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Abstract. In this paper, we introduce the concepts of Z and Z*—convergence of se-
quences in gradual normed linear spaces. We study some basic properties and implica-
tion relations of the newly defined convergence concepts. Also, we introduce the notions
of Z and Z* —Cauchy sequences in the gradual normed linear space and investigate the
relations between them.
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1. Introduction

The idea of fuzzy sets [20] was first introduced by Zadeh in the year 1965 which
was an extension of the classical set-theoretical concept. Nowadays, it has wide
applicability in different branches of science and engineering. The term “fuzzy
number” plays a crucial role in the study of fuzzy set theory. Fuzzy numbers were
basically the generalization of intervals, not numbers. Even fuzzy numbers do not
obey a few algebraic properties of the classical numbers. So the term “fuzzy num-
ber” is debatable to many authors due to its different behavior. The term “fuzzy
intervals” is often used by many authors instead of fuzzy numbers. To overcome the
confusion among the researchers, in 2008, Fortin et.al. [8] introduced the notion
of gradual real numbers as elements of fuzzy intervals. Gradual real numbers are
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mainly known by their respective assignment function which is defined in the inter-
val (0,1]. So in some sense, every real number can be viewed as a gradual number
with a constant assignment function. The gradual real numbers also obey all the
algebraic properties of the classical real numbers and have uses in computation and
optimization problems.

In 2011, Sadeqi and Azari [15] first introduced the concept of gradual normed
linear space. They studied various properties of the space from both the algebraic
and topological point of view. Further progress in this direction has been occurred
due to Ettefagh, Azari, and Etemad (see [6],[7]) and many others. For extensive
study on gradual real numbers one may refer to ([1],[5][12],[18],[21],[22]).

On the other hand in 2001, the idea of ideal convergence was first introduced
by Kostyrko et al. [11] mainly as an extension of statistical convergence. They also
showed that ideal convergence was also a generalized form of some other known
convergence concepts. Later on, several investigations in this direction have been
occurred due to Debnath and Rakshit [2], Demirci [3], Gogola et al. [9], Mursaleen
and Mohiuddine [13], Savas and Das[17] and many others. For an extensive view of
this article, we refer to [4, 10, 14, 16, 19].

Research on the convergence of sequences in gradual normed linear spaces has
not yet gained much ground and it is still in its infant stage. The research carried
out so far shows a strong analogy in the behavior of convergence of sequences in
gradual normed linear spaces (for details one may refer to [6], [7],[15]).

Recently, the convergence of sequences in gradual normed linear spaces was
introduced by Ettefagh et. al. [7]. Also, they have investigated some properties
from the topological point of view [6]. Therefore, the study of ideal convergence of
sequences in gradual normed linear spaces is very natural.

2. Definitions and Preliminaries

Definition 2.1. [8] A gradual real number 7 is defined by an assignment function
Ay :(0,1] — R. The set of all gradual real numbers is denoted by G(R). A gradual
number is said to be non-negative if for every £ € (0,1], Az(§) > 0. The set of all
non-negative gradual real numbers is denoted by G*(R).

In [8], the gradual operations between the elements of G(R) was defined as follows:

Definition 2.2. Let * be any operation in R and suppose 71,72 € G(R) with
assignment functions Az, and Az, respectively. Then 7 %72 € G(R) is defined with
the assignment function Az .7, given by Az ., (§) = Ar (&) * Af,(£), VE € (0,1].
Then the gradual addition 7 + 75 and the gradual scalar multiplication ¢7(¢c € R)
are defined by

A7:1+7:2 (g) = Aﬁ (5) + Afz (5) and Acf (6) = CAf (5)7 V§ € (O’ 1]
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For any real number p € R, the constant gradual real number p is defined by the
constant assignment function A;(§) = p for any £ € (0,1]. In particular, 0 and 1
are the constant gradual numbers defined by A5(¢) = 0 and A;(€) = 1 respectively.
One can easily verify that G(R) with the gradual addition and multiplication forms
a real vector space [8].

Definition 2.3. [15] Let X be a real vector space. The function || - ||g : X —
G*(R) is said to be a gradual norm on X, if for every & € (0,1], following three
conditions are true for any z,y € X

(G1) Ajja)je (&) = Ap(&) iff = 0;

(G2) AHAmHG(ﬁ) = |)‘|A|\z||c(£) for any A € R;

(G3) Azl (©) < Ajpaiiq (€) + Ayl (€)-

The pair (X, || - ||¢) is called a gradual normed linear space (GNLS).

Example 2.1. [15] Let X = R" and for z = (21,22, ...,zn) € R", £ € (0,1], define || - ||
by Ajjz)ie(€) = €37, |zi|. Then || - ||¢ is a gradual norm on R™ and (R, - ||¢) is a
GNLS.

Definition 2.4. [15] Let () be a sequence in the GNLS (X, || - ||¢). Then ()
is said to be gradual convergent to x € X, if for every ¢ € (0,1] and £ > 0, there
exists N(= N.(¢)) € N such that A, _5(§) <&, Vn > N.

Definition 2.5. [15] Let (z)) be a sequence in the GNLS (X, || - ||¢). Then (x)
is said to be gradual Cauchy, if for every £ € (0,1] and € > 0, there exists N(=
N:(€)) € N such that Ajjz, s (§) <&, Vk,j = N.

Theorem 2.1. ([15], Theorem 8.6) Let (X,||-||q) be a GNLS, then every gradual
convergent sequence in X is also a gradual Cauchy sequence.

Definition 2.6. [11] Let X is a non-empty set. A family of subsets Z C P(X) is
called an ideal on X if and only if

(i) 0 eT;
(ii) for each A, B € 7 implies AU B € TZ;
(iii) for each A € Z and B C A implies B € T.

Some standard examples of ideal are given below:

(i) The set Zy of all finite subsets of N is an admissible ideal in N. Here N denotes
the set of all natural numbers.

(ii) The set Z; of all subsets of natural numbers having natural density 0 is an
admissible ideal in N.

(iii) The set Z. = {ACN: ) _,a~ ' < oo} is an admissible ideal in N.

(iv) Suppose N = |J D, be a decomposition of N (for i # j, D; N D; = ). Then
=1

the set Z of all subsets of N which intersects finitely many D,’s forms an ideal in N.

More important examples can be found in [9] and [10].
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Definition 2.7. [11] Let X be a non-empty set. A family of subsets F C P(X)
is called a filter on X if and only if

(i) 0 ¢F;

(ii) for each A, B € F implies AN B € F;

(iii) for each A € F and B D A implies B € F.

An ideal 7 is called non-trivial if Z # @ and X ¢ Z. The filter F = F(Z) =
{X — A: AcT}is called the filter associated with the ideal Z. A non-trivial ideal
Z C P(X) is called an admissible ideal in X if and only if Z D {{z}: z € X}.

Definition 2.8. [11] Let Z C P(N) be a non-trivial ideal on N. A real se-
quence (z) is said to be Z-convergent to ! if for each € > 0, the set C(g) =
{k € N:|z —1|> e} belongs to Z. [ is called the Z-limit of the sequence () and
is written as Z-limg_ooxr = L.

Definition 2.9. [11] Let Z be an admissible ideal in N. A sequence z = (zy) is
said to be Z* —convergent to [, if there exists a set M = {m; < mg < ... <my < ...}
in the associated filter F(Z) such that 1611111(14 TE =1

€

Definition 2.10. [14] A sequence (zj) of real numbers is said to be Z—Cauchy, if
for every € > 0, there exists a N € N such that {k e N: |z —an| > e} € T.

Definition 2.11. [14] A sequence (z)) of real numbers is said to be Z*—Cauchy,
if there exists aset M = {m; <ma < .. <m; < ..} CN, M € F(Z) such that the

subsequence (z,,, ) is a Cauchy sequence i.e. lim |2,,, =, |= 0.
1,]—0Q

Definition 2.12. [11] An admissible ideal Z is said to satisfy the condition AP,
if for every countable family of mutually disjoint sets {C), }nen from Z, there exists
a countable family of sets { By, },en such that the symmetric difference C;AB; is

finite for every j € Nand |J B, € T.
=1

Jj=

Throughout the article Z will denote the non-trivial admissible ideal of N.

3. Main Results

Definition 3.1. Let () be a sequence in the GNLS (X,|| - ||¢). Then (zy) is
said to be gradually Z—convergent to x € X if for every £ € (0,1] and € > 0, the

. . Z—||-
set C(§,e) ={k € N: A}y, 4 (§) > €} € Z. Symbolically we write, zy, [l
Example 3.1. Let X = R™ and || - ||¢ be the norm defined in Example 2.1. Consider

the ideal Z consisting of all subsets of N which intersects finitely many D,’s where D, =
{2P71(2s — 1) : s € N},p € N is the decomposition of N into disjoint subsets i.e N =
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U Dp and D; N D; = @ for i # j. Consider the sequence (zj) in R™ defined by z, =
p=1

(0,0,...,0, ;), if k € Dp. Then zy, 271116, g where 0 denotes the vector (0,0,...,0) € R™.

Justification. It is obvious that A, o4 (§) = %65 for k € D,. Let € > 0 be

given. Then by Archimedean property, there exists m € N such that %65 < € and
consequently, the following inclusion is true,

(3.1) {keN: Al 0)5(6) =} Sk €N: Ay o6 (6) > —e*}

1
m

and as Az, —o||s(§) = %ef for k € Dy, we have

s

(3.2) {keN: A, 006 > —} = | D, e T.

1
m

p=1

—lllle

From (3.1) and (3.2), we obtain {k € N : A)|;, _o||5(§) > €} € Z. Hence x, Zolle,
0.

Theorem 3.1. Let (X, ||-||g) be a GNLS. If a sequence (x1) is gradual convergent
to x € X, then (xy) is gradually T—convergent to x € X.

Proof. Proof follows directly from the fact that Z, CZ. O

But the converse of Theorem 3.1 is not true. Example 3.2 illustrates the fact.

Example 3.2. Let X = R™ and || - ||¢ be the norm defined in Example 2.1. Consider
the sequence (zx) in R™ defined as

o (0,0,..,0,n) ifk=p*peN
b (0,0,....0,0) otherwise.

Let 0 denotes the vector (0,0, ....0,0) € R™. Then for any € > 0 and ¢ € (0,1], {k € N :
Ajjz—o0l1c (&) > €} €{1,4,9,..} € Z4. Hence zx Zazlllle, g i r.

Theorem 3.2. Let (x1) be any sequence in the GNLS (X, ||-||c) such that x, Z-lle,

x in X. Then x is uniquely determined.

Proof. If possible suppose zy, ﬂ) x and x L y for some = # y in X. Let

€ > 0 be arbitrary. Then, for any € > 0 and £ € (0, 1], we have, By(§,¢), B2(§,¢) €
F(Z) where Bi(§,e) = {k € N : Az, _2)1c(§) < e} and By({,e) = {k € N :
Aljzp—yllc(§) < e}, Clearly Bi(§,¢) N Bz(§,e) € F(Z) and is non-empty. Choose
m € Bi(§,e) N Ba(§,¢), then Ay, 5§ < € and Ajj5,, —yo(§) < €. Hence
A||a: ylle (€) < Ame*IHG(é-) + Ajjz,—yllc(§) < €+ = 2. Since ¢ is arbitrary, so
(&) = Ap(¢), which givesz =y. O

Allz—yllo
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Theorem 3.3. Let (vx) and (yi) be two sequences in the GNLS (X, || - ||g¢) such

z—||- T—||
that xy, ﬂ) x and yi LH% y. Then

(i) x, + Y —)I_H'”G x4y and (i) cxy —>I_H'HG cx.

I—||- |-
Proof. (i) Suppose x, ZIollle, & and Yk Zltlle, y. Then, for given ¢ > 0, we

have, C1(§,¢),C2(§,e) € T where C1(§,e) = {k € N : Az, —4(§) > 5} and
Co(&,e) = {k € N: Ajy, —y11(§) = 5}. Now as the inclusion (N\ C1(&,¢)) N (N'\
Ca(&,6)) CH{k € N Ay 4y —2—yllc (§) < €} holds, so we must have

{k eN: A||wk+yk—a:—y|\c'(§) > 5} - Cl(&vs) U 02(575) € I;

I-|I'lle
and consequently, zp + yp ———— x + ¥.

(ii) If ¢ = 0, then there is nothing to prove. So let us assume ¢ # 0. Then since
T 2-lills, x, we have for given ¢ > 0, C1(¢,e) € Z where C1(¢,¢) = {k € N :

Aljzp—a||c(§) = ‘%‘} Now since Ajjczy —ca|| (§) = €| Ajjzp—a||o (§) holds for any c €
R, we must have Ca(&,e) € C1(&,¢) where Ca(§,¢) = {k € N Ajjcz, —caf| (§) > €},
which as a consequence implies C5(&,¢) € Z. This completes the proof. [

Theorem 3.4. Let (x1) be any sequence in the GNLS (X, || - ||g). If every subse-
quence of () is gradually T—convergent to x, then (xy) is also gradually T— convergent
to x.

Proof. If possible suppose (x) is not gradually Z—convergent to z. Then there
exists some € > 0 and £ € (0,1] such that C(&,¢) ¢ Z, where C(§,¢) = {k € N :
Aljzp—a|lc(§) > €}. So C(,¢) must be an infinite set. Let C'(§,¢) = {k1 < k2 <
.. < k;j < ..}. Now define a sequence (y;) as y; = xy, for j € N. Then (y;) is a
subsequence of (zj) which is not gradually Z—convergent to x, a contradiction. [J

Remark 3.1. Converse of the above theorem is not true.
Proof. Easy so omitted. One can verify it by considering Example 3.2 also. [
Theorem 3.5. Let (zx) and (yi) be two sequences in the GNLS (X, || - ||a) such

that (yx) is gradual convergent and {k € N : xp # yp} € Z. Then (xy) is gradually
I —convergent.

Proof. Suppose {k € N: x; # yr} € Z holds and yy, AHle, y. Then by definition for
every ¢ >0 and £ € (0,1], {k € N: A}y, _j 15 (§) > €} is a finite set and therefore

(3.3) {keN: Ay, —y(§) 2} € L.
Now since the inclusion

{k‘ eN: Aka,yHG(f) > E} - {]{) eN: AHykinG(f) > E} N {k‘ eN:xp # yk}
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holds, so using Equation (3.3) and the hypothesis we get,
{keN: AHlk—yHG(E) >e}el.

T
Hence zy, ﬂ> y and the proof is complete. [

Definition 3.2. Let Z be an admissible ideal in N and (z) be a sequence in the
GNLS (X, ||-|l¢)- Then (zy) is said to be gradually Z*—convergent to x € X if there
exists a set M = {m1 < mg < ... < my < ...} € F(T) such that the subsequence

|-
(Zm, ) is gradual convergent to x. Symbolically we write, x m T.

Theorem 3.6. Let T be an admissible ideal in N and (x1) be a sequence in the

GNLS (X, || ll) such that ox =1 z. Then 2, 1% a.

Proof. Let us assume that xy, m 2. Then, there exists M = {m; < ma <

< my < ..} € F(Z) such that for every e > 0 and £ € (0,1], there exists
N(= N:(§)) € N such that Ay, —;(§) <eVk > N. Since Z is admissible, we
must have C(§,e) = {k € N: Ajj5, 46 (§) > e} S (N\M)U{mi,ma,...mny} €.

I-|llle
Hence ), ——— . [

Remark 3.2. Converse of the above theorem is not true in general. Consider Exam-
ple 3.1. It was shown that zj % 0. But the same sequence is not gradually

P

Z*—convergent to 0. Beacuse for any H € 7 there exists p € N such that H C |J D; and
j=1

as a consequence D11 C N\ H. Let M denote the set N\ H, then M € F(Z) and (2, ) is

gradual convergent to (0,0, ..,0 not to 0. Hence xj, is not gradually Z*—convergent

to 0.

),

Theorem 3.7. Let Z be an admissible ideal in N which satisfies the condition AP

and (z1) be a sequence in the GNLS (X, || - ||g) such that xy Iolle, o Then

" —|l'lle
Ty ———— I.

Proof. Let us assume that zj Ioltlle, o Then, for every £ € (0,1] and n > 0,

the set C(§,n) = {k € N: A5, _4)c(§) > 1} € Z. This enables us to construct a
countable family of mutually disjoint sets {C),(£)}men in Z by considering

Cr(§) ={k e N: Ajjy )5 (§) = 1}

and

1
m—1

b= Cl6, - NCE ), form 2 2

1
Cm(é) = {k eEN: E < AHJEk—ach(S) <

Now since 7 satisfies the condition AP, so for the above countable collection {Cy, (§) }men,
there exists another countable family of subsets {B,, (&) }men of N satisfying
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B;(§) € 1.

T

(3.4) C;(§)AB;(&) is finite Vj € Nand B(§) =
1

J

Let € > 0 be arbitrary. By Archimedean property we can choose m € N such
that —1— < ¢ and hence the following inclusion holds

m—+1
1 m+1
{EeN: Az —oc(§) 2t C{EEN: Ay, 0 5(&) 2 s 1= Uci©erz
j=1

Using (3.4) we can say that there exists an integer ko € N, such that

m—+1 m—+1

U Bj(&) 0 (ko,00) = | J C3(&) N (o, 0).
j=1 j=1

m—+1
Choose k € N\B(&) € F(Z) such that k > ko. Then we must have k ¢ |J B;(&)
j=1

m+1
and hence k ¢ |J C;(§). Thus we have, Az, 4|5 (§) < #—H < €. Hence we have
j=1

*—|l-lle
Ty —— . O

Definition 3.3. Let (x}) be a sequence in the GNLS (X, ||-||¢). Then (x) is said
to be gradually Z—Cauchy if for every e > 0 and £ € (0, 1], there exists a natural
number N (= N.(&)) such that the set C(§,e) = {k € N: Ajj5, _on)c(§) > e} €T

Theorem 3.8. Let (X,|| - ||c) be a GNLS. Then every gradually T— convergent
sequence in X is gradually T— Cauchy sequence.

T—1]-
Proof. Let (z1) be a sequence in X such that x, ﬁ x. Then, for every e > 0

and £ € (0, 1],
C(€,e) €T, where C(§,e) = {k € N: Ajjp, g1 (&) > €}

Clearly, N\ C(&,¢) € F(Z) and therefore, is non-empty. Choose N(= N.(£)) €
N\ C({,¢). Then we have A|j;, —oy||o (&) <€

Let B(§,e) = {k € N: Az, —an)16(§) > 2¢}. Now we prove that the following
inclusion is true

B(&,e) C C(&,e).
For if p € B(&, ) we have
26 < Ajjz,—anllc (§) < Ajja,—alic () + Ajjo—anlic(§) < Ajjo,—alc(€) + 6,

which implies p € C(&, ). Thus we conclude that B(,e) € Z, which means (zy) is
gradually Z—Cauchy sequence. [
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Definition 3.4. Let (zx) be a sequence in the GNLS (X, || - ||¢). Then (zy) is
said to be gradually Z* —Cauchy if there exists a set M = {m; < mg < ... < my, <
..} € F(Z) such that the subsequence (z,,, ) is gradual Cauchy sequence.

Theorem 3.9. Let T be an admissible ideal in N and (x1) be a sequence in the
GNLS (X, || - lla)- If (x) is gradually T*— Cauchy then it is gradually T— Cauchy.

Proof. Suppose (xy) is gradually Z*—Cauchy. Then, there exists a set M = {m; <
mg < ... <my < ..} € F(Z) such that for every € > 0, there exists io(= i0(&,¢)) € N
such that AHzml_,xm]_HG(g) < ¢ holds for any i,5 > ip. Let N(= N:(£)) = miy+1.
Then we have for any € > 0,

0(575) = {k eN: Aka—xNHG(g) > 5} c (N\M) U {mlam%-'vmio} el
Hence (zy) is gradually Z—Cauchy. O
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