FACTA UNIVERSITATIS (NIŠ)

Ser. Math. Inform. Vol. 36, No 4 (2021), 903–912

https://doi.org/10.22190/FUMI210206067U

Original Scientific Paper

NOTES ON LEFT IDEALS OF SEMIPRIME RINGS WITH MULTIPLICATIVE GENERALIZED (α, α) – DERIVATIONS

Ercan Ulutaş and Öznur Gölbaşı

Sivas Cumhuriyet University
Faculty of Science, Department of Mathematics, 58140 Sivas, Turkey

Abstract. Let R be a 2-torsion free semiprime ring, I a nonzero left ideal of R, α an automorphism on R and $F:R\to R$ a multiplicative (generalized) (α,α) -derivation of R associated with a multiplicative (α,α) -derivation d. In this note, we will give the description of commutativity of semiprime rings with help of some identities involving a multiplicative generalized (α,α) -derivation and a nonzero left ideal of R.

Keywords: Derivations, ideals, semiprime rings.

1. Introduction

Let R will be an associative ring with center Z. For any $x,y \in R$ the symbol [x,y] represents commutator xy-yx and the Jordan product xoy=xy+yx. Recall that a ring R is prime if for $x,y \in R$, xRy=(0) implies either x=0 or y=0 and R is semiprime if for $x \in R$, xRx=(0) implies x=0.

An additive mapping $d: R \to R$ is called a derivation if d(xy) = d(x)y + xd(y) holds for all $x, y \in R$. An immediate example of a derivation is the inner derivation (i.e., a mapping $x \to [a, x]$, where a is a fixed element). By the generalized inner derivation we mean an additive mapping $F: R \to R$ such that for fixed elements $a, b \in R, F(x) = ax + xb$ for all $x \in R$. It observed that F satisfies the relation $F(xy) = F(x)y + xI_{-b}(y)$ for all $x, y \in R$, where $I_{-b}(y) = [-b, y]$ is the inner derivation of R associated with the element (-b). Motivated by these observations,

Received February 6, 2021, accepted: October 22, 2021

Communicated by Dijana Mosić

Corresponding Author: Öznur Gölbaşı, Sivas Cumhuriyet University, Faculty of Science, Department of Mathematics, 58140 Sivas, Turkey | E-mail: ogolbasi@cumhuriyet.edu.tr 2010 Mathematics Subject Classification. Primary 16W25; Secondary 16U80

© 2021 BY UNIVERSITY OF NIŠ, SERBIA | CREATIVE COMMONS LICENSE: CC BY-NC-ND

M. Brešar [3] introduced the notion of generalized derivation. Accordingly, a generalized derivation $F: R \to R$ is an additive mapping which is uniquely determined by a derivation d such that F(xy) = F(x)y + xd(y), for all $x, y \in R$. Obviously, every derivation is a generalized derivation. Thus, generalized derivations cover both the concept of derivations and left multipliers (i.e., an additive mapping such that F(xy) = F(x)y, for all $x, y \in R$). Generalized derivations have been primarily studied on operator algebras.

In [4], the notion of multiplicative derivation was introduced by Daif motivated by Martindale in [13]. $d: R \to R$ is called a multiplicative derivation if d(xy) = d(x)y + xd(y) holds for all $x, y \in R$. These maps are not additive. In [10], Goldman and Šemrl gave the complete description of these maps. We have R = C[0, 1], the ring of all continuous (real or complex valued) functions and define a mapping $d: R \to R$ such as

$$d(f)(x) = \left\{ \begin{array}{ll} f(x) \log |f(x)| \,, & f(x) \neq 0 \\ 0, & \text{otherwise} \end{array} \right\}.$$

It is clear that d is a multiplicative derivation, but d is not additive.

On the other hand, the notion of multiplicative generalized derivation was extended by Daif and Tamman El-Sayiad in [6]. $F:R\to R$ is called a multiplicative generalized derivation if there exists a derivation $d:R\to R$ such that F(xy)=F(x)y+xd(y), for all $x,y\in R$. Dhara and Ali gave a slight generalization of this definition taking d is any mapping (not necessarily an additive mapping or a derivation) in [7]. Hence, one may observe that the concept of multiplicative generalized derivations includes the concept of derivations, generalized derivations and the left multipliers.

Over the last several years, a number of authors studied commutativity theorems for prime rings or semiprime rings admitting automorphisms or derivations on appropriate subsets of R. Herstein proved that if R is a 2-torsion free prime ring with a nonzero derivation d of R such that [d(x), d(y)] = 0, for all $x, y \in R$, then R is commutative ring. In [5], Daif and Bell proved that R is semiprime ring, I is a nonzero ideal of R and d is a derivation of R such that $d([x, y]) = \pm [x, y]$, for all $x, y \in I$, then R contains a nonzero central ideal. Many authors extended these classical theorems to the class of derivations. (see [1], [2], [8], [9], [11], [12] for a partial bibliography).

In the present paper, we generalize the concept of multiplicative generalized derivations to multiplicative generalized (α,α) -derivations. A mapping $d:R\to R$ (not necessarily additive) is called a multiplicative (α,α) -derivation if there exists a map $\alpha:R\to R$ such that $d(xy)=d(x)\alpha(y)+\alpha(x)d(y)$, for all $x,y\in R$. A mapping $F:R\to R$ (not necessarily additive) is called a multiplicative generalized (α,α) -derivation if $F(xy)=F(x)\alpha(y)+\alpha(x)d(y)$, for all $x,y\in R$, where d is a multiplicative (α,α) -derivation of R. Of course a multiplicative generalized (1,1)-derivation where 1 is the identity map on R is a multiplicative generalized derivation. So, it would be interesting to extend some results concerning these notions to multiplicative generalized (α,α) -derivations. Our aim is to investigate

some identities with multiplicative generalized (α, α) –derivations on a nonzero left ideal of semiprime ring R.

2. Results

Throughout the paper, R be a 2-torsion free semiprime ring, I a nonzero left ideal of R, α an automorphism on R and F a multiplicative (generalized) (α, α) -derivation of R associated with a multiplicative (α, α) -derivation d. Also, we will make some extensive use of the basic commutator identities:

- i) [x, yz] = y[x, z] + [x, y]z
- ii) [xy,z] = [x,z]y + x[y,z]

iii)
$$xyoz = (xoz)y + x[y, z] = x(yoz) - [x, z]y$$

iv)
$$xoyz = y(xoz) + [x, y]z = (xoy)z - y[z, x]$$

v)
$$[xy, z]_{\alpha, \alpha} = x [y, z]_{\alpha, \alpha} + [x, \alpha(z)] y = x [y, \alpha(z)] + [x, z]_{\alpha, \alpha} y$$

vi)
$$[x, yz]_{\alpha,\alpha} = \alpha(y) [x, z]_{\alpha,\alpha} + [x, y]_{\alpha,\alpha} \alpha(z)$$

vii)
$$(xz \circ y)_{\alpha,\alpha} = x(z \circ y)_{\alpha,\alpha} - [x,\alpha(y)]z$$
.

We remind some well known results which will be useful in our proofs:

Fact: Let R be a semiprime ring, then

- i) The center of R contains no nonzero nilpotent elements.
- ii) If P is a nonzero prime ideal of R and $a,b\in R$ such that $aRb\subseteq P$, then either $a\in P$ or $b\in P$.
- iii) The center of a nonzero one sided ideal is contained in the center of R. In particular, any commutative one sided ideal is contained in the center of R.

Lemma 2.1. [12, Lemma 5] Let R be a 2-torsion-free semiprime ring and I a nonzero ideal of R. If $[I,I] \subseteq Z$, then R is a commutative ring.

Theorem 2.1. Let R be a 2-torsion free semiprime ring, I a nonzero left ideal of R, α an automorphism on R and $F: R \to R$ a multiplicative generalized (α, α) -derivation of R associated with a multiplicative (α, α) -derivation d.

If $[d(x), F(y)] = \pm \alpha ([x, y])$ for all $x, y \in I$, then $\alpha (I) [d(x), \alpha (x)] = (0)$ for all $x \in I$.

Proof. By the hypothesis, we have

$$[d(x), F(y)] = \pm \alpha ([x, y]), \text{ for all } x, y \in I.$$

Replacing xz by x in (2.1) and using this, we get

(2.2)
$$d(x)[\alpha(z), F(y)] + [\alpha(x), F(y)]d(z) = 0$$
, for all $x, y, z \in I$.

Replacing zx by x in (2.2), we have

(2.3)
$$d(z)\alpha(x) \left[\alpha(z), F(y)\right] + \alpha(z) d(x) \left[\alpha(z), F(y)\right]$$

$$+ \alpha(z) \left[\alpha(x), F(y)\right] d(z) + \left[\alpha(z), F(y)\right] \alpha(x) d(z) = 0.$$

Left multiplying (2.2) by $\alpha(z)$, we arrive at

$$(2.4) \quad \alpha(z) \, d(x) [\alpha(z), F(y)] + \alpha(z) [\alpha(x), F(y)] d(z) = 0, \text{ for all } x, y, z \in I.$$

Subtracting (2.4) from (2.3), we find that

$$(2.5) d(z)\alpha(x)\left[\alpha(z), F(y)\right] + \left[\alpha(z), F(y)\right]\alpha(x)d(z) = 0, \ \forall x, y, z \in I.$$

That is

$$(2.6) d(z)\alpha(x)\left[\alpha(z), F(y)\right] = -\left[\alpha(z), F(y)\right]\alpha(x)d(z), \ \forall x, y, z \in I.$$

Replacing x with $x\alpha^{-1}(d(z))t$ in this equation, we have

$$(2.7) \quad \begin{array}{l} d(z)\alpha\left(x\right)d(z)\alpha\left(t\right)\left[\alpha\left(z\right),F(y)\right] = -\left[\alpha\left(z\right),F(y)\right]\alpha\left(x\right)d(z)\alpha\left(t\right)d(z), \\ \forall x,y,z,t\in I. \end{array}$$

Right multiplying (2.6) by $\alpha(t) d(z) \alpha(x) [\alpha(z), F(y)]$, we get

$$(2.8) d(z)\alpha(x) [\alpha(z), F(y)]\alpha(t) d(z)\alpha(x) [\alpha(z), F(y)] = -[\alpha(z), F(y)]\alpha(x) d(z)\alpha(t) d(z)\alpha(x) [\alpha(z), F(y)].$$

Using (2.7), it yields that

$$(2.9) d(z)\alpha(x) [\alpha(z), F(y)]\alpha(t) d(z)\alpha(x) [\alpha(z), F(y)] = d(z)\alpha(x) d(z)\alpha(t) [\alpha(z), F(y)]\alpha(x) [\alpha(z), F(y)].$$

Using (2.5), (2.9) reduces to

$$\begin{aligned} &d(z)\alpha\left(x\right)\left[\alpha\left(z\right),F(y)\right]\alpha\left(t\right)d(z)\alpha\left(x\right)\left[\alpha\left(z\right),F(y)\right]\\ &=-d(z)\alpha\left(x\right)\left[\alpha\left(z\right),F(y)\right]\alpha\left(t\right)d(z)\alpha\left(x\right)\left[\alpha\left(z\right),F(y)\right].\end{aligned}$$

That is

$$2d(z)\alpha(x) [\alpha(z), F(y)]\alpha(t) d(z)\alpha(x) [\alpha(z), F(y)] = 0$$
, for all $x, y, z, t \in I$.

Since R is 2-torsion free semiprime ring, we get

$$d(z)\alpha(x) [\alpha(z), F(y)]\alpha(t) d(z)\alpha(x) [\alpha(z), F(y)] = 0$$
, for all $x, y, z, t \in I$.

Replacing t with $rt, r \in R$ in this equation and left multiplying with $\alpha(t)$ gives that

$$\alpha(t) d(z)\alpha(x) \left[\alpha(z), F(y)\right] R\alpha(t) d(z)\alpha(x) \left[\alpha(z), F(y)\right] = (0),$$
 for all $x, y, z, t \in I, r \in R$.

Since R is semiprime ring, we have

$$\alpha(t) d(z)\alpha(x) [\alpha(z), F(y)] = 0$$

and so

$$Vd(z)V[\alpha(z), F(y)] = (0)$$
, for all $y, z \in I$.

where $\alpha(I) = V$ is a nonzero left ideal of R.

Let $\{P_{\alpha} | \alpha \in I\}$ be a family of prime ideals of R such that $\cap P_{\alpha} = (0)$. We can say

$$Vd(z) \subseteq P_{\alpha} \text{ or } V[\alpha(z), F(y)] \subseteq P_{\alpha}$$

and so

$$[\alpha(z), F(y)]Vd(z) \subseteq P_{\alpha} \text{ or } d(z)V[\alpha(z), F(y)] \subseteq P_{\alpha}.$$

By (2.6), $[\alpha(z), F(y)]Vd(z) \subseteq P_{\alpha}$ implies that $d(z)V[\alpha(z), F(y)] \subseteq P_{\alpha}$ and so,

$$d(z)V[\alpha(z), F(y)] \subseteq \cap P_{\alpha}$$
.

That is

$$d(z)V[\alpha(z), F(y)] = (0)$$
, for all $y, z \in I$.

Hence we have $d(z)\alpha(x)[\alpha(z),F(y)]=0$ for all $x,y,z\in I$. Replacing y by yz in this equation and using this, we get

$$(2.10) d(z)\alpha(x) [\alpha(z), \alpha(y) d(z)] = 0, \text{ for all } x, y, z \in I.$$

Left multiplying with $\alpha(zy)$ this equation, we have

$$(2.11) \qquad \alpha(z)\alpha(y)\,d(z)\alpha(x)\,[\alpha(z)\,,\alpha(y)\,d(z)] = 0, \text{ for all } x,y,z \in I.$$

Replacing x by zx in (2.10) and left multiplying with $\alpha(y)$, we obtain that

(2.12)
$$\alpha(y)d(z)\alpha(z)\alpha(x) [\alpha(z), \alpha(y) d(z)] = 0$$
, for all $x, y, z \in I$.

Subtracting (2.11) from (2.12), we find that

$$[\alpha(z), \alpha(y) d(z)] \alpha(x) [\alpha(z), \alpha(y) d(z)] = 0$$
, for all $x, y, z \in I$

and so

$$\alpha(x) [\alpha(z), \alpha(y) d(z)] \alpha(r) \alpha(x) [\alpha(z), \alpha(y) d(z)] = 0$$
, for all $x, y, z \in I, r \in R$.

Since R is a semiprime ring, it follows that $\alpha(x) [\alpha(z), \alpha(y) d(z)] = 0$, for all $x, y, z \in I$. Replacing y with $\alpha^{-1}(d(z)) y$, we have

(2.13)
$$\alpha(x) \left[\alpha(z), d(z)\alpha(y) d(z)\right] = 0.$$

Replacing y by $y\alpha^{-1}(d(z))u$ in (2.13) and using this, we obtain that

$$\alpha(x) d(z)\alpha(y) [d(z), \alpha(z)]\alpha(u) d(z) = 0$$
, for all $x, y, z, u \in I$.

This implies that

$$\alpha(x) [d(z), \alpha(z)] \alpha(y) [d(z), \alpha(z)] \alpha(u) [d(z), \alpha(z)] = 0$$
, for all $x, y, z, u \in I$.

That is $(V[d(z), \alpha(z)])^3 = (0)$, for all $z \in I$ where $\alpha(I) = V$ is a nonzero left ideal of R. Since a semiprime ring contains no nonzero nilpotent left ideals, it follows that

$$V[d(z), \alpha(z)] = (0)$$

and so

$$\alpha(I)[d(z), \alpha(z)] = (0)$$
, for all $z \in I$.

The proof is completed. \Box

Theorem 2.2. Let R be a 2-torsion free semiprime ring, I a nonzero left ideal of R, α an automorphism on R and $F: R \to R$ a multiplicative generalized (α, α) -derivation of R associated with a multiplicative (α, α) -derivation d.

If $[d(x), F(y)] = \pm \alpha (xoy)$ for all $x, y \in I$, then $\alpha (I) [d(x), \alpha (x)] = (0)$ for all $x \in I$.

Proof. We assume that

$$[d(x), F(y)] = \pm \alpha (xoy), \text{ for all } x, y \in I.$$

Replacing x by xz in (2.14) and using this equation, we get

$$(2.15) d(x) [\alpha(z), F(y)] + \alpha(x) [d(z), F(y)] + [\alpha(x), F(y)] d(z) = \pm \alpha(x[z, y]).$$

Writing zx by x in (2.15), we find that

$$(2.16) \quad \begin{array}{l} d(z)\alpha(x)[\alpha(z)\,,F(y)] + \alpha(z)\,d(x)[\alpha(z)\,,F(y)] + \alpha(zx)\,[d(z),F(y)] \\ + \alpha(z)\,[\alpha(x)\,,F(y)]d(z) + [\alpha(z)\,,F(y)]\alpha(x)\,d(z) = \pm\alpha(zx[z,y])\,. \end{array}$$

Left multiplication of (2.15) by $\alpha(z)$ yields that

(2.17)
$$\alpha(z) d(x) [\alpha(z), F(y)] + \alpha(z) \alpha(x) [d(z), F(y)]$$

$$+ \alpha(z) [\alpha(x), F(y)] d(z) = \pm \alpha(z) \alpha(x[z, y]).$$

Subtracting (2.17) from (2.16), we have

$$(2.18) \ d(z)\alpha(x)[\alpha(z),F(y)]+[\alpha(z),F(y)]\alpha(x)d(z)=0, \text{ for all } x,y,z\in I.$$

The last expression is the same as the relation (2.5). Using the similar arguments as used in the Theorem 2.1, we get the required result. \Box

Similarly, following theorem is straightforward.

Theorem 2.3. Let R be a 2-torsion free semiprime ring, I a nonzero left ideal of R, α an automorphism on R and $F: R \to R$ a multiplicative generalized (α, α) -derivation of R associated with a multiplicative (α, α) -derivation d.

If
$$[d(x), F(y)] = 0$$
 for all $x, y \in I$, then $\alpha(I)[d(x), \alpha(x)] = (0)$ for all $x \in I$.

Theorem 2.4. Let R be a 2-torsion free semiprime ring, I a nonzero left ideal of R, α an automorphism on R and $F: R \to R$ a multiplicative generalized (α, α) -derivation of R associated with a multiplicative (α, α) -derivation d.

If $g: R \to R$ is a multiplicative derivation of R such that $F([x,y]) \pm [g(x),g(y)] \pm \alpha([x,y]) = 0$ for all $x,y \in I$, then $\alpha(I)[g(x),\alpha(x)] = (0)$ and $\alpha(I)[d(x),\alpha(x)] = (0)$ for all $x \in I$.

Proof. By the hypothesis, we have

(2.19)
$$F([x,y]) \pm [g(x),g(y)] \pm \alpha([x,y]) = 0$$
, for all $x,y \in I$.

Replacing yx instead of y in (2.19), we get

$$(2.20) \qquad F([x,y])\alpha\left(x\right) + \alpha\left([x,y]\right)d(x) \\ + [g(x),g(y)\alpha\left(x\right)] + [g(x),\alpha\left(y\right)g(x)] + \alpha\left([x,y]x\right) = 0.$$

Right multiplying (2.19) by $\alpha(x)$, we obtain

(2.21)
$$F([x,y])\alpha(x) \pm [g(x),g(y)]\alpha(x) \pm \alpha([x,y])\alpha(x) = 0$$
, for all $x,y \in I$.

Now subtracting (2.21) from (2.20), for all $x, y \in I$, we arrive at

(2.22)
$$\alpha([x,y]) d(x) + g(y)[g(x), \alpha(x)] + [g(x), \alpha(y) g(x)] = 0.$$

Substituting xy instead of y in (2.22), we obtain

(2.23)
$$\begin{array}{c} \alpha \left(x \right) \alpha \left(\left[x,y \right] \right) d(x) + g(x) \alpha \left(y \right) \left[g(x),\alpha \left(x \right) \right] \\ + \alpha \left(x \right) g(y) \left[g(x),\alpha \left(x \right) \right] + \alpha \left(x \right) \left[g(x),\alpha \left(y \right) g(x) \right] \\ + \left[g(x),\alpha \left(x \right) \right] \alpha \left(y \right) g(x) = 0. \end{array}$$

Left multiplying (2.22) by $\alpha(x)$ and then subtracting from (2.23), we find that

$$g(x)\alpha(y)[g(x),\alpha(x)] + [g(x),\alpha(x)]\alpha(y)g(x) = 0$$

and so

$$(2.24) g(x)\alpha(y)[g(x),\alpha(x)] = -[g(x),\alpha(x)]\alpha(y)g(x), \text{ for all } x,y \in I.$$

Replacing y with $y\alpha^{-1}(g(x))t$ in this equation, we have

$$(2.25) \quad g(x)\alpha\left(y\right)g\left(x\right)\alpha\left(t\right)\left[g(x),\alpha\left(x\right)\right] = -[g(x),\alpha\left(x\right)]\alpha\left(y\right)g\left(x\right)\alpha\left(t\right)g(x).$$

Now right multiplying (2.24) by $\alpha(t) g(x) \alpha(y) [g(x), \alpha(x)]$, for all $x, y, t \in I$, we get

$$(2.26) g(x)\alpha(y)[g(x),\alpha(x)]\alpha(t)g(x)\alpha(y)[g(x),\alpha(x)] = -[g(x),\alpha(x)]\alpha(y)g(x)\alpha(t)g(x)\alpha(y)[g(x),\alpha(x)].$$

Using (2.25), this equation gives that

$$(2.27) g(x)\alpha(y)[g(x),\alpha(x)]\alpha(t)g(x)\alpha(y)[g(x),\alpha(x)] = g(x)\alpha(y)g(x)\alpha(t)[g(x),\alpha(x)]\alpha(y)[g(x),\alpha(x)].$$

Again using (2.24), it reduces to

$$(2.28) g(x)\alpha(y)[g(x),\alpha(x)]\alpha(t)g(x)\alpha(y)[g(x),\alpha(x)] = -g(x)\alpha(y)[g(x),\alpha(x)]\alpha(t)g(x)\alpha(y)[g(x),\alpha(x)].$$

That is

$$2g(x)\alpha(y)[g(x),\alpha(x)]\alpha(t)g(x)\alpha(y)[g(x),\alpha(x)]=0$$
, for all $x,y,t\in I$.

Since R is 2-torsion free semiprime ring, we have

$$g(x)\alpha(y)[g(x),\alpha(x)]\alpha(t)g(x)\alpha(y)[g(x),\alpha(x)]=0$$
, for all $x,y,t\in I$.

Writing $tr, r \in R$ by t in this equation, we get

$$g(x)\alpha(y)[g(x),\alpha(x)]\alpha(t)\alpha(r)g(x)\alpha(y)[g(x),\alpha(x)] = 0.$$

This implies that

$$\alpha(t) g(x)\alpha(y) [g(x), \alpha(x)] R\alpha(t) g(x)\alpha(y) [g(x), \alpha(x)] = (0).$$

By the semiprimeness of R, we get

$$\alpha(t) g(x) \alpha(y) [g(x), \alpha(x)] = 0$$

and so

$$\alpha(y) [g(x), \alpha(x)] R\alpha(y) [g(x), \alpha(x)] = (0).$$

Since R is semiprime ring, we arrive at

(2.29)
$$\alpha(I)[g(x), \alpha(x)] = (0), \text{ for all } x \in I.$$

Now, replacing y with $ry, r \in R$ in (2.22) and using (2.29), we obtain

(2.30)
$$\begin{array}{c} \alpha \left(r \right) \alpha \left(\left[x,y \right] \right) d(x) + \alpha \left(\left[x,r \right] y \right) d(x) \\ + \alpha \left(r \right) g(y) \left[g(x),\alpha \left(x \right) \right] + \alpha \left(r \right) \left[g(x),\alpha \left(y \right) g(x) \right] \\ + \left[g(x),\alpha \left(r \right) \right] \alpha \left(y \right) g(x) = 0. \end{array}$$

Left multiplying (2.22) by $\alpha(r)$, we get

$$\alpha\left(r\right)\alpha\left(\left[x,y\right]\right)d(x) + \alpha\left(r\right)g(y)[g(x),\alpha\left(x\right)] + \alpha\left(r\right)\left[g(x),\alpha\left(y\right)g(x)\right] = 0.$$

Subtracting this equation from (2.30), we arrive at

$$(2.31) \quad \alpha\left([x,r]y\right)d(x) + [g(x),\alpha\left(r\right)]\alpha\left(y\right)g(x) = 0, \text{ for all } x,y,\in I, r\in R.$$

Replacing yx by y in (2.31), we get

$$(2.32) \quad \alpha\left(\left[x,r\right]yx\right)d(x) + \left[g(x),\alpha\left(r\right)\right]\alpha\left(yx\right)g(x) = 0, \text{ for all } x,y,\in I, r\in R.$$

Right multiplying (2.31) by $\alpha(x)$ and subtracting from (2.32), we obtain

$$\alpha\left([x,r]y\right)\left[d(x),\alpha(x)\right]+\left[g(x),\alpha\left(r\right)\right]\alpha(y)\left[g(x),\alpha(x)\right]=0.$$

Using $\alpha(I)[g(x), \alpha(x)] = (0)$ in this equation, we find that

$$\alpha\left([x,r]y\right)\left[d(x),\alpha\left(x\right)\right]=0.$$

By (2.31), we get

$$[\alpha(x), r]\alpha(y)[d(x), \alpha(x)] = 0$$
, for all $x, y \in I, r \in R$.

In particular, $[d(x), \alpha(x)]\alpha(y)[d(x), \alpha(x)] = 0$, and so

$$\alpha(y) [d(x), \alpha(x)] R\alpha(y) [d(x), \alpha(x)] = (0)$$
, for all $x, y \in I$.

By the semiprimeness of R yields that $\alpha(I)[d(x),\alpha(x)]=(0)$ for all $x\in I$. This completes the proof. \square

Theorem 2.5. Let R be a 2-torsion free semiprime ring, I a nonzero left ideal of R, α an automorphism on R and $F: R \to R$ a multiplicative generalized (α, α) -derivation of R associated with a multiplicative (α, α) -derivation d.

If $g: R \to R$ is a multiplicative derivation of R such that $F(xoy) \pm g(x)og(y) \pm \alpha(xoy) = 0$ for all $x, y \in I$, then $\alpha(I)[g(x), \alpha(x)] = (0)$ and $\alpha(I)[d(x), \alpha(x)] = (0)$ for all $x \in I$.

Proof. By our hypothesis, we have

(2.33)
$$F(xoy) \pm g(x)og(y) \pm \alpha (xoy) = 0, \text{ for all } x, y \in I.$$

Replacing yx by y in (2.33), we find that

$$F(xoy)\alpha \left(x\right) +\alpha \left(xoy\right) d\left(y\right) +g(x)o\left(g(y)\alpha \left(x\right) +\alpha \left(y\right) g\left(x\right) \right) \pm \alpha \left(xoy\right) \alpha \left(x\right) =0$$

and so

$$(2.34) \qquad F(xoy)\alpha\left(x\right) + \alpha\left(xoy\right)d\left(x\right) + \left(g(x)og(y)\right)\alpha\left(x\right) \\ -g\left(y\right)\left[g\left(x\right),\alpha\left(x\right)\right] + \left(g(x)o\alpha(y)\right)g\left(x\right) + \alpha\left(xoy\right)\alpha\left(x\right) = 0.$$

Right multiplying (2.33) by $\alpha\left(x\right)$ and subtracting from (2.34), for all $x,y\in I,$ we get

(2.35)
$$\alpha(xoy) d(x) - g(y) [g(x), \alpha(x)] + (g(x)o\alpha(y)) g(x) = 0.$$

Substituting xy instead of y in (2.35), we obtain

$$(2.36) \quad \begin{array}{l} \alpha(x)\alpha\left(xoy\right)d\left(x\right) - \alpha\left(x\right)g\left(y\right)\left[g\left(x\right),\alpha\left(x\right)\right] - g\left(x\right)\alpha(y)\left[g\left(x\right),\alpha\left(x\right)\right] \\ + \alpha\left(x\right)\left(g(x)o\alpha(y)\right)g\left(x\right) - \left[g\left(x\right),\alpha\left(x\right)\right]\alpha\left(y\right)g\left(x\right) = 0. \end{array}$$

Left multiplying (2.35) by y and subtracting from (2.36), we have

$$g(x)\alpha(y)[g(x),\alpha(x)] + [g(x),\alpha(x)]\alpha(y)g(x) = 0$$

and so

$$g(x)\alpha(y)[g(x),\alpha(x)] = -[g(x),\alpha(x)]\alpha(y)g(x)$$
, for all $x,y \in I$.

This equation is same as the relation (2.24). Using the similar arguments, we get the required result. \Box

REFERENCES

- 1. M. A. ASHRAF, S. ALI and A. ALI: Some commutativity theorems for rings with generalized derivations. Southeast Asian Bull. Math. 31 (2007), 415-421.
- M. ASHRAF and N. REHMAN: On derivations and commutativity in prime rings. East-West J. Math. 3(1) (2001), 87-91.
- 3. M. Brešar: On the distance of the compositions of two derivations to the generalized derivations. Glasgow Math. J. 33(1) (1991), 89-93.
- 4. M. N. DAIF: When is a multiplicative derivation additive?. Int. J. Math. Math. Sci. 14(3) (1991), 615-618.
- 5. M. N. Daif and H. E. Bell: Remarks on derivations on semiprime rings. Int. J. Math. Math. Sci. 15(1) (1992), 205-206.
- 6. M. N. Daif and M. S. Tamman El-Sayiad: Multiplicative generalized derivation which are additive. East-West J. Math. 9(1) (1997), 31-37.
- 7. B. Dhara and S. Ali: On multiplicative (generalized) derivation in prime and semiprime rings. Aequat. Math. 86 (2013), 65-79.
- 8. B. Dhara, S. Ali and A. Pattanayak: *Identities with generalized derivations in a semiprime rings*. Demonstratio Mathematica. **XLVI(3)** (2013), 453-460.
- 9. B. Dhara, S. Kar and S. Kuila: A note on multiplicative (generalized) derivations and left ideals in semiprime rings. Rendiconti del Circolo Matematico di Palermo Series 2. DOI: 10.1007/s12215-020-00515-4.
- 10. H. GOLDMAN and P. ŠEMRL: Multiplicative derivations on C(X). Monatsh Math. **121(3)** (1969), 189-197.
- 11. Ö. Gölbaşı: Multiplicative generalized derivations on ideals in semiprime rings. Math. Slovaca. **66(6)** (2016), 1285-1296.
- 12. E. Koç and Ö. Gölbaşı: Multiplicative generalized derivations on Lie ideals in semiprime rings. Palastine Journal of Mathematics. 6 (2017), 219-227.
- 13. W. S. Martindale III: When are multiplicative maps additive? Proc. Amer. Math. Soc. 21 (1969), 695-698.
- 14. M. A. Quadri, M. S. Khan and N. Rehman: Generalized derivations and commutativity of prime rings. Indian J. Pure Appl. Math. **34(9)** (2003), 1393-1396.