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A D-PEARSON EQUATION FOR DUNKL-CLASSICAL ORTHOGONAL
POLYNOMIALS

B. Bouras, J. Alaya, Y. Habbachi

Abstract. In this paper, we show that a monic orthogonal polynomial sequence is a
Dunkl-classical sequence if and only if it belongs to a particular family of D-semiclassical
polynomial sequence of class less or equal to two. In this case, the distributional equation
fulfilled by the linear functionals corresponding to these polynomials is given. Some well
known results in the literature are generalized.
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1. Introduction

A monic orthogonal polynomial sequence (MOPS, for shorter) {P,},>¢ is called
Dunkl-classical polynomial sequence (the associated linear functional is called
Dunkl-classical linear functional) if {T,,P,},>1 is an orthogonal polynomial se-
quence, where T, is the Dunkl operator [6] : T, = D +2uH_1, u > =%, D (resp.
H_) denotes the derivative operator D = 4 (resp. the Hahn operator given by
(Ho1 () = L),

Y. Ben Cheikh and his coworker [1] introduced the notion of Dunkl-classical
orthogonal polynomials and proved that the only symmetric Dunkl-classical or-
thogonal polynomials are the generalized Hermite polynomials and the generalized
Gegenbauer polynomials. Note that both of them are D-semiclassical squences of
class less or equal to two (see [2][4]). Later on, M. Sghaier [10] find a non-symmetric
sequence of Dunkl-classical polynomials. This sequence is also D-semiclassical,
since it is obtained by multiplying the generalized Gegenbauer linear functional
by a polynomial of first degree [5].

It is natural, then, to ask if all Dunkl-classical orthogonal polynomials are D-
semiclassical.

The aim of this paper is to answer this question. Namely, we prove the following
result:
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Theorem 1.1. Let ug be a reqular linear functional and let {P,},s0 be its corresponding
MOPS. Then uqg is a Dunkl-classical form if and only if there exist two polynomials ®
(monic) and B with degB = 1 + deqg® < 3 such that

(1.1) D((szD(x) + ZyxB(x))uo) + ((2,,12 — 1= 2)xD(x) — (2u% + 31)B()

1—4u?
sz\lf(x))uo =0,

1 K®” (0) 1 KB (0)

(1.2) w(0) + 21-42 (4u*[n] - n) + gm#([”] -n)#0,
(1.3) x®(x)ug = h-1(B(x)uo),
where
1+2u
(1.4) Y(x) = Py,
V1
3 1+2u

The structure of this paper is as follows: Section 2 is devoted to preliminary
results and notations to be used in the sequel. In Section 3, we prove the main the-
orem. In Section 4, we illustrate 1.1 by analyzing some examples of D-semiclassical
linear functionals which are Dunkl-classical.

2. Preliminaries and notations

Let P be the vector space of polynomials with coefficients in C and let #’ be its
dual. We denote by (u, f) the action of € " on f € P. In particular, we denote by
(), = (u,x"y, n 2 0, the moments of u. Let h,u, gu and Du = u’ linear functionals
defined by duality

<hﬂuff(x)> <M/ (hllf)(x)> = <1/l,f(ﬂx)>, f € P/ ae C \ {O}/
(gu, f@) = (u,g()f(x)), Du, f(x)) = =(u, f'(x)), f,g € P

For f € P and u € ', the product uf is the polynomial

(uf)(x) =<u, 7xf(x; : EﬂC) > .

The division of a linear functional by a polynomial of first degree is given by

<(x—c)‘1u,f> =, 0.f),ceC,fePuc?,

where

(Op) ) = LT

—-C
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It is easy to see that

(2.1) fDu=D(fu)— f'u, feP, uef
and
(2.2) x7Mocu) = u — (U)o, u € P’

where 6, ¢ € Cis the Dirac linear functional defined by

O f) = fO), feP

Let {P,,},,>0 be a sequence of monic polynomials with degP,, = n, n > 0 and let {1, },>0
be its dual sequence, u, € ' and defined by < u,, Py, >= 04m, n, m > 0. Let us
recall some result [7]

Lemma 2.1. For any u € P and any integer m > 1, the following statements are
equivalent
(1) < u/Pm—l >;é 0/ < u/Pn >= 0/ n Z m.

m—1
UﬁﬂAVEC,OSVS7n—1,mW1iOsmﬁﬂmh4:§:Aﬂw
v=0

The linear functional u is called regular if there exists a polynomial sequence
(PS, in short) {P,},>0 such that [4]:

(2.3) <u,PyPy >=1,0pm n, m=0, r, #0, n > 0.

The sequence {P,},5¢ is then called orthogonal with respect to u. In this case, we
have u, = r,'P,up, n > 0. According to the previous lemma, we have u = Auy,
where (1) = A # 0. In what follows all regular linear functionals u will be taken
normalized i.e, (u)y = 1.

According to Favard’s theorem, a monic orthogonal polynomial sequence {P,},>0
is characterized by the following three-term recurrence relation [4]:

Po(x) =1, Pl(x =X—- ‘30
Pyio(x) = ,Bn+1)Pn+l(x) VYn+1Pn(x), n >0,

with (,Bn/ Yn+1) €ECXC \{0},n>0.

2.4)

The first associated of {P,},>o is the MOPS {P,(ql)},,zo defined by

W@%LWW%xﬁL
(2.5) 3122 ,Bn+2)Pn+1(x) )/n+2P( )(x) n>0.

Definition 2.1. (see [4][8] ) A linear functional u is called D-semiclassical of class
s if it is regular and the following statement holds: There exist two polynomials W
of degree p > 1 and @ of degree t > 0, such that

(2.6) (Pu)’ + Wu =0,
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2.7) II@W@yHy@N+Km9NL+£®M)>Q
ceZyp

where Zg is the set of zeros of ®.

The class of u is given by s = max(p — 1, — 2). The sequence {P,},»o corresponding
to u is called D-semiclassical of class s.

When s = 0, the linear functional u (or the sequence {P,},() is said to be D-classical.

Let us introduce the Dunkl’s operator

(Tuf)x) = f/(x) + 2u(H1 f)(x), f € P,

where

(H.1f)(x) = W

We define the operator T, from #’ to #’ as follows
< Tuu, f(x) >= = <u, (T f)(x)>, feP, ucP.
In particular, this yields
(Tutt)n = =pin(U)n-1, n 2 0,
where

-

5 > 0.

(u)-1 =0, up =n+2u[n], [n] =

It is easy to see that
Tyu = Du +2uH_qu,

where
<H_u, f(x) >=— < u,(Haf)(x) > .

Now, consider a MOPS {P,,},,>0 as above and let

1

n+1

Pl(x) = o TPy, =~ % 10,

Let denote by {u,[}]},,zo, the dual sequence of {P,[}]}nzo.

Lemma 2.2. [10]
(2.8) Tqu] = —Ups1Uns1, 12 0.

3. Proof of the main theorem

For the proof, we need the following lemma:
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Lemma 3.1. The following formula holds

(3.1) xTyu = xDu—u(u+hqu), ueP.

(3.2) Tu(fu) = fTyu+ f'u+2uHf)(hou), feP, uec?,

(3.3) Tu(fu) fTuu+ (Tuf)u+2uH_1f)(hoqu—u), feP, uec®,

Proof of the lemma From the definition of the operator T, on #’, we have

<xTuu, f(x) > < xDu, f(x) > +2u < xH_qu, f(x) >

2x
= <xDu, f(x) > —u <u, f(x)+ f(-x) >

= < xDu, f(x) > —y( <u, f(x) >+ <h_qu, f(x) > )

= <xDu, f(x) > —u <u+h_u, f(x) >,

= <xDu, f(x) > -2u <u,

hence (3.1) follows.
For the proof of (3.2), let g € $. We have

<Tu(fu),g(x)> = —<u, f(x)g'(x)+ uf(X)M >

= <u (W £ + pf I

= U T ~ £ 09) - p- DT
= < fTyu+ f'u+2u(H1f)(hqu),gx) > .
Thus, we obtain (3.2). From which we derive (3.3)

O
Proof of the main theorem First of all, notice that for u = 0 we get the D-classical
orthogonal polynomial sequences, which are D-semiclassical of class zero. Hence-
forth, we will suppose that u # 0.
From the assumption we have

(3.4) Uy, = r;anuo, n>0
and 1 1 1,0
(3.5) ullt = (Pl 1w > 0.
Substitution of (3.4) and (3.5) in (2.8) gives
(3.6) Tu(Pul) = = xuPusatio, n 2 0,
where
A
(3.7) Xn = tps1——, 1 > 0.

Tn+l
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Using formula (3.3), equation (3.6) becomes

PUT ul + (T, Pl +

3.8
G8) +2#(H—1P£11])(h—1”€] - u([)ll) = —XnPus11g, n 2 0.

For n = 0, equation (3.8) becomes

1] 1+2u
(39) T'UMO = —xoP1up = — " P1uy.
For n =1, equation (3.8) becomes
A1l
(3.10) PUT ul + ) + 2uh_qull = —2;—2132140.
Substitution of (3.9) in (3.10) gives
(3.11) ubh + 2un_yullt = Kdug,
where "
1+2 r
(3.12) K= —Eppll oL p,
71 r2

(K is a constant to make ® monic).
Applying the operator h_; to (3.11), we get

(3.13) 20l + hoqulll = Ky (Qu).

Multiplying (3.13) by 2u and subtracting the result from (3.11), we get

K
(3.14) ulh = 1_—4[12(@0 — 2uh_1(Pup)).

Substitution of (3.14) in (3.9) gives

2
B Wi, = 0.

(3.15) Ty(q%lo - 2yh_1(®u0)) +

From (1.4), (3.15) and the regularity of u, we have

2
H \I/M(),Pl >

o
|

< Ty(CDuO - th_l(CDuo)) +

1—4(u2 1+2u

(—<u0,q)>+

)-

Thus, (1.5) follows.
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Now, putting n = 2 in (3.8), we obtain

PUT b + (T, Pyl +

3.16
( ) +2yH_1P£1](h_1u([)1] - u([)”) = —X2P3M0.

Taking into account (3.9) and (3.14), we get

—2uK

1_—4luz(TyP[21] —(1+ 2y)H_1Pg”)h_1(q>uo) -
1+2p, m_ K m, 2eK 11 )
—fpp - = _or,PM ¢ 2 H_ P — )P u,.
( " 117, 1—4112 uls 1—2# 15 X273 JUup

Applying the operator /i_; to the last equation and taking into account the fact that
(TuPEY () = (1 + 20 H-1 P () = 2x

and the formulas:
h_1(xv) = =xh_qv

and
h_1(h-1v) =0, veP,

we obtain (1.3), where

1—4u?/1+2
617) B =~ (PP - TN
2uK
g PP ~ 1P

Multiplying (3.14) by x and taking into account (1.3), we get

K
(3.18) xulll = 1_—4”2(xq>(x) + 2uB(x))up.

Applying the operator hi_; to the last equation and using again (1.3), we obtain

K
(3.19) xhqul! = - T4 (B(x) + 2ux®(x))up.
On the other hand, from (3.2) we have

(3.20) xTy(ulh)y = TGy — uld = 2un_qull.

Multiplying (3.20) by x and taking into account (3.18) and (3.19), we get

621 P70 = T ({000 + 2uB)) - A4y
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From (3.1) and (1.3) we get

(3.22) 2T,y = (xD((xq>(x) + 2uB(x)uo) +

K
1—4p?
(@24 = = D¥0() = 2 + B

or, equivalently,
K
[1] —
(323) szH(”o ) = m(D(X(xCD(X) + 2|UB(X))M0) +

(Qu? — 1 - 2)xD(x) — 2% + 3[,1)B(x))uo).

According to (3.9) and (1.4), from (3.23) we get (1.1).
Notice that x*®(x) + 2uxB(x) # 0. Indeed, if not then x®(x) + 2uB(x) = 0. Therefore,

(3.18) becomes xu([)” = (. This contradicts the regularity of u([)l]. Thus, 1y (or {Py}us0)

is D-semiclassical. Furthermore, by examination of the degrees of polynomials
®, W and B in (3.12), (1.4) and (3.17) respectively, we can easily see that the class of
{Pu}n=0 is less or equal to two.

Conversely, suppose that 1 is a linear functional such that (1.1)-(1.5) hold.
Using Lemma 2.2, we get (3.9). Substituting (3.9) in (1.1), we obtain (3.22). Putting

K
(324) 0= 1_74#2((131/[0 - 2[L1h_1 ((DMO))

and using (3.1) and (1.3), we obtain

XZTHU = 1_—K4yz(xTy<(xCD(x) + ZyB(x))uo) —-(1- 4y2)xCD(x)u0).
Therefore, equation (3.22) becomes
(3.25) szyu([)” = szyv.
Multiplying (3.25) by x™! and using (2.2), we get
(3.26) xTyu([)” - (xTyu([)”)Oéo =xTyo - (xTyv)Oéo.
But, on the one hand we have

(xTyu([)”)O =—(1+2p)

and, on the other hand, from (3.24) and (1.5), we have

(XT“U)O =—(1+2p)
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then, (3.26) becomes
(3.27) xTHu([)” = xT,v.

In a similar way, multiplying (3.27) by x™! and using (2.2), we get
(3.28) Tl = T0.

Hence,
Therefore, equation (3.9) becomes
(3.29) T,o+Wug =0.

Let us prove that the sequence {PI) 50 is orthogonal with respecttov. Letm <n-1.
From (3.2), we have

0, PPy = — (7,00, Pan)
Hn+1

<PmTyU + P;ﬂ) + 2[.1H_1th_12}, Pn+1>.
Hn+1

Taking into account (3.29) and the fact that {P,},>¢ is orthogonal with respect to 1,
we get

<v, me£}1> S <v, Po1 ()P, (x) + 2y(H_1Pm)(x)Pn+1(—x)>.

Un+1

Using (3.24), the orthogonality of {P,},>0 with respect to 19 and the fact that deg® <
2, we obtain

(o, Pucpll) = a_iﬁ%(um(x)mﬂ(—x)(m(—x) ~ (HAP)())

Writing Py, (x) = Og + O01x + ... + O1x™ L + x™ we can easily see that
P,(=x) = (H-1Pp)(—x) = xQ(x),

where Q is a polynomial of degree less than or equal to m — 1 (with the convention
that the degree of the zero polynomial is —c0). Then,

2ukK
<U, Pm(x)PL1]> = m<uo,x®(x)Q(X)Pn+1(—X)>.
Application of (1.3) gives
2uK
<U, Pm(X)PL1]> = m<uo, B(X)Q(_x)Pn+1(x)>.
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Since B is a polynomial of degree less or equal to three then, from the orthogonality
of {P,,},»0 with respect to 1o, we get

<v, Pm(x)P,[}]> 0.

For m = n, a second use of (3.2) gives

(3.30) <v, Pn(x)PL”> = - <PnTHv + Plv+2uH 1P,h 10, P,,+1>.

n+1

Using (3.29) and the fact that {P,},»o is orthogonal with respect to the linear func-
tional ug, we get

(3.31) (PuTu, Prca) = =W/ O,

where 7,41 is given in (2.3).
From (3.24), we obtain

K (ln(D"(O)VnH - 2IJ<“0,q)(x)P’n(_x)Pﬂ+1(_x)>)

(332) <P;U,Pn+1>:1_—4[uz 5

and

2uK ”
(ABUHAP 10, Pt )= o (10, IHAP Y0P (-0) - Ol )
Substitution of (3.31), (3.32) and (3.33) in (3.30) gives

LROO) ) o )r_+1
21—gp W =m )

<u0, D()((H-1Py)(—x) - P;(—x))Pn+1(—x)>.

(3.34) <v, Pn(x)P£,”> - (\1/'(0) +

2uK
tns1(1 —4p?)

Writing (H-1P,,)(—x) — P;,(=x) = xQ(x), where Q is a polynomial of degree nn —2 with
leading coefficient (=1)"Y([n]—n)forn >2and Q = 0 forn € {0,1}, and using (1.3),
we get

<uo, DW((H-AP)(-) - P;<—x>)Pn+1<—x>> - —%B"'(ox[n] )y, 12 0.

Therefore, (3.34) becomes

1K"(0) 5 - 1uKB”(0)
21- 42( wnl=m+ 3(1-412)

(e Papt) = (v + ] - ) L

Hn+1

On account of condition (1.2), the last equation implies that
<v, P,,(x)PL1]> # 0.

So, the sequence {PI),50 is orthogonal with respect to the linear functional v.
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4. Examples

In order to illustrate Theorem 1.1, we present three Dunkl-classical linear func-
tionals: the generalized Hermite, the generalized Gegenbauer and a non-symmetric
Dunkl-classical linear functional.

4.1. Generalized Hermite linear functional

The generalized Hermite linear functional denoted by H(u) satisfies (see [4]):

4.1) D(xH () + (22% = u + 1)) H () = 0.

The sequence of generalized Hermite polynomials {H,(f )},,20 satisfies (2.4) with
(42) B =0, Yua = gptues, n 20,

where the regularity condition is

(4.3) yi—n—%,nzo.

The weight function for generalized Hermite polynomials in the positive definite
case is given by
w(x) = |xPHe™, o0 < x < oo.
We will show that H(u) satisfies conditions (1.1) - (1.5).
Multiplying (4.1) by (1 — 2p)x and using (2.1), we get (1.1)

(4.4) Dx) = 1,

(4.5) B(x) = -—x,
(4.6) Yx) = 2x,
(4.7) K = 1+2u.

On the other hand, since H(u) is a symmetric linear functional, we have

H(w) = hoa(H(w)).

Multiplying the last equation by x, we get (1.3).
Finally, if we substitute (4.4)-(4.7) in the left hand side of (1.2), then we get
1 K9 (0) 1 KB"’(0)

‘I”(O) + E 1 _4H2(4y2[n] - 7’1) + 5(1_—%}1([1’1] - 7’1) =2+0.

Therefore, Theorem 1.1 implies that () is a Dunkl-classical linear functional. Fur-
thermore, by virtue of (3.15) and (1.3), H(u) satisfies the following T;-distributional
equation:

(4.8) Ty (H () + 2xH () = 0.
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Notice that Y. Ben Cheikh and M. Gaied [1] have proved differently that H(u) is a
Dunkl classical linear functional. But they did not give a T ,-distributional equation

for H(u).

4.2. Generalized Gegenbauer polynomials

The generalized Gegenbauer linear functional denoted by G(«, ) satisfies (see
(2]):
(4.9) D(x(x* = 1)G(a, B)) + (= 2(a + B + 2)x* + 2( + 1))G(a, B) = 0.

This linear functional is regular for
(4.10) at-np+E-na+pf#*-nnx>1

The weight function for generalized Gegenbauer polynomials in the positive defi-
nite case is given by

w(x) =[x (1 - %%, -1 <x < 1.

Putting f = u —  in (4.9, we get

(4.11) D(x(* - DG, p - %)) +(-20a+u+ %)x2 +2u +1)G(a, - %) =0.

As in the previous example, multiplying (4.11) by (1 — 2u)x and using the fact that
Gla, u— %) is symmetric, we obtain (1.1) and (1.3), where

(4.12) D) = x*-1,
(4.13) B(x) = -x(x*-1),
(4.14) W) = (Qa+2u+3)x,
3
(4.15) K - _(1+2[u)(a+y+2)‘

a+1

The condition (1.2) follows, immediately, from (4.10). Indeed:

o 1KDU©O) 5 1TKBY(O)
WO+ 37 A =)+ 35T (] - ) =
2a+2y+32 949 0.n>0
ZOCT(‘X+ + [Ll[ﬂ]+7’l):/: ,n 20U

Hence, Theorem 1.1 follows that G(«a, 1 — %) is a Dunkl-classical linear functional.
Furthermore, by virtue of (3.15), the linear functional G(a, i — %) satisfies

(4.16) TP((xz -1)G(a, u- %)) - 2(a + D)xG(a, it — %) =0.
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4.3. An example of non-symmetric Dunkl-classical linear functional

In this subsection, we will construct a non-symmetric Dunkl-classical linear
functional by using the following result stated in [9]:
Let L be a regular linear functional and let c and A be two complex numbers. The
linear functional u defined by

(4.17) u=Ax—-c)"'L+ 6.
is regular, for every complex A such that the following condition:
(4.18) A#0, Pu(c) + APV () #0, n> 1,

where {P,},>0 is the MOPS corresponding to L. Moreover, if L is a D-semiclassical
linear functional satisfying (2.6, then u satisfies

(4.19) (Du) +Wu =0,
where, _ _
(4.20) O(x) = (x — 0)D(x), V(x) = (x — )W (x).

Let us apply this result and take

-2«

= darouer 47

L=6lau-3) c=1,A

We will show that the obtained linear functional u satisfies the conditions (1.1)-(1.5).
But, first we will study the regularity of u.

Let {S,}n=0 be the MOPS associated with G(a, u — %). It satisfies the recurrence
relation (2.4) with [2]:

n+1+06,)(n+14+2a+0,)
An+a+pu+Hm+a+p+3)

(421)  Bu=0, Y1 = On = u(1+(-1)"),

n>1,
where the regularity conditions are
(4.22) a+n#0,2u+2n-1+#0,20+2u+2n-1+#0,n>1

Putting

(1 +2u)(3 + 2)...(2n — 1 + 24)
gl
(423) Az 2 (1+2u+2a)3+2u+2a)...4n — 1+ 2u + 2a)’
. (1 +2u)(3 + 20)...(2n + 1 + 24 N
T A 2u+20)3+2u+2a). (An+1+2u+2a)

Azns1
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From the regularity condition (4.22), we have

(4.24) Ay # 0.

On the other hand, simple computations show that (A,),>1 satisfies the recurrence:
(4.25) Aps2 = Ayt = VA, n 2 1

Let us prove, by recurrence on n, that

_ 2 g
(4.26) Ay =8,(1) — a2l S, (1), n>1.
Using (2.4), (2.5), (4.21) and (4.23), we get
20 1) _ _ 20
Sl =52 +2y+150 M =1 2a+2u+1
B 1+2u
1 +2u++2a
= A
Hence, (4.26) is true for n = 1.
Using (2.4), (2.5), (4.21) and (4.23), we obtain
2 smgy = _ _2a mg
20~ 5D = S-S - 5SS
B 1+2p 2a
T 3+42u+2a 2a+2u+1
_ ol 1+2u
Ra+2u+1)2a+2u+3)

= Az.

Hence, (4.26) is true for n = 2.
Suppose that (4.26) is true until 7 + 1, n > 1 and let us prove it for n + 2. From (4.25)
and the recurrence hypothesis, we have

Appr = /\n+1_)/n+1An

(Sn+1( ) - =

20+ 2u+1
(sn+1(1) - )/n+15n(1)) _

1 2 1
S0) =y (Su(1) - TEEEa T )
20

20 +2u+1

(ngl)(l) - )/n+15511_)1(1)), n>1.

Taking into account the recurrences (2.4) and (2.5), we get

20 (1)

Aps2 = Spaa(1) = m 4l

1), n>1.
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So, (4.26) is true for every nonnegative integer n. Then, according to (4.24), condi-
tion (4.18) is fulfilled. Therefore, u is regular.
According to (4.11), (4.19) and (4.20), u satisfies the following D-Pearson equation:

427)  D(x(* - 1)(x = Du)+ (x = 1) —2a +u+ g)x2 +2u+1)u=0.

Let us see when (4.27) can be simplified by x — 1. From (4.17), we have

1+2u

()2 = (u) = m-

Then,
<1, G%(x(x2 -Dx-1)+ 01((x = 1)(-2(a+ p + %)x2 +2u+1))>=0.

Therefore, we can divide both hand sides of (4.27) by (x — 1) taking into account
(2.7) does not hold. Thus, we obtain

(4.28) D(x(x? = D)+ (= 2a+ p+ 1 + x+2u + 1)u = 0,
Multiplication of the last equation by (1 + 2u)x gives (1.1), where

1+2u
(4.29) Dx) = (x-1)(x+

o)
2u+1
(4.30) B(x) = x(x—-1)(x—-——),
1-2u
1+2u
(4.31) W) = (x = o),
71
2u-1
(4.32) K = Bo,
V1
433 3 1+2u
(4.33) Po = 1+2u+2a
On the other hand, from (4.17), we have
—2a 1
(434) (x - 1)M = mg(a,}l - E)

1
2

(4.35) (x = Du = hog ((x = 1)u).

Taking into account the fact that G(a, p — 5) is symmetric, we get

o 1+2u .
Multiplying (4.35) by x(x + ) ), we obtain (1.3).

According to (4.29)-(4.33), (1.2) is equivalent to the following condition:
2u+2a0+1#2u[n]-n, n>0.
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Table 4.1: Coefficients of the T,-distributional equation (4.36)

Linear functional Q Q Restriction
Generalized Hermite 1 2x p#-n—-1, n>0.
H(p)
Generalized Gegenbauer 2 —1 —2(a+ 1)x a#-n, a+,u—% #-n,
Gl,u-13) u-%t#-nn>1
Modified Generalized
Gegenbauer 2 -1 —~Qa+2u+1)x |a#-nat+tu—3+-n,
u:)\(x—l)‘lg(aé,y—%ﬁél, +1+2u u—1#-n,n>1a+0.
—2a
2a+2u+1

This last condition is an immediate consequence of (4.22). So, according to Theorem
1.1, u is a Dunkl-classical linear functional. Furthermore, by virtue of (3.15) and
(4.35), the linear functional u satisfies

Tu(( = 1u) + (= Qar+2u + D+ 1+ 2p)u = 0.

Notice that, for all Dunkl-classical linear functionals discussed before, the T,-
distributional equation (3.15) is reduced to another one of type

(4.36) T,(Qu) + pu = 0.

where QO and ¢ are two polynomials such that degQ < 2, degp < 1. To conclude
this paper, we will present a table where we give polynomials (3 and ¢ in (4.36) for
each example of D-semiclassical linear functional previously studied.
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