = 90 by the scheme (b)) for Example 6.4.
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Fig. 4: Stability regions of the new method CF with α = 0.1, 0.5, 0.7, 0.9, N = 160.
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