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NOTES ON LEFT IDEALS OF SEMIPRIME RINGS WITH
MULTIPLICATIVE GENERALIZED (a,«) — DERIVATIONS

Ercan Ulutag and Oznur Golbasi

Sivas Cumhuriyet University
Faculty of Science, Department of Mathematics, 58140 Sivas, Turkey

Abstract. Let R be a 2—torsion free semiprime ring, I a nonzero left ideal of R, o an
automorphism on R and F : R — R a multiplicative (generalized) (a, o) —derivation
of R associated with a multiplicative (o, a) —derivation d. In this note, we will give the
description of commutativity of semiprime rings with help of some identities involving
a multiplicative generalized (o, @) —derivation and a nonzero left ideal of R.
Keywords: Derivations, ideals, semiprime rings.

1. Introduction

Let R will be an associative ring with center Z. For any =,y € R the symbol
[z, y] represents commutator xy — yz and the Jordan product zoy = zy+ yx. Recall
that a ring R is prime if for z,y € R, xRy = (0) implies either z = 0 or y = 0 and
R is semiprime if for z € R, xRz = (0) implies = 0.

An additive mapping d : R — R is called a derivation if d(zy) = d(x)y + xd(y)
holds for all z,y € R. An immediate example of a derivation is the inner derivation
(i.e., a mapping * — [a,x], where a is a fixed element). By the generalized inner
derivation we mean an additive mapping F : R — R such that for fixed elements
a,b € R, F(x) = ax + xb for all x € R. It observed that F satisfies the relation
F(zy) = F(x)y + zI_p(y) for all z,y € R, where I_y(y) = [—b,y] is the inner
derivation of R associated with the element (—b). Motivated by these observations,
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M. Bresar [3] introduced the notion of generalized derivation. Accordingly, a gen-
eralized derivation F': R — R is an additive mapping which is uniquely determined
by a derivation d such that F(xy) = F(xz)y + zd(y), for all z,y € R. Obviously,
every derivation is a generalized derivation. Thus, generalized derivations cover
both the concept of derivations and left multipliers (i.e., an additive mapping such
that F(xy) = F(z)y, for all ,y € R). Generalized derivations have been primarily
studied on operator algebras.

In [4], the notion of multiplicative derivation was introduced by Daif motivated
by Martindale in [13]. d : R — R is called a multiplicative derivation if d(zy) =
d(x)y 4+ xd(y) holds for all z,y € R. These maps are not additive. In [10], Goldman
and Semrl gave the complete description of these maps. We have R = C[0,1],
the ring of all continuous (real or complex valued) functions and define a mapping
d: R — R such as

d(f)(x)z{ f@)log|f(@)|,  f(z) #0 }

0, otherwise

It is clear that d is a multiplicative derivation, but d is not additive.

On the other hand, the notion of multiplicative generalized derivation was ex-
tended by Daif and Tamman El-Sayiad in [6]. F : R — R is called a multi-
plicative generalized derivation if there exists a derivation d : R — R such that
F(zy) = F(x)y + zd(y), for all x,y € R. Dhara and Ali gave a slight generalization
of this definition taking d is any mapping (not necessarily an additive mapping or
a derivation) in [7]. Hence, one may observe that the concept of multiplicative gen-
eralized derivations includes the concept of derivations, generalized derivations and
the left multipliers.

Over the last several years, a number of authors studied commutativity theo-
rems for prime rings or semiprime rings admitting automorphisms or derivations on
appropriate subsets of R. Herstein proved that if R is a 2—torsion free prime ring
with a nonzero derivation d of R such that [d(x),d(y)] = 0, for all z,y € R, then
R is commutative ring. In [5], Daif and Bell proved that R is semiprime ring, I
is a nonzero ideal of R and d is a derivation of R such that d([z,y]) = %[z, y], for
all z,y € I, then R contains a nonzero central ideal. Many authors extended these
classical theorems to the class of derivations. (see [1], [2], [8], [9], [11], [12] for a
partial bibliography).

In the present paper, we generalize the concept of multiplicative generalized
derivations to multiplicative generalized (o, o) —derivations. A mapping d: R — R
(not necessarily additive) is called a multiplicative (o, «) —derivation if there exists
amap « : R — R such that d(zy) = d(z)a(y) + a(z)d(y), for all z,y € R. A
mapping F : R — R (not necessarily additive) is called a multiplicative general-
ized (a, o) —derivation if F(xy) = F(z)a(y) + a(z)d(y), for all x,y € R, where d
is a multiplicative («, @) —derivation of R. Of course a multiplicative generalized
(1,1)—derivation where 1 is the identity map on R is a multiplicative generalized
derivation. So, it would be interesting to extend some results concerning these no-
tions to multiplicative generalized (a, a) —derivations. Our aim is to investigate
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some identities with multiplicative generalized («, «) —derivations on a nonzero left
ideal of semiprime ring R.

2. Results

Throughout the paper, R be a 2—torsion free semiprime ring, I a nonzero
left ideal of R, o an automorphism on R and F a multiplicative (generalized)
(v, ) —derivation of R associated with a multiplicative (a, a)—derivation d. Also,
we will make some extensive use of the basic commutator identities:

D) [2,y2] = ylz, 2] + [2,y]2

i) [y, 2] = [z, 2]y + 2y, 2]

ili) axyoz = (xoz)y + x[y, 2] = x(yoz) — [z, 2]y

)
)
)
iv) zoyz = y(xoz) + [x,y]z = (voy)z — y[z, x]
V) 2y, 2] 0 = 2y 2o o + 2 a(2)]y = 2ly, a(2)] + [2, 2], 0 ¥
vi) [2,92]4 0 = ) [z, 2], 0 + [2,0]6,0 a(2)

)

vii) (220Y)a,a = 2(20Y)a,a — [, a(y)]2.

We remind some well known results which will be useful in our proofs:

Fact : Let R be a semiprime ring, then

i) The center of R contains no nonzero nilpotent elements.

ii) If P is a nonzero prime ideal of R and a,b € R such that aRb C P, then either
a€ PorbeP.

iii) The center of a nonzero one sided ideal is contained in the center of R. In
particular, any commutative one sided ideal is contained in the center of R.

Lemma 2.1. [12, Lemma 5] Let R be a 2—torsion-free semiprime ring and I a
nonzero ideal of R. If [I,I] C Z, then R is a commutative ring.

Theorem 2.1. Let R be a 2—torsion free semiprime ring, I a nonzero left ideal
of R, a an automorphism on R and F' : R — R a multiplicative generalized
(o, @) —derivation of R associated with a multiplicative (o, a)— derivation d.

If [d(z), F(y)] = o ([z,y]) for all z,y € I, then o (I) [d(z),a (x)] = (0) for all
el

Proof. By the hypothesis, we have

(2.1) [d(z), F(y)] = £a ([z,y]), for all z,y € I.
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Replacing 2z by = in (2.1) and using this, we get

(2.2) d(x)[a(z), F(y)] + [a(z), F(y)]d(z) =0, for all z,y,z € I.
Replacing zz by z in (2.2), we have

d(z)a (z) [a (2), F(y)] + )
ta(z)[a(@), Fy)ld(z) + o (2), F(y)la(z)d(z) = 0.

(2.3)
Left multiplying (2.2) by a/(z), we arrive at

(2.4) a(z)d@)|a(z),Fy)] +a(z)|a(z), F(y)ld(z) =0, for all z,y,z € I.
Subtracting (2.4) from (2.3), we find that

(2:5)  d(z)a(z)la(z), F(y)] +[a(2), F(y)la(z)d(z) =0, Yo, y,z € I.
That is

(2.6) d(z)e(z) [a(2), F(y)] = —[a(2), F(y)la(z) d(2), Va,y,z € L.

Replacing = with za =1 (d(2)) t in this equation, we have

(2.7) d(z)a(z) d(z)e (1) [ (2), F(y)] = = (2) , F(y)]ex (2) d(z)a (£) d(2),
’ Ve,y,z,t € 1.

That is

2d(2)a (z) [a(2), F(y)]a (t)d(z)a (z) [a(2), F(y)] =0, for all z,y,z,t € 1.

Q

Since R is 2—torsion free semiprime ring, we get

d(z)a(z) [a(2), F(y)]a(t)d(z)a(z) [a(z), F(y)] =0, for all x,y,z,t € 1.
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Replacing ¢ with r¢,r € R in this equation and left multiplying with « (¢) gives that

a(t)d(z)a(z)[o(2), F(y)|Ra () d(z)o (z) [ (2) , F(y)] = (0),
for all z,y,z,t € I,r € R.

Since R is semiprime ring, we have
a(t)d(z)a(z)o(z), F(y)] =0

and so
Vd(z)V]a(z), F(y)] = (0), for all y,z € I.

where a(I) =V is a nonzero left ideal of R.

Let {P,|a € I} be a family of prime ideals of R such that NP, = (0). We can
say
Vd(z) C P, or V[a(z), F(y)] C P,

and so
[a (2), F(y)]Vd(z) C Po or d(2)V[a (), F(y)] € Pa.

By (2.6), [a(2), F(y)]Vd(z) C P, implies that d(z)V]a (z), F(y)] C P, and so,
d(2)V]a(z), F(y)] € NP,.

That is
d(2)V[a(z),F(y)] = (0), for all y,z € I.

Hence we have d(z)a (z) [a(2), F(y)] = 0 for all z,y,z € I. Replacing y by yz in
this equation and using this, we get

(2.10) d(z)a(z)[a(2),a(y)d(z)] =0, for all z,y,z € I.
Left multiplying with « (zy) this equation, we have
(2.11) a(z)a(y)dz)a(z) [a(z),a(y)d(z)] =0, for all z,y,z € I.
Replacing 2 by zz in (2.10) and left multiplying with « (y), we obtain that
(2.12) a(y)d(z)a(z)a (z) [a(z),a(y)d(z)] =0, for all x,y,z € I.
Subtracting (2.11) from (2.12), we find that
@ (), () d)o (@) [0 (2) a (5) d()] =0, for all z,y,2 € T

and so

a(z)[a(z),a(y)dz)]a(r)a (@) [a(z),a(y)d(z)] =0, for all z,y,z € I,r € R.

Since R is a semiprime ring, it follows that « (z) [a (2), a (y) d(z)] = 0, for all x,y, z
€ I. Replacing y with ! (d(2)) y, we have

(2.13) a (@) [a(2),d(z)a (y) d(z)] = 0.
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Replacing y by ya~! (d(z)) w in (2.13) and using this, we obtain that
a(x)d(z)a(y) [d(z), o (2)]a(u)d(z) =0, for all x,y,z,u € I.
This implies that
a(z)[d(z),a(2)]a(y) [d(z), a(2)]a(u) [d(z),a(2)] =0, for all z,y,z,u € I.

That is (V[d(2), « (2)])® = (0), for all z € I where a(I) = V is a nonzero left ideal of
R. Since a semiprime ring contains no nonzero nilpotent left ideals, it follows that

and so
a(l)[d(z),a(z)] = (0), for all z € I.

The proof is completed. [

Theorem 2.2. Let R be a 2—torsion free semiprime ring, I a nonzero left ideal
of R, a an automorphism on R and F' : R — R a multiplicative generalized
(o, &) —derivation of R associated with a multiplicative (o, o) —derivation d.

If [d(x), F(y)] = £a (zoy) for all x,y € I, then o (I)[d(z),a (z)] = (0) for all
zel

Proof. We assume that

(2.14) [d(x), F(y)] = £a(zoy), for all z,y € I.

Replacing « by zz in (2.14) and using this equation, we get

(2.15)d(z)[r (2) , F(y)] + (@) [d(2), F(y)] + [ (2) , F(y)ld(2) = +a (z]z,9]) -
Writing zz by  in (2.15), we find that

(2.16) Fa@lale), Fy)l +a(z)d@)a(2), Fy)] + o (2)[d2), F(y)]
' Fa(2) o (z), F(y)ld(z) + [a (2), F(y))e () d(z) = :

Left multiplication of (2.15) by « (2) yields that

o (2)d(@)[a (), F@)] + a (2) a (2) [d(2), F(y)]
(217) +a(2) o (2), Fy)]d(z) = %a () a (a]2,3]) -

Subtracting (2.17) from (2.16), we have
(2.18) d(z)a(z)[a(z),F(y)] + [a(2), F(y)]a(x)d(z) =0, for all z,y,z € I.

The last expression is the same as the relation (2.5). Using the similar arguments
as used in the Theorem 2.1, we get the required result. O
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Similarly, following theorem is straightforward.

Theorem 2.3. Let R be a 2—torsion free semiprime ring, I a nonzero left ideal
of R, a an automorphism on R and F : R — R a multiplicative generalized
(o, @) —derivation of R associated with a multiplicative (o, a)— derivation d.

If [d(x), F(y)] =0 for all z,y € I, then o (I) [d(x), o (x)] = (0) for all x € I.

Theorem 2.4. Let R be a 2—torsion free semiprime ring, I a nonzero left ideal
of R, a an automorphism on R and F : R — R a multiplicative generalized
(o, &) —derivation of R associated with a multiplicative (o, o)) —derivation d.

If g : R — R is a multiplicative derivation of R such that F([x,y])x[g(z), g(y)] =
a([z,y]) =0 for all x,y € I, then a(I) [g(z),a (z)] = (0) and o (1) [d(z), (z)] =
0) for all z € I.

Proof. By the hypothesis, we have
(2.19) F(lz,y]) £ [9(x),9(¥)] £ a([z,y]) =0, for all z,y € I.

Replacing yz instead of y in (2.19), we get

F(le, v)a (2) + o ([, 4]) d(z)
(2:20) Hgla), (@) ()] + [9(2), o (4) 9(2)] + a ([z,9)) = 0.

Right multiplying (2.19) by « (z), we obtain

(2.21) F([z,y])a () £ [g(z), g(y)]a (z) £ a ([z,y]) a (z) = 0, for all z,y € I.

Now subtracting (2.21) from (2.20), for all z,y € I, we arrive at

(2.22) a([z,y])d(z) + 9(y)lg(z), a (2)] + [g(2), a (y) g(x)] = 0.

Substituting xy instead of y in (2.22), we obtain

a(z)a(z,y])d(z) + g(z)a (y) [9(x), o (z)]
(2.23) +a(2) g(y)lg(w), o ()] +a(w) [9(z),a (y) g(x)]
+g(@), a(z)]a(y) g(z) =

Left multiplying (2.22) by « (z) and then subtracting from (2.23), we find that

9(@)a(y) [9(x), o ()] + [9(2), o ()] (y) g(x) = O

and so

(2.24)  g(@)a(y) [g(z),a ()] = —[g(), a (z)]a(y) g(x), for all z,y € T.

Replacing y with ya~=!(g(x))t in this equation, we have

(2.25) g(@)a(y) g (z)a(t)[9(z), a(x)] = —[g(x), a ()] (y) g (z) a (t) ().
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Now right multiplying (2.24) by « (t) g(x)a (y) [g(x), a (z)], for all z,y,t € I, we
get
(2.26) g(x)a(y) [g(z), a (2)la (1) g(z)e (y) [9(x), @ ()]

' = —lg(@), a (@] (y) g(z)a (1) g(x)a (y) [9(2), a (2)].

Using (2.25), this equation gives that

g(@)a W) [9(x), a ()]a (1) ,
(227) = g(@)a () g (x) a () [9(z), o (=)o () [g

Again using (2.24), it reduces to

g(@)a (y) [9(x), o ()] (t)
(2.28) ( (@

That is
2g(x)a (y) [9(x), a ()] (t) g(z)a (y) [9(z), a ()] = 0, for all z,y,t € I.
Since R is 2—torsion free semiprime ring, we have
g(@)a (y) lg(x), o ()]a (t) g(x)ex (y) [9(2), o ()] = 0, for all z,y,t € 1.
Writing ¢r,r € R by t in this equation, we get
g9(@)a(y) [9(z), o ()] (t) alr)g(@)ex (y) [9(x), o (2)] = 0.

This implies that

By the semiprimeness of R, we get

a(t) g(z)a(y)[g(z),a ()] =0

and so
a(y) [9(z), o (z)|Ra(y) [g(z), o (z)] = (0).

Since R is semiprime ring, we arrive at
(2.29) a(I)[g(z),a(x)] = (0), for all z € I.

Now, replacing y with ry,r € R in (2.22) and using (2.29), we obtain

a(r)a([z,y]) d(x) + o ([z,rly) d(z)
(2.30) +a(r)g(y)lg(r), a ()] + Oé(?“)[ (), e (y) g()]
+lg(2), e (r)]a(y) g(x) =
)

Left multiplying (2.22) by « (r), we get

a(r)a([z,y]) dz) +a(r) g(y)g(z), a (@) + a(r) [g(z),a (y) g(x)] = 0.



Notes on left ideals of semiprime rings 911

Subtracting this equation from (2.30), we arrive at

(2.31) a([z,r]y)d(z) + [g(z), a (r)]a(y) g(x) =0, for all z,y,€ I,r € R.
Replacing yz by y in (2.31), we get

(2.32) a([z,r|yx)d(z) + [g(z), a (r)]a (yz) g(x) = 0, for all z,y, € I,r € R.
Right multiplying (2.31) by « () and subtracting from (2.32), we obtain

a([z,rly) [d(z), a(@)] + [9(z), a (r)]a(y)[g(z), a(z)] = 0.

Using a (1) [g(z), @ (z)] = (0) in this equation, we find that
a([z,rly) [d(x), a ()] = 0.
By (2.31), we get
[a(z),r]a(y) [dz),a(x)] =0, for all z,y € I,r € R.

Indparticular, [d(2), a(z)]a(y) [d(z), a(x)] =0,
a(y) [d(z), a (z)]Ra (y) [d(x), a (x)] = (0), for all x,y € I.

By the semiprimeness of R yields that « (I)[d(z),« (z)] = (0) for all € I. This
completes the proof. [

Theorem 2.5. Let R be a 2—torsion free semiprime ring, I a nonzero left ideal
of R, a an automorphism on R and F' : R — R a multiplicative generalized
(o, @) —derivation of R associated with a multiplicative (o, a)— derivation d.

If g : R — R is a multiplicative derivation of R such that F(zoy) £ g(x)og(y) =
a(zoy) =0 for allz,y € I, then o (I) [g(z), a (z)] = (0) and o (I) [d(z),  (x)] = (0)
forallxz e 1.

Proof. By our hypothesis, we have
(2.33) F(zoy) £ g(x)og(y) £ o (xoy) =0, for all z,y € I.
Replacing yz by y in (2.33), we find that
F(zoy)a (z) + a(zoy) d(y) + g(z)o (9(y)a () + a(y) g (z)) £ a(zoy) a(z) =0
and so

(2.34) F(zoy)a (x) + o (zoy) d (x) + (g(x)og(y)) o (x)
' -9 () g (z),a ()] + (9(z)oaly)) g (z) + o (zoy) a (z) = 0.

Right multiplying (2.33) by « (z) and subtracting from (2.34), for all z,y € I, we
get

(2.35) a(zoy)d(x) —g(y)lg (), a(x)] + (9(x)oa(y)) g (z) = 0.
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Substituting xy instead of y in (2.35), we obtain

(2.36) @a(zoy)d(@) —a(z)g Ey)[ g(x),a(@)] —g(x) (y)[g(x),a(x)]

+a(z) (9(z)oaly)) g (x) — g (v) , a(x)la(y) g (x) =

Left multiplying (2.35) by y and subtracting from (2.36), we have

g(@)a(y)[9(x), ()] + [g(2), a (z)]a (y) g(z) = 0

and so

g(x)a(y) l9(x), o ()] = =[g(x), a (x)]a (y) g(x), for all z,y € I.

This equation is same as the relation (2.24). Using the similar arguments, we get
the required result. O
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