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A D-PEARSON EQUATION FOR DUNKL-CLASSICALORTHOGONAL
POLYNOMIALS

B. Bouras, J. Alaya, Y. Habbachi

Abstract. In this paper, we show that a monic orthogonal polynomial sequence is a
Dunkl-classical sequence if and only if it belongs to a particular family of D-semiclassical
polynomial sequence of class less or equal to two. In this case, the distributional equation
fulfilled by the linear functionals corresponding to these polynomials is given. Somewell
known results in the literature are generalized.
Keywords: Orthogonal polynomials, Dunkl-classical polynomials, Regular linear func-
tionals, D-semiclassical polynomials.

1. Introduction

A monic orthogonal polynomial sequence (MOPS, for shorter) {Pn}n≥0 is called
Dunkl-classical polynomial sequence (the associated linear functional is called
Dunkl-classical linear functional) if {TμPn}n≥1 is an orthogonal polynomial se-
quence, where Tμ is the Dunkl operator [6] : Tμ = D + 2μH−1, μ > − 1

2 , D (resp.
H−1) denotes the derivative operator D = d

dx (resp. the Hahn operator given by

(H−1 f )(x) =
f (x)− f (−x)

2x ).
Y. Ben Cheikh and his coworker [1] introduced the notion of Dunkl-classical

orthogonal polynomials and proved that the only symmetric Dunkl-classical or-
thogonalpolynomials are thegeneralizedHermitepolynomials and thegeneralized
Gegenbauer polynomials. Note that both of them are D-semiclassical squences of
class less or equal to two (see [2][4]). Later on, M. Sghaier [10] find a non-symmetric
sequence of Dunkl-classical polynomials. This sequence is also D-semiclassical,
since it is obtained by multiplying the generalized Gegenbauer linear functional
by a polynomial of first degree [5].
It is natural, then, to ask if all Dunkl-classical orthogonal polynomials are D-
semiclassical.

The aimof this paper is to answer this question. Namely, weprove the following
result:
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Theorem 1.1. Let u0 be a regular linear functional and let {Pn}n≥0 be its corresponding
MOPS. Then u0 is a Dunkl-classical form if and only if there exist two polynomials Φ
(monic) and B with de�B = 1 + de�Φ ≤ 3 such that

D
((
x2Φ(x) + 2μxB(x)

)
u0
)
+
(
(2μ2 − μ − 2)xΦ(x)− (2μ2 + 3μ)B(x)(1.1)

+
1 − 4μ2

K
x2Ψ(x)

)
u0 = 0,

Ψ′(0) +
1
2
KΦ′′(0)
1 − 4μ2

(4μ2[n] − n) +
1
3
KB′′′(0)
(1 − 4μ2)

μ([n] − n) � 0,(1.2)

xΦ(x)u0 = h−1(B(x)u0),(1.3)

where

Ψ(x) =
1 + 2μ
γ1

P1,(1.4)

K =
1 + 2μ
< u0,Φ >

.(1.5)

The structure of this paper is as follows: Section 2 is devoted to preliminary
results and notations to be used in the sequel. In Section 3, we prove the main the-
orem. In Section 4, we illustrate 1.1 by analyzing some examples of D-semiclassical
linear functionals which are Dunkl-classical.

2. Preliminaries and notations

Let P be the vector space of polynomials with coefficients in C and let P′ be its
dual. We denote by

〈
u, f
〉
the action of u ∈ P′ on f ∈ P. In particular, we denote by

(u)n = 〈u, xn〉 , n ≥ 0, the moments of u. Let hau, �u and Du = u′ linear functionals
defined by duality

〈
hau, f (x)

〉
=
〈
u, (ha f )(x)

〉
=
〈
u, f (ax)

〉
, f ∈ P, a ∈ C \ {0},〈

�u, f (x)
〉
=
〈
u, �(x) f (x)

〉
,
〈
Du, f (x)

〉
= − 〈u, f ′(x)〉 , f , � ∈ P.

For f ∈ P and u ∈ P′, the product u f is the polynomial

(u f )(x) =< u,
x f (x) − ζ f (ζ)

x − ζ > .

The division of a linear functional by a polynomial of first degree is given by〈
(x − c)−1u, f

〉
=
〈
u, θc f

〉
, c ∈ C, f ∈ P, u ∈ P′,

where

(θc f )(x) =
f (x) − f (c)

x − c
.
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It is easy to see that
fDu = D( f u) − f ′u, f ∈ P, u ∈ P′(2.1)

and
x−1(xu) = u − (u)0δ0, u ∈ P′(2.2)

where δc, c ∈ C is the Dirac linear functional defined by〈
δc, f
〉
= f (c), f ∈ P.

Let {Pn}n≥0 be a sequence ofmonic polynomials with de�Pn = n, n ≥ 0 and let {un}n≥0
be its dual sequence, un ∈ P′ and defined by < un,Pm >= δn,m, n, m ≥ 0. Let us
recall some result [7]

Lemma 2.1. For any u ∈ P′ and any integer m ≥ 1, the following statements are
equivalent
(i) < u,Pm−1 >� 0, < u,Pn >= 0, n ≥ m.

(ii) ∃λν ∈ C, 0 ≤ ν ≤ m − 1, λm−1 � 0 such that u =
m−1∑
ν=0

λνuν.

The linear functional u is called regular if there exists a polynomial sequence
(PS, in short) {Pn}n≥0 such that [4]:

< u,PmPn >= rnδn,m, n, m ≥ 0, rn � 0, n ≥ 0.(2.3)

The sequence {Pn}n≥0 is then called orthogonal with respect to u. In this case, we
have un = r−1n Pnu0, n ≥ 0. According to the previous lemma, we have u = λu0,
where (u)0 = λ � 0. In what follows all regular linear functionals u will be taken
normalized i.e, (u)0 = 1.
According to Favard’s theorem, a monic orthogonal polynomial sequence {Pn}n≥0
is characterized by the following three-term recurrence relation [4]:

P0(x) = 1, P1(x) = x − β0
Pn+2(x) = (x − βn+1)Pn+1(x) − γn+1Pn(x), n ≥ 0,(2.4)

with (βn, γn+1) ∈ C × C \ {0} , n ≥ 0.

The first associated of {Pn}n≥0 is the MOPS {P(1)
n }n≥0 defined by

P(1)
0 (x) = 1,P(1)

1 (x) = x − β1,
P(1)
n+2(x) = (x − βn+2)P(1)

n+1(x) − γn+2P(1)
n (x), n ≥ 0.

(2.5)

Definition 2.1. (see [4][8] ) A linear functional u is called D-semiclassical of class
s if it is regular and the following statement holds: There exist two polynomials Ψ
of degree p ≥ 1 and Φ of degree t ≥ 0, such that

(Φu)′ +Ψu = 0,(2.6)
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∏
c∈ZΦ

(
|Ψ(c) + Φ′(c)| +

∣∣∣∣〈u, θcΨ+ θ2cΦ〉
∣∣∣∣
)
> 0,(2.7)

where ZΦ is the set of zeros of Φ.
The class of u is given by s = max(p− 1, t − 2). The sequence {Pn}n≥0 corresponding
to u is called D-semiclassical of class s.
When s = 0, the linear functional u (or the sequence {Pn}n≥0) is said to be D-classical.

Let us introduce the Dunkl’s operator

(Tμ f )(x) = f ′(x) + 2μ(H−1 f )(x), f ∈ P,
where

(H−1 f )(x) =
f (x) − f (−x)

2x
.

We define the operator Tμ from P′ to P′ as follows

< Tμu, f (x) >= − < u, (Tμ f )(x) >, f ∈ P, u ∈ P′.
In particular, this yields

(Tμu)n = −μn(u)n−1, n ≥ 0,

where

(u)−1 = 0, μn = n + 2μ[n], [n] =
1 − (−1)n

2
, n ≥ 0.

It is easy to see that
Tμu = Du + 2μH−1u,

where
< H−1u, f (x) >= − < u, (H−1 f )(x) > .

Now, consider a MOPS {Pn}n≥0 as above and let

P[1]
n (x) =

1
μn+1

(TμPn+1)(x), μ � −n − 1
2
, n ≥ 0.

Let denote by {u[1]n }n≥0, the dual sequence of {P[1]
n }n≥0.

Lemma 2.2. [10]
Tμu

[1]
n = −μn+1un+1, n ≥ 0.(2.8)

3. Proof of the main theorem

For the proof, we need the following lemma:
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Lemma 3.1. The following formula holds

xTμu = xDu − μ(u + h−1u), u ∈ P′.(3.1)
Tμ( f u) = fTμu + f ′u + 2μ(H−1 f )(h−1u), f ∈ P, u ∈ P′,(3.2)
Tμ( f u) = fTμu + (Tμ f )u + 2μ(H−1 f )(h−1u − u), f ∈ P, u ∈ P′,(3.3)

Proof of the lemma From the definition of the operator Tμ on P′, we have

< xTμu, f (x) > = < xDu, f (x) > +2μ < xH−1u, f (x) >

= < xDu, f (x) > −2μ < u,
x f (x) + x f (−x)

2x
>

= < xDu, f (x) > −μ < u, f (x) + f (−x) >
= < xDu, f (x) > −μ

(
< u, f (x) > + < h−1u, f (x) >

)
= < xDu, f (x) > −μ < u + h−1u, f (x) >,

hence (3.1) follows.
For the proof of (3.2), let � ∈ P. We have

< Tμ( f u), �(x) > = − < u, f (x)�′(x) + μ f (x)
�(x)− �(−x)

x
>

= − < u, ( f�)′(x) − f ′(x)�(x)+ μ f (x)
�(x)− �(−x)

x
>

= − < u,Tμ( f�)(x) − f ′(x)�(x)− μ�(−x) f (x)− f (−x)
x

>

= < fTμu + f ′u + 2μ(H−1 f )(h−1u), �(x) > .

Thus, we obtain (3.2). From which we derive (3.3)

Proof of the main theorem First of all, notice that for μ = 0 we get the D-classical
orthogonal polynomial sequences, which are D-semiclassical of class zero. Hence-
forth, we will suppose that μ � 0.
From the assumption we have

un = r−1n Pnu0, n ≥ 0(3.4)

and
u[1]n = (r[1]n )−1P[1]

n u[1]0 , n ≥ 0.(3.5)

Substitution of (3.4) and (3.5) in (2.8) gives

Tμ(P
[1]
n u[1]0 ) = −χnPn+1u0, n ≥ 0,(3.6)

where

χn = μn+1
r[1]n

rn+1
, n ≥ 0.(3.7)
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Using formula (3.3), equation (3.6) becomes

P[1]
n Tμu

[1]
0 + (TμP

[1]
n )u[1]0 +

+2μ(H−1P[1]
n )
(
h−1u[1]0 − u[1]0

)
= −χnPn+1u0, n ≥ 0.

(3.8)

For n = 0, equation (3.8) becomes

Tμu
[1]
0 = −χ0P1u0 = −1 + 2μ

γ1
P1u0.(3.9)

For n = 1, equation (3.8) becomes

P[1]
1 Tμu

[1]
0 + u[1]0 + 2μh−1u[1]0 = −2

r[1]1

r2
P2u0.(3.10)

Substitution of (3.9) in (3.10) gives

u[1]0 + 2μh−1u[1]0 = KΦu0,(3.11)

where

KΦ =
1 + 2μ
γ1

P1P
[1]
1 − 2

r[1]1

r2
P2,(3.12)

(K is a constant to make Φmonic).
Applying the operator h−1 to (3.11), we get

2μu[1]0 + h−1u[1]0 = Kh−1(Φu0).(3.13)

Multiplying (3.13) by 2μ and subtracting the result from (3.11), we get

u[1]0 =
K

1 − 4μ2
(Φu0 − 2μh−1(Φu0)).(3.14)

Substitution of (3.14) in (3.9) gives

Tμ
(
Φu0 − 2μh−1(Φu0)

)
+

1 − 4μ2

K
Ψu0 = 0.(3.15)

From (1.4), (3.15) and the regularity of u0, we have

0 = < Tμ
(
Φu0 − 2μh−1(Φu0)

)
+

1 − 4μ2

K
Ψu0,P1 >

=
1 − 4μ2

K
(− < u0,Φ > +

1 + 2μ
K

).

Thus, (1.5) follows.
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Now, putting n = 2 in (3.8), we obtain

P[1]
2 Tμu

[1]
0 + (TμP

[1]
2 )u[1]0 +

+2μH−1P[1]
2

(
h−1u[1]0 − u[1]0

)
= −χ2P3u0.

(3.16)

Taking into account (3.9) and (3.14), we get

−2μK
1 − 4μ2

(
TμP

[1]
2 − (1 + 2μ)H−1P[1]

2

)
h−1(Φu0) =

(1 + 2μ
γ1

P1P
[1]
2 −

K
1 − 4μ2

ΦTμP
[1]
2 +

2μK
1 − 2μ

ΦH−1P[1]
2 − χ2P3

)
u0.

Applying the operator h−1 to the last equation and taking into account the fact that

(TμP
[1]
2 )(x) − ((1 + 2μ)H−1P[1]

2 )(x) = 2x

and the formulas:
h−1(xv) = −xh−1v

and
h−1(h−1v) = v, v ∈ P′,

we obtain (1.3), where

B(x) =
1 − 4μ2

4μK

(1 + 2μ
γ1

P1(x)P
[1]
2 (x) − K

1 − 4μ2
Φ(x)(TμP

[1]
2 )(x)(3.17)

+
2μK
1 − 2μ

Φ(x)(H−1P[1]
2 )(x)− χ2P3(x)

)
.

Multiplying (3.14) by x and taking into account (1.3), we get

xu[1]0 =
K

1 − 4μ2
(xΦ(x) + 2μB(x))u0.(3.18)

Applying the operator h−1 to the last equation and using again (1.3), we obtain

xh−1u[1]0 = −
K

1 − 4μ2
(B(x)+ 2μxΦ(x))u0.(3.19)

On the other hand, from (3.2) we have

xTμ(u
[1]
0 ) = Tμ(xu

[1]
0 ) − u[1]0 − 2μh−1u[1]0 .(3.20)

Multiplying (3.20) by x and taking into account (3.18) and (3.19), we get

x2Tμ(u
[1]
0 )=

K
1−4μ2

(
xTμ
(
(xΦ(x) + 2μB(x))u0

)
− (1−4μ2)xΦ(x)u0

)
.(3.21)
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From (3.1) and (1.3) we get

x2Tμ(u
[1]
0 ) =

K
1 − 4μ2

(
xD
(
(xΦ(x)+ 2μB(x))u0

)
+(3.22)

((2μ2 − μ − 1)xΦ(x)− (2μ2 + μ)B(x))u0
)
,

or, equivalently,

x2Tμ(u
[1]
0 ) =

K
1 − 4μ2

(
D
(
x(xΦ(x)+ 2μB(x))u0

)
+(3.23)

((2μ2 − μ − 2)xΦ(x)− (2μ2 + 3μ)B(x))u0
)
.

According to (3.9) and (1.4), from (3.23) we get (1.1).
Notice that x2Φ(x)+ 2μxB(x) � 0. Indeed, if not then xΦ(x)+ 2μB(x) = 0. Therefore,
(3.18) becomes xu[1]0 = 0. This contradicts the regularity of u[1]0 . Thus, u0 (or {Pn}n≥0)
is D-semiclassical. Furthermore, by examination of the degrees of polynomials
Φ, Ψ and B in (3.12), (1.4) and (3.17) respectively, we can easily see that the class of
{Pn}n≥0 is less or equal to two.

Conversely, suppose that u0 is a linear functional such that (1.1)-(1.5) hold.
Using Lemma 2.2, we get (3.9). Substituting (3.9) in (1.1), we obtain (3.22). Putting

v =
K

1 − 4μ2
(Φu0 − 2μh−1(Φu0))(3.24)

and using (3.1) and (1.3), we obtain

x2Tμv =
K

1 − 4μ2

(
xTμ
(
(xΦ(x) + 2μB(x))u0

)
− (1 − 4μ2)xΦ(x)u0

)
.

Therefore, equation (3.22) becomes

x2Tμu
[1]
0 = x2Tμv.(3.25)

Multiplying (3.25) by x−1 and using (2.2), we get

xTμu
[1]
0 −
(
xTμu

[1]
0

)
0
δ0 = xTμv −

(
xTμv

)
0
δ0.(3.26)

But, on the one hand we have (
xTμu

[1]
0

)
0
= −(1 + 2μ)

and, on the other hand, from (3.24) and (1.5), we have(
xTμv

)
0
= −(1 + 2μ)
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then, (3.26) becomes
xTμu

[1]
0 = xTμv.(3.27)

In a similar way, multiplying (3.27) by x−1 and using (2.2), we get

Tμu
[1]
0 = Tμv.(3.28)

Hence,
v = u[1]0 .

Therefore, equation (3.9) becomes

Tμv +Ψu0 = 0.(3.29)

Let us prove that the sequence {P[1]
n }n≥0 is orthogonal with respect to v. Letm ≤ n−1.

From (3.2), we have
〈
v,Pm(x)P

[1]
n

〉
= − 1

μn+1

〈
Tμ(Pmv),Pn+1(x)

〉

= − 1
μn+1

〈
PmTμv + P′mv + 2μH−1Pmh−1v,Pn+1

〉
.

Taking into account (3.29) and the fact that {Pn}n≥0 is orthogonal with respect to u0,
we get

〈
v,PmP

[1]
n

〉
= − 1
μn+1

〈
v,Pn+1(x)P′m(x) + 2μ(H−1Pm)(x)Pn+1(−x)

〉
.

Using (3.24), the orthogonality of {Pn}n≥0 with respect to u0 and the fact that de�Φ ≤
2,we obtain

〈
v,Pm(x)P

[1]
n

〉
=

2μK
(1 − 4μ2)μn+1

〈
u0,Φ(x)Pn+1(−x)

(
P′m(−x) − (H−1Pm)(−x)

)〉

Writing Pm(x) = θ0 + θ1x + ... + θm−1xm−1 + xm, we can easily see that

P′m(−x) − (H−1Pm)(−x) = xQ(x),

whereQ is a polynomial of degree less than or equal to m− 1 (with the convention
that the degree of the zero polynomial is −∞). Then,

〈
v,Pm(x)P

[1]
n

〉
=

2μK
(1 − 4μ2)μn+1

〈
u0, xΦ(x)Q(x)Pn+1(−x)

〉
.

Application of (1.3) gives

〈
v,Pm(x)P

[1]
n

〉
=

2μK
(1 − 4μ2)μn+1

〈
u0,B(x)Q(−x)Pn+1(x)

〉
.
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Since B is a polynomial of degree less or equal to three then, from the orthogonality
of {Pn}n≥0 with respect to u0, we get〈

v,Pm(x)P
[1]
n

〉
= 0.

For m = n, a second use of (3.2) gives〈
v,Pn(x)P

[1]
n

〉
= − 1
μn+1

〈
PnTμv + P′nv + 2μH−1Pnh−1v,Pn+1

〉
.(3.30)

Using (3.29) and the fact that {Pn}n≥0 is orthogonal with respect to the linear func-
tional u0, we get 〈

PnTμv,Pn+1

〉
= −Ψ′(0)rn+1,(3.31)

where rn+1 is given in (2.3).
From (3.24), we obtain〈

P′nv,Pn+1

〉
=

K
1 − 4μ2

(1
2
nΦ′′(0)rn+1 − 2μ

〈
u0,Φ(x)P′n(−x)Pn+1(−x)

〉)
(3.32)

and〈
2μH−1Pnh−1v,Pn+1

〉
=

2μK
1−4μ2

(〈
u0,Φ(x)(H−1Pn)(−x)Pn+1(−x)

〉
−μΦ′′(0)[n]rn+1

)
.(3.33)

Substitution of (3.31), (3.32) and (3.33) in (3.30) gives〈
v,Pn(x)P

[1]
n

〉
=
(
Ψ′(0) +

1
2
KΦ′′(0)
1 − 4μ2

(4μ2[n] − n)
) rn+1
μn+1

(3.34)

− 2μK
μn+1(1 − 4μ2)

〈
u0,Φ(x)

(
(H−1Pn)(−x)− P′n(−x)

)
Pn+1(−x)

〉
.

Writing (H−1Pn)(−x)−P′n(−x) = xQ(x),whereQ is a polynomial of degree n−2 with
leading coefficient (−1)n−1([n]−n) for n ≥ 2 andQ = 0 for n ∈ {0, 1}, and using (1.3),
we get〈

u0,Φ(x)
(
(H−1Pn)(−x) − P′n(−x)

)
Pn+1(−x)

〉
= −1

6
B′′′(0)([n]− n)rn+1, n ≥ 0.

Therefore, (3.34) becomes

〈
v,Pn(x)P

[1]
n

〉
=
(
Ψ′(0) +

1
2
KΦ′′(0)
1 − 4μ2

(4μ2[n] − n) +
1
3
μKB′′′(0)
(1 − 4μ2)

([n] − n)
) rn+1
μn+1
.

On account of condition (1.2), the last equation implies that〈
v,Pn(x)P

[1]
n

〉
� 0.

So, the sequence {P[1]
n }n≥0 is orthogonal with respect to the linear functional v.
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4. Examples

In order to illustrate Theorem 1.1, we present three Dunkl-classical linear func-
tionals: the generalizedHermite, the generalizedGegenbauer andanon-symmetric
Dunkl-classical linear functional.

4.1. Generalized Hermite linear functional

The generalized Hermite linear functional denoted byH (μ) satisfies (see [4]):

D
(
xH (μ)

)
+
(
2x2 − (2μ + 1)

)
H (μ) = 0.(4.1)

The sequence of generalized Hermite polynomials {H(μ)
n }n≥0 satisfies (2.4) with

βn = 0, γn+1 =
1
2
μn+1, n ≥ 0,(4.2)

where the regularity condition is

μ � −n − 1
2
, n ≥ 0.(4.3)

The weight function for generalized Hermite polynomials in the positive definite
case is given by

w(x) = |x|2μe−x2 , −∞ < x < ∞.
We will show thatH (μ) satisfies conditions (1.1) - (1.5).
Multiplying (4.1) by (1 − 2μ)x and using (2.1), we get (1.1)

Φ(x) = 1,(4.4)
B(x) = −x,(4.5)
Ψ(x) = 2x,(4.6)

K = 1 + 2μ.(4.7)

On the other hand, sinceH (μ) is a symmetric linear functional, we have

H (μ) = h−1(H (μ)).

Multiplying the last equation by x, we get (1.3).
Finally, if we substitute (4.4)-(4.7) in the left hand side of (1.2), then we get

Ψ′(0) +
1
2
KΦ′′(0)
1 − 4μ2

(4μ2[n] − n) +
1
3

KB′′′(0)
(1 − 4μ2)

μ([n] − n) = 2 � 0.

Therefore, Theorem1.1 implies thatH (μ) is aDunkl-classical linear functional. Fur-
thermore, by virtue of (3.15) and (1.3),H (μ) satisfies the following Tμ-distributional
equation:

Tμ
(
H (μ)

)
+ 2xH (μ) = 0.(4.8)
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Notice that Y. Ben Cheikh and M. Gaied [1] have proved differently thatH (μ) is a
Dunkl classical linear functional. But they did not give a Tμ-distributional equation
forH (μ).

4.2. Generalized Gegenbauer polynomials

The generalized Gegenbauer linear functional denoted by G(α, β) satisfies (see
[2]):

D
(
x(x2 − 1)G(α, β)

)
+
(
− 2(α + β + 2)x2 + 2(β + 1)

)
G(α, β) = 0.(4.9)

This linear functional is regular for

α � −n, β � −n, α + β � −n, n ≥ 1.(4.10)

The weight function for generalized Gegenbauer polynomials in the positive defi-
nite case is given by

w(x) = |x|2β+1(1 − x2)α, −1 < x < 1.

Putting β = μ − 1
2 in (4.9, we get

D
(
x(x2 − 1)G(α, μ− 1

2
)
)
+
(
− 2(α + μ +

3
2
)x2 + 2μ + 1

)
G(α, μ − 1

2
) = 0.(4.11)

As in the previous example, multiplying (4.11) by (1 − 2μ)x and using the fact that
G(α, μ − 1

2 ) is symmetric, we obtain (1.1) and (1.3), where

Φ(x) = x2 − 1,(4.12)
B(x) = −x(x2 − 1),(4.13)
Ψ(x) = (2α + 2μ + 3)x,(4.14)

K = − (1 + 2μ)(α+ μ + 3
2 )

α + 1
.(4.15)

The condition (1.2) follows, immediately, from (4.10). Indeed:

Ψ′(0) +
1
2
KΦ′′(0)
1 − 4μ2

(4μ2[n] − n) +
1
3

KB′′′(0)
(1 − 4μ2)

μ([n] − n) =

2α + 2μ + 3
2α + 2

(2α + 2 + 2μ[n] + n) � 0, n ≥ 0.

Hence, Theorem 1.1 follows that G(α, μ − 1
2 ) is a Dunkl-classical linear functional.

Furthermore, by virtue of (3.15), the linear functional G(α, μ − 1
2 ) satisfies

Tμ
(
(x2 − 1)G(α, μ− 1

2
)
)
− 2(α + 1)xG(α, μ− 1

2
) = 0.(4.16)
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4.3. An example of non-symmetric Dunkl-classical linear functional

In this subsection, we will construct a non-symmetric Dunkl-classical linear
functional by using the following result stated in [9]:
Let L be a regular linear functional and let c and λ be two complex numbers. The
linear functional u defined by

u = λ(x − c)−1L + δc(4.17)

is regular, for every complex λ such that the following condition:

λ � 0, Pn(c) + λP
(1)
n−1(c) � 0, n ≥ 1,(4.18)

where {Pn}n≥0 is the MOPS corresponding to L. Moreover, if L is a D-semiclassical
linear functional satisfying (2.6, then u satisfies

(Φ̃u)′ + Ψ̃u = 0,(4.19)

where,
Φ̃(x) = (x − c)Φ(x), Ψ̃(x) = (x − c)Ψ(x).(4.20)

Let us apply this result and take

L = G(α, μ − 1
2
), c = 1, λ =

−2α
2α + 2μ + 1

, α � 0.

Wewill show that the obtained linear functional u satisfies the conditions (1.1)-(1.5).
But, first we will study the regularity of u.

Let {Sn}n≥0 be the MOPS associated with G(α, μ − 1
2 ). It satisfies the recurrence

relation (2.4) with [2]:

βn = 0, γn+1 =
(n + 1 + δn)(n + 1 + 2α + δn)

4(n + α + μ + 1
2 )(n + α + μ +

3
2 )
, δn = μ(1 + (−1)n),(4.21)

n ≥ 1,

where the regularity conditions are

α + n � 0, 2μ + 2n − 1 � 0, 2α + 2μ + 2n − 1 � 0, n ≥ 1.(4.22)

Putting

λ2n = 2nn!
(1 + 2μ)(3+ 2μ)...(2n− 1 + 2μ)

(1 + 2μ + 2α)(3 + 2μ + 2α)...(4n − 1 + 2μ + 2α)
,(4.23)

λ2n+1 = 2nn!
(1 + 2μ)(3+ 2μ)...(2n+ 1 + 2μ)

(1 + 2μ + 2α)(3 + 2μ + 2α)...(4n + 1 + 2μ + 2α)
, n ≥ 0.
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From the regularity condition (4.22), we have

λn � 0.(4.24)

On the other hand, simple computations show that (λn)n≥1 satisfies the recurrence:

λn+2 = λn+1 − γn+1λn, n ≥ 1.(4.25)

Let us prove, by recurrence on n, that

λn = Sn(1) − 2α
2α + 2μ + 1

S(1)n−1(1), n ≥ 1.(4.26)

Using (2.4), (2.5), (4.21) and (4.23), we get

S1(1) − 2α
2α + 2μ + 1

S(1)0 (1) = 1 − 2α
2α + 2μ + 1

=
1 + 2μ

1 + 2μ + +2α
= λ1.

Hence, (4.26) is true for n = 1.

Using (2.4), (2.5), (4.21) and (4.23), we obtain

S2(1) − 2α
2α + 2μ + 1

S(1)1 (1) = S1(1) − γ1S0(1) − 2α
2α + 2μ + 1

S(1)1 (1)

= 1 − 1 + 2μ
3 + 2μ + 2α

− 2α
2α + 2μ + 1

= 211!
1 + 2μ

(2α + 2μ + 1)(2α+ 2μ + 3)
= λ2.

Hence, (4.26) is true for n = 2.
Suppose that (4.26) is true until n+ 1, n ≥ 1 and let us prove it for n+ 2. From (4.25)
and the recurrence hypothesis, we have

λn+2 = λn+1 − γn+1λn
=
(
Sn+1(1) − 2α

2α + 2μ + 1
S(1)n (1)

)
− γn+1

(
Sn(1) − 2α

2α + 2μ + 1
S(1)n−1(1)

)

=
(
Sn+1(1) − γn+1Sn(1)

)
− 2α

2α + 2μ + 1

(
S(1)n (1) − γn+1S(1)n−1(1)

)
, n ≥ 1.

Taking into account the recurrences (2.4) and (2.5), we get

λn+2 = Sn+2(1) − 2α
2α + 2μ + 1

S(1)n+1(1), n ≥ 1.
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So, (4.26) is true for every nonnegative integer n. Then, according to (4.24), condi-
tion (4.18) is fulfilled. Therefore, u is regular.
According to (4.11), (4.19) and (4.20), u satisfies the following D-Pearson equation:

D
(
x(x2 − 1)(x − 1)u

)
+ (x − 1)

(
− 2(α + μ +

3
2
)x2 + 2μ + 1

)
u = 0.(4.27)

Let us see when (4.27) can be simplified by x − 1. From (4.17), we have

(u)2 = (u)1 =
1 + 2μ

1 + 2μ + 2α
.

Then,

< u, θ21(x(x
2 − 1)(x − 1)) + θ1((x − 1)(−2(α+ μ + 3

2
)x2 + 2μ + 1)) >= 0.

Therefore, we can divide both hand sides of (4.27) by (x − 1) taking into account
(2.7) does not hold. Thus, we obtain

D
(
x(x2 − 1)u

)
+
(
− 2(α + μ + 1)x2 + x + 2μ + 1

)
u = 0.(4.28)

Multiplication of the last equation by (1 + 2μ)x gives (1.1), where

Φ(x) = (x − 1)(x +
1 + 2μ
1 − 2μ

),(4.29)

B(x) = x(x − 1)(x − 2μ + 1
1 − 2μ

),(4.30)

Ψ(x) =
1 + 2μ
γ1

(x − β0),(4.31)

K =
2μ − 1
γ1
β0,(4.32)

β0 =
1 + 2μ

1 + 2μ + 2α
.(4.33)

On the other hand, from (4.17), we have

(x − 1)u =
−2α

2α + 2μ + 1
G(α, μ − 1

2
).(4.34)

Taking into account the fact that G(α, μ − 1
2 ) is symmetric, we get

(x − 1)u = h−1((x − 1)u).(4.35)

Multiplying (4.35) by x(x +
1 + 2μ
1 − 2μ

), we obtain (1.3).

According to (4.29)-(4.33), (1.2) is equivalent to the following condition:

2μ + 2α + 1 � 2μ[n] − n, n ≥ 0.
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Table 4.1: Coefficients of the Tμ-distributional equation (4.36)

Linear functional Ω ϕ Restriction
Generalized Hermite 1 2x μ � −n − 1

2 , n ≥ 0.
H (μ)

Generalized Gegenbauer x2 − 1 −2(α+ 1)x α�−n, α+μ− 1
2 �−n,G(α, μ − 1

2 ) μ − 1
2 � −n, n ≥ 1.

Modified Generalized
Gegenbauer x2 − 1 −(2α + 2μ + 1)x α � −n, α+μ− 1

2 �−n,
u=λ(x−1)−1G(α, μ− 1

2 )+δ1, +1 + 2μ μ− 1
2 �−n, n ≥ 1, α � 0.

λ =
−2α

2α + 2μ + 1

This last condition is an immediate consequence of (4.22). So, according to Theorem
1.1, u is a Dunkl-classical linear functional. Furthermore, by virtue of (3.15) and
(4.35), the linear functional u satisfies

Tμ
(
(x2 − 1)u

)
+
(
− (2α + 2μ + 1)x + 1 + 2μ

)
u = 0.

Notice that, for all Dunkl-classical linear functionals discussed before, the Tμ-
distributional equation (3.15) is reduced to another one of type

Tμ(Ωu) + ϕu = 0.(4.36)

where Ω and ϕ are two polynomials such that de�Ω ≤ 2, de�ϕ ≤ 1. To conclude
this paper, we will present a table where we give polynomialsΩ and ϕ in (4.36) for
each example of D-semiclassical linear functional previously studied.

REFERENCES

1. Y. Ben Cheikh and M. Gaied: Characterizations of the Dunkl-classical symmetric
orthogonal polynomials, App. Math. Comput. 187 (2007), 105–114.

2. S. Belmehdi: Generalized Gegenbauer polynomials, J. Comput. Appl. Math. 133
(2001), 195–205.

3. B. Bouras: Some characterizations of Dunkl-classical orthogonal polynomials, J. Differ-
ence Equ. Appl. 20 (2014), no.8, 1240-1257.

4. T. S. Chihara: An Introduction to Orthogonal Polynomials, Gordon and Breach, New
York, (1978).

5. J. Dini and P. Maroni: Sur la multiplication d’une forme linéaire par une fraction
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