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HORIZONTAL LIFT METRIC ON THE TANGENT BUNDLE OF A
WEYL MANIFOLD

Murat Altunbasg
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Abstract. Let (M, [g]) be a Weyl manifold and T'M its tangent bundle equipped with
the horizontal lift of the base metric. The purpose of this paper is to study the tangent
bundle TM endowed with a Weyl structure, and obtain the ide under which conditions
such bundle is an Einstein-Weyl or a gradient Weyl-Ricci soliton.
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1. Introduction

Weyl geometry is, in a sense, midway between Riemannian geometry and affine
geometry. A Weyl manifold is a conformal manifold equipped with an affine connec-
tion preserving the conformal structure, called a Weyl connection. It is said to be
Einstein-Weyl if and only if the symmetric part of Ricci tensor is proportional to a
Riemannian metric in the conformal class (see [5],[6] and [9]). As a generalization,
in [4], the authors introduced a new notion, namely gradient Weyl-Ricci soliton,
involving Hessian of a smooth function.

There exists a wide range of interesting studies on the geometry of tangent bun-
dles with special types of metrics (Sasaki, Cheeger-Gromoll,...) or more generally
g-natural metrics (see [1],[2] and [7]). A pseudo-Riemannian metric on the tangent
bundle is defined by the horizontal lift of the base metric (see [8] and [10]).

Tangent bundle of a Weyl manifold is a very recent topic. In [3], Bejan and Gul
constructed a Weyl structure on the tangent bundle and find conditions under which
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the tangent bundle is an Einstein-Weyl manifold. In [4], Bejan et al. obtained some
conditions such that the Weyl structure on the tangent bundle is a gradient Weyl-
Ricci soliton. In both studies, the tangent bundle is considered with the Sasaki
metric.

In this paper, we introduce a Weyl structure on the tangent bundle of a Weyl
manifold and prove that the tangent bundle cannot be an Einstein-Weyl manifold
or a gradient Weyl-Ricci soliton unless the base manifold is locally flat. Here, the
tangent bundle is endowed with horizontal lift metric.

Unless otherwise stated, throughout the paper, the Einstein summation conven-
tion is used and all geometric objects are considered as smooth.

2. Weyl manifolds

We recall the basic information about Weyl geometry from [3]. Let M be an
m—dimensional manifold endowed with a conformal class of (pseudo) Riemannian
metrics [g]. A torsion-free connection D is said to be a Weyl connection if it preserves
the conformal class [¢g]. For a metric g € [g], there exists a 1-form w determined by
D as Dg = —2w®g. If V is the Levi-Civita connection of g, then D is expressed as
follows:

(21) DxY =VxY +w(Y)X +w(X)Y — g(X,Y)¢, VX,Y € I(TM),

where £ is the dual vector field of w with respect to g. Conversely, if w is given and
if we use the equation (2.1) to define D, then D is a Weyl connection. Note that

we have g(&,€) = [|€]|* = w(€) and the relation (2.1) is invariant under the Weyl
transformation e — €2/ g, W' = w — df. The pair (g,w) is called a Weyl structure on
M.

Denote by R, = [V,V] = V| and Ry, = [D, D] — Dy the curvature tensors of
the Levi-Civita connection V and the Weyl connection D, respectively. Then the
relation between them is given by

(22) R(X.Y)Z = Ry(X,Y)Z + dw(X,Y)Z — (Vyw)(Z)X + (Vxw)(Z))Y
+w(Y)w(2)X — gV, 2)VxE - g(¥, Z)w(§) X
+9(Y, 2)w(X)E — w(X)w(Z)Y + g(X, Z)Vy €
+9(X, Z)w(€)Y — g(X, Z)w(Y)E,VX,Y, Z € T(TM).

From (2.2), the relation between the Ricci tensor field Ricy of the Weyl con-
nection D and the Ricci tensor field Ricy of the Levi-Civita connection V is given
by

Ricy(X,Y) = Ricy(X,Y)+dw(X,Y)+ (6w — (m —2) [|§] 2)g(X,Y)
—(m - 2)(Vxw)Y + (m — 2w(X)w(Y), VX,Y € T(TM),

where the co-differential dw of w is defined by dw = —tr,{(U,V) — (Vyw)V}.
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The symmetric part Ricf;’]m of Ricpg is given by following formula:

(2.3) Rz‘cf;’]m(X,Y) = Ricy(X,Y)+ (6w — (m —2) [|¢]| H)g(X,Y)

f%(m — ) [(Vxw)Y + (Vyw)X]
F(m — 2)w(X)w(Y),VX,Y € T(TM).

3. Tangent bundle

Let M be an m—dimensional manifold. Its tangent bundle is denoted by T'M and
w: TM — M is natural projection mapping. Recall that T'M is a 2m—dimensional
differentiable manifold. Let (U, 27) be a coordinate neighborhood of M, where (27) is
a system of local coordinates defined in the neighborhood U. Let (u) be the system
of cartesian coordinates in each tangent space of M with respect to the natural frame
{52} Then, in 7~1(U), we can introduce the local coordinates (r~1(U),2?,u’),
which are called the induced coordinates. From now on, we denote the induced
coordinates by (z7) = (27,27) = (27,u?), 5 = 1,....,m, j = m+ 1,...,2m. We also
denote the natural frame in 7= (U) by (:%) = (5%, 225 ).

ox’ Oz’ dud
If X =X¢ 6‘2{, is the local expression of a vector field X in U, then the vertical
lift XV and the horizontal lift X of X are given, with respect to the induced

coordinates, by

9
out’

XV =Xx?

where F;k are the coefficients of a torsion-free affine connection V.

If f is a function on M, then the vertical lift fV of f is defined by fV = fo .
The horizontal lift fH of fis f# = 0.

Let w be a 1-form on M. Then the horizontal lift w™ of w is given by the
relations w! (X)) = 0, w1 (XV) = (w(X))V. The vertical lift w" of w is given by
the relations w" (XV) = 0, w¥ (XH) = (w(X))".

From [10], the horizontal lift metric G on the tangent bundle TM over the
Riemannian manifold (M, g) is defined by the equations

(3.1) G(XH,yH) GxV,YV)y=o,
GXV,vH) = q(x"vV)=g(X,Y),VX,Y € T(TM).

For the Levi-Civita connection V of the metric G, we have

(3.2) Vxn Y = (VxYV)¥ + (Ry(u, X)Y)Y,
VYV = (VxY)V,
Ve Y = 0,
VxvYV = 0, VX,Y e (TM),
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where Ry is the curvature tensor field of the metric g. Non-zero components of the
curvature tensor Rg and the Ricci tensor Ricg are given by
Re(X", Y2 = (Ry(X,Y)Z)" + (VuRy)(X,Y)Z)",
Re(X",y"zV = Re(X",YV)Z" = (R,(X,Y)Z)Y,
Ricg(XH,YH) 2Ricy(X,Y),VX,Y € I(TM),

where Ric, is the Ricci tensor field of the metric g (see [8] and [10]).

4. A Weyl structure on tangent bundle

In this section, we construct a Weyl structure on (T'M, G) using the vertical lift of
a 1-form on M. Firstly, we write the following proposition from the definition of the
metric G in (3.1).

Proposition 4.1. Let (M, g) be a Riemannian manifold and TM its tangent bun-
dle with the horizontal lift metric G. Any conformal change g — e*fg on M corre-
sponds the change of the metric G — (e*/)V G on TM.

Now we can express the proposition below.

Proposition 4.2. Let (M, g) be a Riemannian manifold and TM its tangent bun-
dle with the horizontal lift metric G. If the pair (g,w) is a Weyl structure on M,
then the pair (G, w"") is a Weyl structure on TM and its Weyl connection is given

by

(4.1) DxnY™ = (DxY —g(X,Y)O)" + (Ry(u, X)Y)",
DxnYV = (VxY +w(X)Y)V —g(X,Y)eH,
DxvYH = w)XV —g(X,Y)eH,
DyvYV = 0,

where D is the Weyl connection on M, R, is the curvature tensor field of g and &
is the dual vector field of w with respect to g.

Proof. Using the relations (3.2) in (2.1) give the result. [J

Lemma 4.1. Let M be an m—dimensional manifold (m > 2) endowed with the
Weyl structure (g,w) and TM its tangent bundle endowed with the Weyl structure
(G,w"), where G is the horizontal lift metric. The symmetric part Ric[sé]n of the

Ricci tensor field of the Weyl structure (G,w"") satisfies the following relations

(4.2) Ricg) (X", Y") = 2Ricy(X,Y) — (m - 1)[(Vxw)Y + (Vyw)X]
+2(m — Dw(X)w(Y),

(4.3) Ricy (XY, Y") = swg(X,Y),

(4.4) Rice) (XY, YY) = o,

where V is the Levi-Civita connection on M and Ricgy is the Ricci tensor field of g.
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Proof. We use the formula (2.3). Since TM is a 2m—dimensional manifold, we have

Ricigy (X", YH) = Rice(X",vH)
+(0(wY) = 2(m = 1)G(E", ¢ )) (X",
—(m = D[(Vxnw" )Y + (Vynw¥)XH]
+2(m — N (XMW" (Y1)
= 2(Ricy,(X,Y))V
—(m = D[(Vxw)Y)" + (Vyw)X)"]

+2(m — Dw(X)w(Y)]"
= 2Ricy(X)Y)— (m—1[(Vxw)Y + (Vyw)X]
+2(m — 1w(X)w(Y).

By the same way, we obtain (4.3) and (4.4). O

Now we give the main results.

Theorem 4.1. Let M be an m—dimensional manifold (m > 2) and TM be its
tangent bundle such that M and TM are endowed with the Weyl structures (g,w)
and (G,w"), respectively. If the following conditions are satisfied, then TM is an
Einstein- Weyl manifold:

(i) (M,g) is flat.

(1) (Vxw)Y + (Vyw)X = 2w(X)w(Y),VX,Y e T(TM).

Proof. 1t is known that T'M is an Einstein-Weyl manifold if there exists a function

& such that %fg]” =aG(X,Y) for all vector fields X, Y on TM.
Assume that (Vxw)Y + (Vyw)X = 2w(X)w(Y), then (2.3) becomes

(45)  RiY"(X,Y) = Ric,(X,Y) + (0w — (m — 2) €] >)g (X, Y),

VX,Y € I(TM). If we suppose M is flat, i.e. Ry = 0, then the formulas (4.2), (4.3)
and (4.4) reduce to

Ricg" (X", YH) = 0,

Ricly" (XY, Y™)
Rie"(XV, YY)

dwg(X,Y),
0,YX,Y € I'(TM).

These equations show that if & = (dw)Y, then TM is an Einstein-Weyl manifold.
This completes the proof. [

Theorem 4.2. Let M be an m—dimensional manifold (m > 2) and TM be its
tangent bundle such that M and TM are endowed with the Weyl structures (g,w)
and (G,w""), respectively. If the following conditions are satisfied, then the triple
(G,wV, fV) is a gradient Weyl-Ricci soliton:
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(i) (M,g) is flat.
(it)
(4.6) (Vxw)Y + (Vyw)X —2w(X)w(Y) = Hess, f(X,Y),VX,Y € T(TM),

where Hessy f denotes the Hessian of the function f on M with respect to the metric
g.

Proof. For (G,w", fV) to be a gradient Weyl Ricci soliton, it should satisfy
(4.7) %fé]’” + HessqfY =aG,

where @ is a function on TM (see [4]).

For the Hessian of the function fY with respect to G, we get the following
relations by direct computations:

HessgfY(XH,Y?) = (Hess,f(X,Y))",
HessqfV (X", YY) = o,
HessqfV(XV,YH) = o,
HessafV (XV,YV) 0,VX,Y € T(TM).

Suppose that (4.6) holds, then from (2.3) we have

(@8 R (X,Y) = Rie,(X.Y) + (0w~ (m—2) [€])g(X, V)
(m—2)
2= 1)Hessgf(X,Y)N’X,Y eI(TM).
If (M, g) flat, then the formulas (4.2), (4.3) and (4.4) turn into
Ricigy (X", YH) = —Hess,f(X,Y)
Ricey (XY, Y™ = dwg(X,Y),
Riciy) (XY, YY) = 0,YX,Y e (T M).

So, for @ = (dw)V, TM is a gradient-Weyl Ricci soliton. This completes the
proof. O
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