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Abstract. In the present paper, we introduce the concepts of ideal inner and ideal
outer limits which always exist even if empty sets for double sequences of closed sets
in Pringsheim’s sense. Next, we give some formulas for finding ideal inner and outer
limits in a metric space. After then, we define Kuratowski ideal convergence of double
sequences of closed sets by means of the ideal inner and ideal outer limits of a double
sequence of closed sets. Additionally, we give some examples that our result is more
general than the results obtained before.
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1. Introduction

Convergence is one of the most vital concept in mathematics. In the analysis,
there are different approaches at the limit of the function sequences due to the
requirements. At the first pointwise convergence are studied. After that several
types of convergence of sequences of functions were studied according to the need.
The modes of convergence used in different areas of mathematics are uniform con-
vergence, almost everywhere convergence, continuous convergence, convergence in
measure, Lp convergence, etc.
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In variational analysis pointwise limits are inadequate for mathematical pur-
poses. A different approach to convergence is required in which, on the geometric
level, limits of sequences of sets have the leading role. Motivation for the develop-
ment of this geometric approach has come from optimization, stochastic processes,
control systems and many other subjects. The theory of set convergence will pro-
vide ways of approximating set-valued mappings through convergence of graphs and
epigraphs. The concepts of inner and outer limits for a sequence of sets are due
to the French mathematician-politician Painlevé, who introduced them in 1902 in
his lectures on analysis at the University of Paris; set convergence was defined as
the equality of these two limits. Hausdorff [9] and Kuratowski [15] popularized such
convergence by including it in their books, and that’s how Kuratowski’s name ended
up to be associated with it. Recent years have witnessed a rapid development on ap-
plications of set-valued and variational analysis. For more information about inner
and outer limits of sequences of sets, we refer to [1, 2, 5, 16, 19, 21, 22, 24, 25, 26, 27].

In contrast to ordinary sequences, various types of convergence for double se-
quences can be defined due to order of elements of N2. The best known and well-
studied convergence notion for double sequence is Pringsheim [20] convergence.
Therefore, throughout the paper by the usual convergence of a double sequence we
refer to the convergence in Pringsheim’s sense.

Statistical convergence of sequences was introduced by Fast [7] and was extended
to the double sequences by Mursaleen and Edely [18] and Tripathy [28] indepen-
dently. The idea of I-convergence was introduced by Kostyrko et al. [12] as a
generalization of statistical convergence [7, 23], which is based on the structure of
the ideal I of subsets of the set of natural numbers. This approach is much more
general as most of the known convergence methods become special cases, but there
are many ambiguities about this convergence. So this type of convergence is studied
actively in summability in last several decades. These two types of convergence are
extended to double sequences(see [3, 4, 6, 8, 10, 11, 13, 14, 17, 18, 29, 30]).

In this paper we will study ideal inner and outer limits of a double sequence of
sets and give some characterization for them.

2. Definition and Preliminaries

A real double sequence (xij) is said to be convergent to the limit p in Pringsheim’s
sense, written limi,j→∞ xij = p, if for every ε > 0, there exists an integer n0 such
that |xij − p| < ε whenever i, j > n0. In case of this convergence the row-index i
and the column-index j tend to infinity independently from each other.

Let E ⊆ N2 and E(m,n) = {(i, j) : i ≤ m, j ≤ n}. Then, the double natural
density of E is defined by

δ2(E) = lim
m,n→∞

|E(m,n)|
mn

if the limit on the right hand-side exists, where the vertical bars denote the cardi-
nality of the set E(m,n).
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A real double sequence x = (xij) is said to be statistically convergent to the
number L if for every ε > 0, the set {(i, j) : |xij − L| > ε} has double natural
density zero.

The limit as k, l→∞ with (k, l) ∈ K ⊆ N2 will be indicated by lim(k,l)∈K .

Let S be a non-empty set. A class I of subsets of S is said to be an ideal on S if
for each A,B ∈ I we have A∪B ∈ I, and for each A ∈ I and each B ⊂ A, we have
B ∈ I. An ideal I on S is called non-trivial if I 6= Ø and S 6∈ I. If the ideal I of S
further satisfies {s} ∈ I for each s ∈ S, then it is an admissible ideal. A non-empty
class F of subsets of S is said to be a filter on S if Ø 6∈ F , for each A,B ∈ F we
have A∩B ∈ F and for each A ∈ F and each A ⊂ B, we have B ∈ F . It is obvious
that I on S is non-trivial if and only if F(I) = {S \A:A ∈ I} is a filter on S.

Let S = N2 and let I2 be a ideal of subsets of N2. Then a nontrivial ideal
I2 ⊂ 2N×N is called strongly admissible if {n} × N and N × {n} belong to I2 for
each n ∈ N. It is evident that a strongly admissible ideal is also admissible. Let

I2(f) = {A ⊂ N× N: (∃m(A) ∈ N)(i, j ≥ m(A)⇒ (i, j) 6∈ A)}.

Then I2(f) is a nontrivial strongly admissible ideal and clearly an ideal I2 is strongly
admissible if and only if I2(f) ⊂ I2.

Let (X, d) be a metric space. A double sequence (xij) in X is said to be I2-
convergent to ξ ∈ X, if for any ε > 0 we have

A(ε) = {(i, j) ∈ N× N: d(xij , ξ) ≥ ε} ∈ I2

and written I2- limi,j→∞ xij = ξ.

If I2 ⊂ 2N×N is a strongly admissible ideal, then Pringsheim convergence implies
I2-convergence of double sequences.

An ideal is said to be an admissible ideal I2 ⊂ 2N×N satisfies the property (AP2),
if for every countable family of mutually disjoint sets {A1, A2, . . .} belonging to I2,
there exists a countable family of sets {B1, B2, . . .} such that Aj∆Bj ∈ I2(f), i.e.,
Aj∆Bj is included in the finite union of rows and columns in N×N for each j ∈ N
and B =

⋃∞
j=1Bj ∈ I2.

A double sequence (xij) of elements of X is said to be I∗2 -convergent to ξ ∈ X if
there exists a setK = {(i, j) : i, j = 1, 2, 3 . . .} in F(I2) such that lim(i,j)∈K d(xij , ξ) =
0. It is denoted by I∗2- limi,j→∞ xij = ξ.

Lemma 2.1. [3, Theorem 1] Let I2 ⊂ 2N×N be a strongly admissible ideal.

If I∗2- lim
i,j→∞

xij = ξ, then I2- lim
i,j→∞

xij = ξ.

Lemma 2.2. [3, Theorem 3] Let I2 ⊂ 2N×N be an admissible ideal with property
(AP2), then I2- limi,j→∞ xij = ξ implies I∗2- limi,j→∞ xij = ξ.

A point λ ∈ X is called a I2-limit point of (xij) in a metric space (X, d) if
and only if there exist a set K = {(ki, lj): i, j ∈ N} ⊂ N2 such that K 6∈ I2 and
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limi,j→∞ xki,lj = λ. A point γ ∈ X is called a I2-cluster point of (xij) in a metric
space (X, d) if and only if for each ε > 0 the set {(i, j) ∈ N2: d(xij , γ) < ε} 6∈ I2.
The set of all I2-limits points and I2-cluster points of (xij) will be denoted by
I2(Λx) and I2(Γx), respectively. Obviously, for a strongly admissible ideal I2 we
have I2(Λx) ⊆ I2(Γx).

From now on I2 will be considered as a nontrivial strongly admissible ideal in
N2.

The concepts of ideal limit superior and inferior of double sequences of real
numbers were introduced in [4, 8], as follows:

Definition 2.1. Define the sets Ax and Bx by

Ax = {a ∈ R: {(i, j):xij > a} 6∈ I2} and Bx = {b ∈ R: {(i, j):xij < b} 6∈ I2}.

Then, I2-limit superior and inferior of a real double sequence x are defined by

I2- lim supx =

{
supAx , if Ax 6= Ø,
−∞ , if Ax = Ø

and

I2- lim inf x =

{
inf Bx , if Bx 6= Ø,
∞ , if Bx = Ø.

Lemma 2.3. Let x = (xij) be a double sequence of real numbers. Then, the
following statements hold:

(a) I2- lim supx = β ⇔ for any ε > 0, {(i, j):xij > β − ε} 6∈ I2 and {(i, j):xij >
β + ε} ∈ I2.

(b) I2- lim inf x = α⇔ for any ε > 0, {(i, j):xij < α+ ε} 6∈ I2 and {(i, j):xij <
α− ε} ∈ I2.

Let (X, d) be a metric space and A ⊂ X, x ∈ X. Then the distance from x to A
with respect to d is given by d(x,A) := infa∈A d(x, a), where we set d(x,Ø) := ∞.
The open ball with center x and radius ε > 0 in X is denoted by B(x, ε), i.e.,

B(x, ε) = {y ∈ X: d(x, y) < ε}.

3. Main Results

In this section, we introduce Kuratowski ideal convergence of double sequences of
closed sets. For this purpose, we define the set

I+2 := {N ⊆ N2:N 6∈ I2}.

We now define ideal outer and inner limits of a double sequence of closed sets,
as follows.
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Definition 3.1. Let (X, d) be a metric space and let (Ckl) be double a sequence of
closed subsets of X. The ideal outer limit and the inner limit of a double sequence
(Ckl) are defined as

I2- lim sup
k,l→∞

Ckl :=
{
x:∀ε > 0, ∃N ∈ I+2 , ∀ (k, l) ∈ N :Ckl ∩B(x, ε) 6= Ø

}
,

and

I2- lim inf
k,l→∞

Ckl :=
{
x:∀ε > 0, ∃N ∈ F(I2), ∀ (k, l) ∈ N :Ckl ∩B(x, ε) 6= Ø

}
respectively. When the ideal outer and inner limits are equal to the same set C,
this set is called to the ideal limit of double sequence (Ckl). In this case, we say
that the double sequence (Ckl) is Kuratowski ideal convergent to the set C and we
denote

I2- lim inf
k,l→∞

Ckl = I2- lim sup
k,l→∞

Ckl = I2- lim
k,l→∞

Ckl = C.

Furthermore, the inclusion

I2- lim inf
k,l→∞

Ckl ⊆ I2- lim sup
k,l→∞

Ckl

always holds. Hence, I2- limk,l→∞ Ckl is equal to the set C if and only if the
inclusion

I2- lim sup
k,l→∞

Ckl ⊆ C ⊆ I2- lim inf
k,l→∞

Ckl

holds.

Remark 3.1. I2- limk,l→∞ Ckl = C if and only if the following conditions are satisfied:

(i) for every x ∈ C and for every ε > 0 the set {(k, l) ∈ N2 : B(x, ε)∩Ckl 6= Ø} belongs
to F(I2);

(ii) for every x ∈ X \ C there exists ε > 0 such that {(k, l) ∈ N2 : B(x, ε) ∩ Ckl = Ø}
belongs to F(I2).

We will give two examples showing that our study is generalization of previously
studied works by means of the choice of the ideal.

(I) If I2 = I2(f), then

I2(f)- lim inf
k,l→∞

Ckl = lim inf
k,l→∞

Ckl,

I2(f)- lim sup
k,l→∞

Ckl = lim sup
k,l→∞

Ckl

and Kuratowski I2(f)-convergence coincides with the usual Kuratowski con-
vergence studied in [24].
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(II) If I2 = I2(δ) = {A ⊂ N2 : δ2(A) = 0}, then

I2(δ)- lim inf
k,l→∞

Ckl = st- lim inf
k,l→∞

Ckl,

I2(δ)- lim sup
k,l→∞

Ckl = st- lim sup
k,l→∞

Ckl

and Kuratowski I2(δ)-convergence coincides with the Kuratowski statistical
convergence studied in [25].

Note that if I2 is a strongly admissible ideal, then I2(f) ⊆ I2. It is obvious that
the followings inclusion holds.

lim inf
k,l→∞

Ckl ⊆ I2- lim inf
k,l→∞

Ckl ⊆ I2- lim sup
k,l→∞

Ckl ⊆ lim sup
k,l→∞

Ckl.

Therefore, each Kuratowski convergent sequence is Kuratowski I2−convergent, i.e.

lim
k,l→∞

Ckl = C ⇒ I2- lim
k,l→∞

Ckl = C.

However, the converse of this claim does not hold in general. The following example
illustrate this claim.

Example 3.1. Let A and B be two different nonempty closed sets in X. For any strongly
admissible ideal I2 6= I2(f) we may take N ∈ I2 \ I2(f) and put Ckl = A for k, l ∈ N and
Ckl = B otherwise. Then I2- limk,l→∞ Ckl = B. However lim supk,l→∞ Ckl = A ∪ B and
lim infk,l→∞ Ckl = A ∩B.

The following theorems give us characterization of ideal inner and outer limits
for double sequences of closed sets.

Theorem 3.1. Let (X, d) be a metric space and (Ckl) be a double sequence of
closed subsets of X. Then

I2- lim inf
k,l→∞

Ckl =
⋂

N∈I+2

cl
⋃

(k,l)∈N

Ckl and I2- lim sup
k,l→∞

Ckl =
⋂

N∈F(I2)

cl
⋃

(k,l)∈N

Ckl

Proof. We shall prove only the first statement, the proof of second one being analo-
gous. Let x ∈ I2- lim infk,l→∞ Ckl and N ∈ I+2 be arbitrary. For each ε > 0, there
exists N1 ∈ F(I2) such that for every (k, l) ∈ N1

Ckl ∩B(x, ε) 6= Ø.

Since N ∩ N1 6= Ø, there exists (k0, l0) ∈ N ∩ N1 such that Ck0l0 ∩ B(x, ε) 6= Ø.
Therefore, ( ⋃

(k,l)∈N

Ckl

)
∩B(x, ε) 6= Ø.
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This gives us x ∈ cl
⋃

(k,l)∈N Ckl. This holds for any N ∈ I+2 . Consequently,

x ∈
⋂

N∈I+2

cl
⋃

(k,l)∈N

Ckl.

For the reverse inclusion, suppose that x 6∈ I2 − lim infk,l→∞ Ckl. Then, there
exists ε > 0 such that

N =
{

(k, l) ∈ N2:Ckl ∩B(x, ε) 6= Ø
}
6∈ F(I2)

and so, the set

N =
{

(k, l) ∈ N2:Ckl ∩B(x, ε) = Ø
}
∈ I+2 .

Thus ( ⋃
(k,l)∈N

Ckl

)
∩B(x, ε) = Ø.

This implies that x 6∈ cl
⋃

(k,l)∈N Ckl which achieves the proof.

According to Theorem 3.1, we conclude that both ideal outer and inner limits
of a double sequence (Ckl) are closed sets.

Theorem 3.2. Let (X, d) be a metric space and (Ckl) be a double sequence of
closed subsets of X. Then, we have

I2- lim inf
k,l→∞

Ckl =
{
x: I2- lim

k,l→∞
d(x,Ckl) = 0

}
,

I2- lim sup
k,l→∞

Ckl =
{
x: I2- lim inf

k,l→∞
d(x,Ckl) = 0

}
.

Proof. Assume that C be any closed set in X. Then we can write

d(x,C) ≥ ε ⇔ C ∩B(x, ε) = Ø.(3.1)

Suppose that I2- limk,l→∞ d(x,Ckl) = 0. Then, for each ε > 0 we get the set{
(k, l) ∈ N2: d(x,Ckl) ≥ ε

}
belongs to I2. Taking into account (3.1), we have the set{

(k, l) ∈ N2:Ckl ∩B(x, ε) = Ø
}

belongs to I2. This implies that{
(k, l) ∈ N2:Ckl ∩B(x, ε) 6= Ø

}
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belongs to F(I2). Thus we have x ∈ I2- lim infk,l→∞ Ckl.

Conversely, suppose that x ∈ I2- lim infk,l→∞ Ckl, then for each ε > 0 there
exists N ∈ F(I2) such that Ckl ∩B(x, ε) 6= Ø for every (k, l) ∈ N . Since{

(k, l) ∈ N2:Ckl ∩B(x, ε) = Ø
}
⊆ N2 \N,

we have {
(k, l) ∈ N2:Ckl ∩B(x, ε) = Ø

}
∈ I2.

By virtue of (3.1), the set{
(k, l) ∈ N2: d(x,Ckl) ≥ ε

}
belongs to I2. This implies that I2- limk,l→∞ d(x,Ckl) = 0.

Similarly, for any closed set C we have

d(x,C) < ε⇔ C ∩B(x, ε) 6= Ø.(3.2)

Assume that I2- lim infk,l→∞ d(x,Ckl) = 0. Then, for each ε > 0 we can write{
(k, l) ∈ N2: d(x,Ckl) < ε

}
6∈ I2.

By relation (3.2) for each ε > 0 we obtain{
(k, l) ∈ N2:Ckl ∩B(x, ε) 6= Ø

}
6∈ I2.

This gives us x ∈ I2- lim supk,l→∞ Ckl. Now, we show the reverse inclusion. Let
x ∈ I2- lim supk,l→∞ Ckl. Then, for every ε > 0{

(k, l) ∈ N2:Ckl ∩B(x, ε) 6= Ø
}
6∈ I2.

We have from (3.2) and Lemma 2.3(b), I2- lim infk,l→∞ d(x,Ckl) = 0.

Theorem 3.3. Let (X, d) be a metric space and (Ckl) be a double sequence of
closed subsets of X. Then

I2- lim inf
k,l→∞

Ckl =
{
x: ∀ (k, l) ∈ N2, ∃ykl ∈ Ckl: I2- lim

k,l→∞
ykl = x

}
.(3.3)

Proof. Let x ∈ I2- lim infk,l→∞ Ckl be an arbitrary. By Theorem 3.2, we obtain
I2- limk,l→∞ d(x,Ckl) = 0. Given an arbitrary ε > 0,{

(k, l) ∈ N2: d(x,Ckl) ≥
ε

2

}
∈ I2.

Considering that Ckl is a closed set, for (k, l) ∈ N2 there exists ykl ∈ Ckl such that
d(x, ykl) ≤ 2d(x,Ckl). Then, we have I2- limk,l→∞ ykl = x.
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Conversely, if x is an element of the set given by the right side of the equality
(3.3). Then, there exist {ykl | ykl ∈ Akl, k, l ∈ N} such that I2- limk,l→∞ ykl = x.
Then for every ε > 0 {

(k, l) ∈ N2: d(x, ykl) ≥ ε
}
∈ I2.

The inequality d(x, ykl) ≥ d(x,Ckl) yields the inclusion{
(k, l) ∈ N2: d(x,Ckl) ≥ ε

}
⊆
{

(k, l) ∈ N2: d(x, ykl) ≥ ε
}
.

This implies that I2- limk,l→∞ d(x,Ckl) = 0. By Theorem 3.2, we have

x ∈ I2- lim inf
k,l→∞

Ckl.

Theorem 3.4. Let (X, d) be a metric space and (Ckl) be a double sequence of
closed subsets of X. If I2 is a strongly admissible ideal of N2 having the property
(AP2). Then

I2- lim inf
k,l→∞

Ckl =
{
x : ∃N ∈ F(I2),∀(k, l) ∈ N, ∃ykl ∈ Ckl : lim

(k,l)∈N
ykl = x

}
.(3.4)

Proof. Assume that I2 is a strongly admissible ideal with the property (AP2). By
Lemma 2.2, I∗2 convergence is equivalent to I2 convergence. By Theorem 3.3 the
proof is straightforward.

We note that the property (AP2) in Theorem 3.4 can not be dropped. The following
example shows this fact.

Example 3.2. Let X = R equipped with the usual Euclidean metric and let the sets
(Nj)j∈N be a decomposition of N. We define

4j = {(m,n) : min{m,n} ∈ Nj} j = 1, 2, 3 . . .

Then {4j}j∈N is a decomposition of N2 and the ideal

I2 = {A ⊂ N2 : A is included in a finite union of 4j
′s}

a strongly admissible ideal (see [3, Theorem 2]). Put Akl = { 1
j
} if and only if (k, l) ∈ 4j .

Then the sequence {ykl: ykl ∈ Akl, (k, l) ∈ N2} can be defined by ykl = 1
j

for (k, l) ∈ 4j .

Let δ > 0 be given. Choose q ∈ N such that 1
q
< δ. Then{

(k, l) ∈ N2: ykl ≥ δ
}
⊆ 41 ∪42 ∪ . . . ∪4q.

So I2 − limk,l→∞ ykl = 0 and I2 − lim infk,l→∞Akl = {0}.
Suppose in contrary that 0 belongs to the right-hand side set of the equality (3.4).

Then there is a set M ∈ F(I2) such that for (m,n) ∈M , there exists ymn ∈ Amn and

lim
(m,n)∈M

ymn = 0.(3.5)
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By the definition of F(I2) we have M = N2 \H, where H ∈ I2. By the definition of I2
there is a p ∈ N such that

H ⊆
p⋃

j=1

4j .

But then 4p+1 ⊂ N2 \H = M. But from the construction of 4p+1 it follows that for any
n0 ∈ N, ykl = 1

p+1
> 0 hold for infinitely many (k, l)′s with (k, l) ∈M and k, l ≥ n0. This

contradicts (3.5).

Corollary 3.1. Let X be a normed linear space and (Ckl) be a double sequence of
closed subsets of X. If the ideal I2 has property (AP2) and there is a set K ∈ F(I2)
such that Ckl is convex for each (k, l) ∈ K, then I2- lim infk,l→∞ Ckl is convex and
so, when it exist, is I2- limk,l→∞ Ckl.

Proof. Suppose that I2- lim infk,l→∞ Ckl = C. If x1 and x2 belong to C, by Theo-
rem 3.4, we can find for all (k, l) ∈ N in some set N ∈ F(I2) points y1kl and y2kl in
Ckl such that lim(k,l)∈N y

1
kl = x1 and lim(k,l)∈N y

2
kl = x2. Since K ∈ F(I2), we get

M ∈ F(I2) with M = N ∩K. Then, for arbitrary µ ∈ [0, 1] and (k, l) ∈ M , let us
define

yµkl := (1− µ)y1kl + µy2kl and xµ := (1− µ)x1 + µx2.

Therefore, lim(k,l)∈M yµkl = xµ is obtained. By Theorem 3.4, we have xµ ∈ C. This
implies that the set C is convex.

Theorem 3.5. Let (X, d) be a metric space and (Ckl) be a double sequence of
closed subsets of X. Then, we have

I2- lim sup
k,l→∞

Ckl =
{
x: ∀ (k, l) ∈ N2, ∃ykl ∈ Ckl:x ∈ I2(Γy)

}
.(3.6)

Proof. Let x be an arbitrary point in I2- lim supk,l→∞ Ckl. By Theorem 3.2, we
have

I2- lim inf
k,l→∞

d(x,Ckl) = 0.

By Lemma 2.3, for every ε > 0 the set{
(k, l) ∈ N2: d(x,Ckl) <

ε

2

}
6∈ I2.

Since Ckl is closed for (k, l) ∈ N2 there exists ykl ∈ Ckl such that d(x, ykl) ≤
2d(x,Ckl). It is clear that x is an ideal cluster point of (ykl). That is, x ∈ I2(Γy).

On the other hand, if x is an element of the set given by the right side of the
equality (3.6), then there exists a sequence {ykl: ykl ∈ Ckl, (k, l) ∈ N2} such that
x ∈ I2(Γy). That is, for every ε > 0

{
(k, l) ∈ N2 : d(x, ykl) < ε

}
6∈ I2.
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The inequality d(x, ykl) ≥ d(x,Ckl) yields the inclusion

{(k, l) ∈ N2 : d(x, ykl) < ε
}
⊆ {(k, l) ∈ N2 : d(x,Ckl) < ε

}
.

So, the set N
′

= {(k, l) ∈ N2 : d(x,Ckl) < ε
}
6∈ I2. That is, N

′ ∈ I+2 . By

(3.2), for every (k, l) ∈ N
′

we obtain Ckl ∩ B(x, ε) 6= Ø. This means that x ∈
I2- lim supk,l→∞ Ckl.

From Theorem 3.3 and Theorem 3.5, we conclude that, when Ckl 6= Ø for all
k, l ∈ N, ideal outer and inner limit sets can be characterized in terms of the
sequences (ykl)k,l∈N by selecting a ykl ∈ Ckl for each (k, l) ∈ N2: the set of all I2-
cluster points of such sequences is I2- lim supk,l→∞ Ckl, while the set of all I2-limits
of such sequences is I2- lim infk,l→∞ Ckl.

In Theorem 3.5 the set of I2-cluster points can not be replaced by the set of
I2−limit points, which is shown by the next example.

Example 3.3. Consider ideal I2(δ) and the sets

Nj =
{

2j−1(2k − 1) : k ∈ N
}

(j = 1, 2, 3 . . .).

Now we define Dij = Ni ×Nj . Then Dij ∩Dpq = Ø for (i, j) 6= (p, q) and

δ2(Dij) =
1

2i2j
(i, j = 1, 2, 3 . . .).

Now we define a double sequence (Akl) as follows

Akl =

{
1− 1

ij

}
, (k, l) ∈ Dij (i, j = 1, 2, 3 . . .).

then

I2(δ)- lim sup
k,l→∞

Akl =

{
1− 1

ij
: i, j = 1, 2, 3 . . .

}
∪ {1}.

If a sequence (ykl) is formed by selecting a ykl ∈ Akl, then ykl = 1 − 1
ij

for (k, l) ∈ Dij

and 1 is not a I2(δ)−limit point of (ykl) (see [4, Example 2]) .
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