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Abstract. Let (M, [g]) be a Weyl manifold and TM its tangent bundle equipped with
the horizontal lift of the base metric. The purpose of this paper is to study the tangent
bundle TM endowed with a Weyl structure, and obtain the ide under which conditions
such bundle is an Einstein-Weyl or a gradient Weyl-Ricci soliton.
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1. Introduction

Weyl geometry is, in a sense, midway between Riemannian geometry and affine
geometry. A Weyl manifold is a conformal manifold equipped with an affine connec-
tion preserving the conformal structure, called a Weyl connection. It is said to be
Einstein-Weyl if and only if the symmetric part of Ricci tensor is proportional to a
Riemannian metric in the conformal class (see [5],[6] and [9]). As a generalization,
in [4], the authors introduced a new notion, namely gradient Weyl-Ricci soliton,
involving Hessian of a smooth function.

There exists a wide range of interesting studies on the geometry of tangent bun-
dles with special types of metrics (Sasaki, Cheeger-Gromoll,...) or more generally
g-natural metrics (see [1],[2] and [7]). A pseudo-Riemannian metric on the tangent
bundle is defined by the horizontal lift of the base metric (see [8] and [10]).

Tangent bundle of a Weyl manifold is a very recent topic. In [3], Bejan and Gul
constructed a Weyl structure on the tangent bundle and find conditions under which
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the tangent bundle is an Einstein-Weyl manifold. In [4], Bejan et al. obtained some
conditions such that the Weyl structure on the tangent bundle is a gradient Weyl-
Ricci soliton. In both studies, the tangent bundle is considered with the Sasaki
metric.

In this paper, we introduce a Weyl structure on the tangent bundle of a Weyl
manifold and prove that the tangent bundle cannot be an Einstein-Weyl manifold
or a gradient Weyl-Ricci soliton unless the base manifold is locally flat. Here, the
tangent bundle is endowed with horizontal lift metric.

Unless otherwise stated, throughout the paper, the Einstein summation conven-
tion is used and all geometric objects are considered as smooth.

2. Weyl manifolds

We recall the basic information about Weyl geometry from [3]. Let M be an
m−dimensional manifold endowed with a conformal class of (pseudo) Riemannian
metrics [g]. A torsion-free connection D is said to be a Weyl connection if it preserves
the conformal class [g]. For a metric g ∈ [g], there exists a 1-form ω determined by
D as Dg = −2ω⊗ g. If ∇ is the Levi-Civita connection of g, then D is expressed as
follows:

DXY = ∇XY + ω(Y )X + ω(X)Y − g(X,Y )ξ, ∀X,Y ∈ Γ(TM),(2.1)

where ξ is the dual vector field of ω with respect to g. Conversely, if ω is given and
if we use the equation (2.1) to define D, then D is a Weyl connection. Note that

we have g(ξ, ξ) = ‖ξ‖2 = ω(ξ) and the relation (2.1) is invariant under the Weyl
transformation e→ e2fg, ω′ = ω− df. The pair (g, ω) is called a Weyl structure on
M.

Denote by Rg = [∇,∇]−∇[,] and R[g] = [D,D]−D[,] the curvature tensors of
the Levi-Civita connection ∇ and the Weyl connection D, respectively. Then the
relation between them is given by

R[g](X,Y )Z = Rg(X,Y )Z + dω(X,Y )Z − ((∇Y ω)(Z))X + ((∇Xω)(Z))Y(2.2)

+ω(Y )ω(Z)X − g(Y,Z)∇Xξ − g(Y,Z)ω(ξ)X

+g(Y,Z)ω(X)ξ − ω(X)ω(Z)Y + g(X,Z)∇Y ξ

+g(X,Z)ω(ξ)Y − g(X,Z)ω(Y )ξ,∀X,Y, Z ∈ Γ(TM).

From (2.2), the relation between the Ricci tensor field Ric[g] of the Weyl con-
nection D and the Ricci tensor field Ricg of the Levi-Civita connection ∇ is given
by

Ric[g](X,Y ) = Ricg(X,Y ) + dω(X,Y ) + (δω − (m− 2) ‖ξ‖ 2)g(X,Y )

−(m− 2)(∇Xω)Y + (m− 2)ω(X)ω(Y ), ∀X,Y ∈ Γ(TM),

where the co-differential δω of ω is defined by δω = −trg{(U, V )→ (∇Uω)V }.
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The symmetric part Ricsym[g] of Ric[g] is given by following formula:

Ricsym[g] (X,Y ) = Ricg(X,Y ) + (δω − (m− 2) ‖ξ‖ 2)g(X,Y )(2.3)

−1

2
(m− 2)[(∇Xω)Y + (∇Y ω)X]

+(m− 2)ω(X)ω(Y ),∀X,Y ∈ Γ(TM).

3. Tangent bundle

Let M be an m−dimensional manifold. Its tangent bundle is denoted by TM and
π : TM →M is natural projection mapping. Recall that TM is a 2m−dimensional
differentiable manifold. Let (U, xj) be a coordinate neighborhood of M, where (xj) is
a system of local coordinates defined in the neighborhood U. Let (uj) be the system
of cartesian coordinates in each tangent space ofM with respect to the natural frame
{ ∂
∂xj }. Then, in π−1(U), we can introduce the local coordinates (π−1(U), xj , uj),

which are called the induced coordinates. From now on, we denote the induced
coordinates by (xJ) = (xj , xj̄) = (xj , uj), j = 1, ...,m, j̄ = m + 1, ..., 2m. We also
denote the natural frame in π−1(U) by ( ∂

∂xJ ) = ( ∂
∂xj ,

∂
∂uj ).

If X = Xi ∂
∂xi is the local expression of a vector field X in U , then the vertical

lift XV and the horizontal lift XH of X are given, with respect to the induced
coordinates, by

XV = Xi ∂

∂ui
, XH = Xi ∂

∂xi
−XjΓi

jku
k ∂

∂ui
,

where Γi
jk are the coefficients of a torsion-free affine connection ∇.

If f is a function on M , then the vertical lift fV of f is defined by fV = f ◦ π.
The horizontal lift fH of f is fH = 0.

Let ω be a 1-form on M. Then the horizontal lift ωH of ω is given by the
relations ωH(XH) = 0, ωH(XV ) = (ω(X))V . The vertical lift ωV of ω is given by
the relations ωV (XV ) = 0, ωV (XH) = (ω(X))V .

From [10], the horizontal lift metric G on the tangent bundle TM over the
Riemannian manifold (M, g) is defined by the equations

G(XH , Y H) = G(XV , Y V ) = 0,(3.1)

G(XV , Y H) = G(XH , Y V ) = g(X,Y ),∀X,Y ∈ Γ(TM).

For the Levi-Civita connection ∇̄ of the metric G, we have

∇XHY H = (∇XY )H + (Rg(u,X)Y )V ,(3.2)

∇XHY V = (∇XY )V ,

∇XV Y H = 0,

∇XV Y V = 0, ∀X,Y ∈ Γ(TM),
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where Rg is the curvature tensor field of the metric g. Non-zero components of the
curvature tensor R̄G and the Ricci tensor RicG are given by

R̄G(XH , Y H)ZH = (Rg(X,Y )Z)H + ((∇uRg)(X,Y )Z)V ,

R̄G(XH , Y H)ZV = R̄G(XH , Y V )ZH = (Rg(X,Y )Z)V ,

RicG(XH , Y H) = 2Ricg(X,Y ),∀X,Y ∈ Γ(TM),

where Ricg is the Ricci tensor field of the metric g (see [8] and [10]).

4. A Weyl structure on tangent bundle

In this section, we construct a Weyl structure on (TM,G) using the vertical lift of
a 1-form on M. Firstly, we write the following proposition from the definition of the
metric G in (3.1).

Proposition 4.1. Let (M, g) be a Riemannian manifold and TM its tangent bun-
dle with the horizontal lift metric G. Any conformal change g → e2fg on M corre-
sponds the change of the metric G→ (e2f )VG on TM.

Now we can express the proposition below.

Proposition 4.2. Let (M, g) be a Riemannian manifold and TM its tangent bun-
dle with the horizontal lift metric G. If the pair (g, ω) is a Weyl structure on M ,
then the pair (G, ωV ) is a Weyl structure on TM and its Weyl connection is given
by

DXHY H = (DXY − g(X,Y )ξ)H + (Rg(u,X)Y )V ,(4.1)

DXHY V = (∇XY + ω(X)Y )V − g(X,Y )ξH ,

DXV Y H = ω(Y )XV − g(X,Y )ξH ,

DXV Y V = 0,

where D is the Weyl connection on M, Rg is the curvature tensor field of g and ξ
is the dual vector field of ω with respect to g.

Proof. Using the relations (3.2) in (2.1) give the result.

Lemma 4.1. Let M be an m−dimensional manifold (m > 2) endowed with the
Weyl structure (g, ω) and TM its tangent bundle endowed with the Weyl structure
(G,ωV ), where G is the horizontal lift metric. The symmetric part Ric

sym

[G] of the

Ricci tensor field of the Weyl structure (G,ωV ) satisfies the following relations

Ric
sym

[G] (XH , Y H) = 2Ricg(X,Y )− (m− 1)[(∇Xω)Y + (∇Y ω)X](4.2)

+2(m− 1)ω(X)ω(Y ),

Ric
sym

[G] (XV , Y H) = δωg(X,Y ),(4.3)

Ric
sym

[G] (XV , Y V ) = 0,(4.4)

where ∇ is the Levi-Civita connection on M and Ricg is the Ricci tensor field of g.
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Proof. We use the formula (2.3). Since TM is a 2m−dimensional manifold, we have

Ric
sym

[G] (XH , Y H) = RicG(XH , Y H)

+(δ(ωV )− 2(m− 1)G(ξH , ξH))G(XH , Y H)

−(m− 1)[(∇XHωV )Y H + (∇Y HωV )XH ]

+2(m− 1)ωV (XH)ωV (Y H)

= 2(Ricg(X,Y ))V

−(m− 1)[((∇Xω)Y )V + ((∇Y ω)X)V ]

+2(m− 1)[ω(X)ω(Y )]V

= 2Ricg(X,Y )− (m− 1)[(∇Xω)Y + (∇Y ω)X]

+2(m− 1)ω(X)ω(Y ).

By the same way, we obtain (4.3) and (4.4).

Now we give the main results.

Theorem 4.1. Let M be an m−dimensional manifold (m > 2) and TM be its
tangent bundle such that M and TM are endowed with the Weyl structures (g, ω)
and (G,ωV ), respectively. If the following conditions are satisfied, then TM is an
Einstein-Weyl manifold:

(i) (M, g) is flat.

(ii)(∇Xω)Y + (∇Y ω)X = 2ω(X)ω(Y ),∀X,Y ∈ Γ(TM).

Proof. It is known that TM is an Einstein-Weyl manifold if there exists a function
ᾱ such that Ric

sym

[G] = αG(X̃, Ỹ ) for all vector fields X̃, Ỹ on TM.

Assume that (∇Xω)Y + (∇Y ω)X = 2ω(X)ω(Y ), then (2.3) becomes

Ricsym[g] (X,Y ) = Ricg(X,Y ) + (δω − (m− 2) ‖ξ‖ 2)g(X,Y ),(4.5)

∀X,Y ∈ Γ(TM). If we suppose M is flat, i.e. Rg = 0, then the formulas (4.2), (4.3)
and (4.4) reduce to

Ricsym[G] (XH , Y H) = 0,

Ricsym[G] (XV , Y H) = δωg(X,Y ),

Ricsym[G] (XV , Y V ) = 0,∀X,Y ∈ Γ(TM).

These equations show that if ᾱ = (δω)V , then TM is an Einstein-Weyl manifold.
This completes the proof.

Theorem 4.2. Let M be an m−dimensional manifold (m > 2) and TM be its
tangent bundle such that M and TM are endowed with the Weyl structures (g, ω)
and (G,ωV ), respectively. If the following conditions are satisfied, then the triple
(G,ωV , fV ) is a gradient Weyl-Ricci soliton:



900 M. Altunbaş

(i) (M, g) is flat.

(ii)

(∇Xω)Y + (∇Y ω)X − 2ω(X)ω(Y ) = Hessgf(X,Y ),∀X,Y ∈ Γ(TM),(4.6)

where Hessgf denotes the Hessian of the function f on M with respect to the metric
g.

Proof. For (G,ωV , fV ) to be a gradient Weyl Ricci soliton, it should satisfy

Ric
sym

[G] +HessGf
V = αG,(4.7)

where ᾱ is a function on TM (see [4]).

For the Hessian of the function fV with respect to G, we get the following
relations by direct computations:

HessGf
V (XH , Y H) = (Hessgf(X,Y ))V ,

HessGf
V (XH , Y V ) = 0,

HessGf
V (XV , Y H) = 0,

HessGf
V (XV , Y V ) = 0,∀X,Y ∈ Γ(TM).

Suppose that (4.6) holds, then from (2.3) we have

Ricsym[g] (X,Y ) = Ricg(X,Y ) + (δω − (m− 2) ‖ξ‖ 2)g(X,Y )(4.8)

− (m− 2)

2(m− 1)
Hessgf(X,Y ),∀X,Y ∈ Γ(TM).

If (M, g) flat, then the formulas (4.2), (4.3) and (4.4) turn into

Ric
sym

[G] (XH , Y H) = −Hessgf(X,Y )

Ric
sym

[G] (XV , Y H) = δωg(X,Y ),

Ric
sym

[G] (XV , Y V ) = 0,∀X,Y ∈ Γ(TM).

So, for ᾱ = (δω)V , TM is a gradient-Weyl Ricci soliton. This completes the
proof.
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