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NOTES ON LEFT IDEALS OF SEMIPRIME RINGS WITH
MULTIPLICATIVE GENERALIZED (α, α)− DERIVATIONS
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Abstract. Let R be a 2−torsion free semiprime ring, I a nonzero left ideal of R, α an
automorphism on R and F : R → R a multiplicative (generalized) (α, α)−derivation
of R associated with a multiplicative (α, α)−derivation d. In this note, we will give the
description of commutativity of semiprime rings with help of some identities involving
a multiplicative generalized (α, α)−derivation and a nonzero left ideal of R.
Keywords: Derivations, ideals, semiprime rings.

1. Introduction

Let R will be an associative ring with center Z. For any x, y ∈ R the symbol
[x, y] represents commutator xy−yx and the Jordan product xoy = xy+yx. Recall
that a ring R is prime if for x, y ∈ R, xRy = (0) implies either x = 0 or y = 0 and
R is semiprime if for x ∈ R, xRx = (0) implies x = 0.

An additive mapping d : R → R is called a derivation if d(xy) = d(x)y + xd(y)
holds for all x, y ∈ R. An immediate example of a derivation is the inner derivation
(i.e., a mapping x → [a, x], where a is a fixed element). By the generalized inner
derivation we mean an additive mapping F : R → R such that for fixed elements
a, b ∈ R,F (x) = ax + xb for all x ∈ R. It observed that F satisfies the relation
F (xy) = F (x)y + xI−b(y) for all x, y ∈ R, where I−b(y) = [−b, y] is the inner
derivation of R associated with the element (−b). Motivated by these observations,
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M. Brešar [3] introduced the notion of generalized derivation. Accordingly, a gen-
eralized derivation F : R→ R is an additive mapping which is uniquely determined
by a derivation d such that F (xy) = F (x)y + xd(y), for all x, y ∈ R. Obviously,
every derivation is a generalized derivation. Thus, generalized derivations cover
both the concept of derivations and left multipliers (i.e., an additive mapping such
that F (xy) = F (x)y, for all x, y ∈ R). Generalized derivations have been primarily
studied on operator algebras.

In [4], the notion of multiplicative derivation was introduced by Daif motivated
by Martindale in [13]. d : R → R is called a multiplicative derivation if d(xy) =
d(x)y+xd(y) holds for all x, y ∈ R. These maps are not additive. In [10], Goldman
and Šemrl gave the complete description of these maps. We have R = C[0, 1],
the ring of all continuous (real or complex valued) functions and define a mapping
d : R→ R such as

d(f)(x) =

{
f(x) log |f(x)| , f(x) 6= 0

0, otherwise

}
.

It is clear that d is a multiplicative derivation, but d is not additive.

On the other hand, the notion of multiplicative generalized derivation was ex-
tended by Daif and Tamman El-Sayiad in [6]. F : R → R is called a multi-
plicative generalized derivation if there exists a derivation d : R → R such that
F (xy) = F (x)y+ xd(y), for all x, y ∈ R. Dhara and Ali gave a slight generalization
of this definition taking d is any mapping (not necessarily an additive mapping or
a derivation) in [7]. Hence, one may observe that the concept of multiplicative gen-
eralized derivations includes the concept of derivations, generalized derivations and
the left multipliers.

Over the last several years, a number of authors studied commutativity theo-
rems for prime rings or semiprime rings admitting automorphisms or derivations on
appropriate subsets of R. Herstein proved that if R is a 2−torsion free prime ring
with a nonzero derivation d of R such that [d(x), d(y)] = 0, for all x, y ∈ R, then
R is commutative ring. In [5], Daif and Bell proved that R is semiprime ring, I
is a nonzero ideal of R and d is a derivation of R such that d([x, y]) = ±[x, y], for
all x, y ∈ I, then R contains a nonzero central ideal. Many authors extended these
classical theorems to the class of derivations. (see [1], [2], [8], [9], [11], [12] for a
partial bibliography).

In the present paper, we generalize the concept of multiplicative generalized
derivations to multiplicative generalized (α, α)−derivations. A mapping d : R→ R
(not necessarily additive) is called a multiplicative (α, α)−derivation if there exists
a map α : R → R such that d(xy) = d(x)α(y) + α(x)d(y), for all x, y ∈ R. A
mapping F : R → R (not necessarily additive) is called a multiplicative general-
ized (α, α)−derivation if F (xy) = F (x)α(y) + α(x)d(y), for all x, y ∈ R, where d
is a multiplicative (α, α)−derivation of R. Of course a multiplicative generalized
(1, 1)−derivation where 1 is the identity map on R is a multiplicative generalized
derivation. So, it would be interesting to extend some results concerning these no-
tions to multiplicative generalized (α, α)−derivations. Our aim is to investigate
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some identities with multiplicative generalized (α, α)−derivations on a nonzero left
ideal of semiprime ring R.

2. Results

Throughout the paper, R be a 2−torsion free semiprime ring, I a nonzero
left ideal of R, α an automorphism on R and F a multiplicative (generalized)
(α, α)−derivation of R associated with a multiplicative (α, α)−derivation d. Also,
we will make some extensive use of the basic commutator identities:

i) [x, yz] = y[x, z] + [x, y]z

ii) [xy, z] = [x, z]y + x[y, z]

iii) xyoz = (xoz)y + x[y, z] = x(yoz)− [x, z]y

iv) xoyz = y(xoz) + [x, y]z = (xoy)z − y[z, x]

v) [xy, z]α,α = x [y, z]α,α + [x, α(z)] y = x[y, α(z)] + [x, z]α,α y

vi) [x, yz]α,α = α(y) [x, z]α,α + [x, y]α,α α(z)

vii) (xz ◦ y)α,α = x(z ◦ y)α,α − [x, α(y)]z.

We remind some well known results which will be useful in our proofs:

Fact : Let R be a semiprime ring, then

i) The center of R contains no nonzero nilpotent elements.

ii) If P is a nonzero prime ideal of R and a, b ∈ R such that aRb ⊆ P, then either
a ∈ P or b ∈ P.

iii) The center of a nonzero one sided ideal is contained in the center of R. In
particular, any commutative one sided ideal is contained in the center of R.

Lemma 2.1. [12, Lemma 5] Let R be a 2−torsion-free semiprime ring and I a
nonzero ideal of R. If [I, I] ⊆ Z, then R is a commutative ring.

Theorem 2.1. Let R be a 2−torsion free semiprime ring, I a nonzero left ideal
of R, α an automorphism on R and F : R → R a multiplicative generalized
(α, α)−derivation of R associated with a multiplicative (α, α)−derivation d.

If [d(x), F (y)] = ±α ([x, y]) for all x, y ∈ I, then α (I) [d(x), α (x)] = (0) for all
x ∈ I.

Proof. By the hypothesis, we have

[d(x), F (y)] = ±α ([x, y]) , for all x, y ∈ I.(2.1)
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Replacing xz by x in (2.1) and using this, we get

d(x)[α (z) , F (y)] + [α (x) , F (y)]d(z) = 0, for all x, y, z ∈ I.(2.2)

Replacing zx by x in (2.2), we have

d(z)α (x) [α (z) , F (y)] + α (z) d(x)[α (z) , F (y)]
+α (z) [α (x) , F (y)]d(z) + [α (z) , F (y)]α (x) d(z) = 0.

(2.3)

Left multiplying (2.2) by α (z) , we arrive at

α (z) d(x)[α (z) , F (y)] + α (z) [α (x) , F (y)]d(z) = 0, for all x, y, z ∈ I.(2.4)

Subtracting (2.4) from (2.3), we find that

d(z)α (x) [α (z) , F (y)] + [α (z) , F (y)]α (x) d(z) = 0, ∀x, y, z ∈ I.(2.5)

That is

d(z)α (x) [α (z) , F (y)] = −[α (z) , F (y)]α (x) d(z), ∀x, y, z ∈ I.(2.6)

Replacing x with xα−1 (d(z)) t in this equation, we have

d(z)α (x) d(z)α (t) [α (z) , F (y)] = −[α (z) , F (y)]α (x) d(z)α (t) d(z),
∀x, y, z, t ∈ I.(2.7)

Right multiplying (2.6) by α (t) d(z)α (x) [α (z) , F (y)], we get

d(z)α (x) [α (z) , F (y)]α (t) d(z)α (x) [α (z) , F (y)]
= −[α (z) , F (y)]α (x) d(z)α (t) d(z)α (x) [α (z) , F (y)].

(2.8)

Using (2.7), it yields that

d(z)α (x) [α (z) , F (y)]α (t) d(z)α (x) [α (z) , F (y)]
= d(z)α (x) d(z)α (t) [α (z) , F (y)]α (x) [α (z) , F (y)].

(2.9)

Using (2.5), (2.9) reduces to

d(z)α (x) [α (z) , F (y)]α (t) d(z)α (x) [α (z) , F (y)]
= −d(z)α (x) [α (z) , F (y)]α (t) d(z)α (x) [α (z) , F (y)].

That is

2d(z)α (x) [α (z) , F (y)]α (t) d(z)α (x) [α (z) , F (y)] = 0, for all x, y, z, t ∈ I.

Since R is 2−torsion free semiprime ring, we get

d(z)α (x) [α (z) , F (y)]α (t) d(z)α (x) [α (z) , F (y)] = 0, for all x, y, z, t ∈ I.
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Replacing t with rt, r ∈ R in this equation and left multiplying with α (t) gives that

α (t) d(z)α (x) [α (z) , F (y)]Rα (t) d(z)α (x) [α (z) , F (y)] = (0),
for all x, y, z, t ∈ I, r ∈ R.

Since R is semiprime ring, we have

α (t) d(z)α (x) [α (z) , F (y)] = 0

and so
V d(z)V [α (z) , F (y)] = (0), for all y, z ∈ I.

where α(I) = V is a nonzero left ideal of R.

Let {Pα|α ∈ I} be a family of prime ideals of R such that ∩Pα = (0). We can
say

V d(z) ⊆ Pα or V [α (z) , F (y)] ⊆ Pα
and so

[α (z) , F (y)]V d(z) ⊆ Pα or d(z)V [α (z) , F (y)] ⊆ Pα.

By (2.6), [α (z) , F (y)]V d(z) ⊆ Pα implies that d(z)V [α (z) , F (y)] ⊆ Pα and so,

d(z)V [α (z) , F (y)] ⊆ ∩Pα.

That is
d(z)V [α (z) , F (y)] = (0), for all y, z ∈ I.

Hence we have d(z)α (x) [α (z) , F (y)] = 0 for all x, y, z ∈ I. Replacing y by yz in
this equation and using this, we get

d(z)α (x) [α (z) , α (y) d(z)] = 0, for all x, y, z ∈ I.(2.10)

Left multiplying with α (zy) this equation, we have

α (z)α(y) d(z)α (x) [α (z) , α (y) d(z)] = 0, for all x, y, z ∈ I.(2.11)

Replacing x by zx in (2.10) and left multiplying with α (y) , we obtain that

α(y)d(z)α(z)α (x) [α (z) , α (y) d(z)] = 0, for all x, y, z ∈ I.(2.12)

Subtracting (2.11) from (2.12), we find that

[α (z) , α (y) d(z)]α (x) [α (z) , α (y) d(z)] = 0, for all x, y, z ∈ I

and so

α (x) [α (z) , α (y) d(z)]α(r)α (x) [α (z) , α (y) d(z)] = 0, for all x, y, z ∈ I, r ∈ R.

Since R is a semiprime ring, it follows that α (x) [α (z) , α (y) d(z)] = 0, for all x, y, z
∈ I. Replacing y with α−1 (d(z)) y, we have

α (x) [α (z) , d(z)α (y) d(z)] = 0.(2.13)
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Replacing y by yα−1 (d(z))u in (2.13) and using this, we obtain that

α (x) d(z)α (y) [d(z), α (z)]α (u) d(z) = 0, for all x, y, z, u ∈ I.

This implies that

α (x) [d(z), α (z)]α (y) [d(z), α (z)]α (u) [d(z), α (z)] = 0, for all x, y, z, u ∈ I.

That is (V [d(z), α (z)])3 = (0), for all z ∈ I where α(I) = V is a nonzero left ideal of
R. Since a semiprime ring contains no nonzero nilpotent left ideals, it follows that

V [d(z), α (z)] = (0)

and so
α(I)[d(z), α (z)] = (0), for all z ∈ I.

The proof is completed.

Theorem 2.2. Let R be a 2−torsion free semiprime ring, I a nonzero left ideal
of R, α an automorphism on R and F : R → R a multiplicative generalized
(α, α)−derivation of R associated with a multiplicative (α, α)−derivation d.

If [d(x), F (y)] = ±α (xoy) for all x, y ∈ I, then α (I) [d(x), α (x)] = (0) for all
x ∈ I.

Proof. We assume that

[d(x), F (y)] = ±α (xoy) , for all x, y ∈ I.(2.14)

Replacing x by xz in (2.14) and using this equation, we get

d(x)[α (z) , F (y)] + α (x) [d(z), F (y)] + [α (x) , F (y)]d(z) = ±α (x[z, y]) .(2.15)

Writing zx by x in (2.15), we find that

d(z)α(x)[α (z) , F (y)] + α (z) d(x)[α (z) , F (y)] + α (zx) [d(z), F (y)]
+α (z) [α (x) , F (y)]d(z) + [α (z) , F (y)]α (x) d(z) = ±α (zx[z, y]) .

(2.16)

Left multiplication of (2.15) by α (z) yields that

α (z) d(x)[α (z) , F (y)] + α (z)α (x) [d(z), F (y)]
+α (z) [α (x) , F (y)]d(z) = ±α (z)α (x[z, y]) .

(2.17)

Subtracting (2.17) from (2.16), we have

d(z)α(x)[α (z) , F (y)] + [α (z) , F (y)]α (x) d(z) = 0, for all x, y, z ∈ I.(2.18)

The last expression is the same as the relation (2.5). Using the similar arguments
as used in the Theorem 2.1, we get the required result.
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Similarly, following theorem is straightforward.

Theorem 2.3. Let R be a 2−torsion free semiprime ring, I a nonzero left ideal
of R, α an automorphism on R and F : R → R a multiplicative generalized
(α, α)−derivation of R associated with a multiplicative (α, α)−derivation d.

If [d(x), F (y)] = 0 for all x, y ∈ I, then α (I) [d(x), α (x)] = (0) for all x ∈ I.

Theorem 2.4. Let R be a 2−torsion free semiprime ring, I a nonzero left ideal
of R, α an automorphism on R and F : R → R a multiplicative generalized
(α, α)−derivation of R associated with a multiplicative (α, α)−derivation d.

If g : R→ R is a multiplicative derivation of R such that F ([x, y])±[g(x), g(y)]±
α ([x, y]) = 0 for all x, y ∈ I, then α (I) [g(x), α (x)] = (0) and α (I) [d(x), α (x)] =
(0) for all x ∈ I.

Proof. By the hypothesis, we have

F ([x, y])± [g(x), g(y)]± α ([x, y]) = 0, for all x, y ∈ I.(2.19)

Replacing yx instead of y in (2.19), we get

F ([x, y])α (x) + α ([x, y]) d(x)
+[g(x), g(y)α (x)] + [g(x), α (y) g(x)] + α ([x, y]x) = 0.

(2.20)

Right multiplying (2.19) by α (x), we obtain

F ([x, y])α (x)± [g(x), g(y)]α (x)± α ([x, y])α (x) = 0, for all x, y ∈ I.(2.21)

Now subtracting (2.21) from (2.20), for all x, y ∈ I, we arrive at

α ([x, y]) d(x) + g(y)[g(x), α (x)] + [g(x), α (y) g(x)] = 0.(2.22)

Substituting xy instead of y in (2.22), we obtain

α (x)α ([x, y]) d(x) + g(x)α (y) [g(x), α (x)]
+α (x) g(y)[g(x), α (x)] + α (x) [g(x), α (y) g(x)]
+[g(x), α (x)]α (y) g(x) = 0.

(2.23)

Left multiplying (2.22) by α (x) and then subtracting from (2.23), we find that

g(x)α (y) [g(x), α (x)] + [g(x), α (x)]α (y) g(x) = 0

and so

g(x)α (y) [g(x), α (x)] = −[g(x), α (x)]α (y) g(x), for all x, y ∈ I.(2.24)

Replacing y with yα−1(g(x))t in this equation, we have

g(x)α (y) g (x)α (t) [g(x), α (x)] = −[g(x), α (x)]α (y) g (x)α (t) g(x).(2.25)
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Now right multiplying (2.24) by α (t) g(x)α (y) [g(x), α (x)], for all x, y, t ∈ I, we
get

g(x)α (y) [g(x), α (x)]α (t) g(x)α (y) [g(x), α (x)]
= −[g(x), α (x)]α (y) g(x)α (t) g(x)α (y) [g(x), α (x)].

(2.26)

Using (2.25), this equation gives that

g(x)α (y) [g(x), α (x)]α (t) g(x)α (y) [g(x), α (x)]
= g(x)α (y) g (x)α (t) [g(x), α (x)]α (y) [g(x), α (x)].

(2.27)

Again using (2.24), it reduces to

g(x)α (y) [g(x), α (x)]α (t) g(x)α (y) [g(x), α (x)]
= −g(x)α (y) [g(x), α (x)]α (t) g(x)α (y) [g(x), α (x)].

(2.28)

That is

2g(x)α (y) [g(x), α (x)]α (t) g(x)α (y) [g(x), α (x)] = 0, for all x, y, t ∈ I.

Since R is 2−torsion free semiprime ring, we have

g(x)α (y) [g(x), α (x)]α (t) g(x)α (y) [g(x), α (x)] = 0, for all x, y, t ∈ I.

Writing tr, r ∈ R by t in this equation, we get

g(x)α (y) [g(x), α (x)]α (t)α(r)g(x)α (y) [g(x), α (x)] = 0.

This implies that

α (t) g(x)α (y) [g(x), α (x)]Rα (t) g(x)α (y) [g(x), α (x)] = (0).

By the semiprimeness of R, we get

α (t) g(x)α (y) [g(x), α (x)] = 0

and so
α (y) [g(x), α (x)]Rα (y) [g(x), α (x)] = (0) .

Since R is semiprime ring, we arrive at

α (I) [g(x), α (x)] = (0), for all x ∈ I.(2.29)

Now, replacing y with ry, r ∈ R in (2.22) and using (2.29), we obtain

α (r)α ([x, y]) d(x) + α ([x, r]y) d(x)
+α (r) g(y)[g(x), α (x)] + α (r) [g(x), α (y) g(x)]
+[g(x), α (r)]α (y) g(x) = 0.

(2.30)

Left multiplying (2.22) by α (r) , we get

α (r)α ([x, y]) d(x) + α (r) g(y)[g(x), α (x)] + α (r) [g(x), α (y) g(x)] = 0.
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Subtracting this equation from (2.30), we arrive at

α ([x, r]y) d(x) + [g(x), α (r)]α (y) g(x) = 0, for all x, y,∈ I, r ∈ R.(2.31)

Replacing yx by y in (2.31), we get

α ([x, r]yx) d(x) + [g(x), α (r)]α (yx) g(x) = 0, for all x, y,∈ I, r ∈ R.(2.32)

Right multiplying (2.31) by α (x) and subtracting from (2.32), we obtain

α ([x, r]y) [d(x), α(x)] + [g(x), α (r)]α(y)[g(x), α(x)] = 0.

Using α (I) [g(x), α (x)] = (0) in this equation, we find that

α ([x, r]y) [d(x), α (x)] = 0.

By (2.31), we get

[α (x), r]α(y) [d(x), α (x)] = 0, for all x, y ∈ I, r ∈ R.

In particular, [d(x), α (x)]α (y) [d(x), α (x)] = 0,
and so

α (y) [d(x), α (x)]Rα (y) [d(x), α (x)] = (0), for all x, y ∈ I.

By the semiprimeness of R yields that α (I) [d(x), α (x)] = (0) for all x ∈ I. This
completes the proof.

Theorem 2.5. Let R be a 2−torsion free semiprime ring, I a nonzero left ideal
of R, α an automorphism on R and F : R → R a multiplicative generalized
(α, α)−derivation of R associated with a multiplicative (α, α)−derivation d.

If g : R→ R is a multiplicative derivation of R such that F (xoy)± g(x)og(y)±
α (xoy) = 0 for all x, y ∈ I, then α (I) [g(x), α (x)] = (0) and α (I) [d(x), α (x)] = (0)
for all x ∈ I.

Proof. By our hypothesis, we have

F (xoy)± g(x)og(y)± α (xoy) = 0, for all x, y ∈ I.(2.33)

Replacing yx by y in (2.33), we find that

F (xoy)α (x) + α (xoy) d (y) + g(x)o (g(y)α (x) + α (y) g (x))± α (xoy)α (x) = 0

and so

F (xoy)α (x) + α (xoy) d (x) + (g(x)og(y))α (x)
−g (y) [g (x) , α (x)] + (g(x)oα(y)) g (x) + α (xoy)α (x) = 0.

(2.34)

Right multiplying (2.33) by α (x) and subtracting from (2.34), for all x, y ∈ I, we
get

α (xoy) d (x)− g (y) [g (x) , α (x)] + (g(x)oα(y)) g (x) = 0.(2.35)
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Substituting xy instead of y in (2.35), we obtain

α(x)α (xoy) d (x)− α (x) g (y) [g (x) , α (x)]− g (x)α(y)[g (x) , α (x)]
+α (x) (g(x)oα(y)) g (x)− [g (x) , α (x)]α (y) g (x) = 0.

(2.36)

Left multiplying (2.35) by y and subtracting from (2.36), we have

g(x)α (y) [g(x), α (x)] + [g(x), α (x)]α (y) g(x) = 0

and so

g(x)α (y) [g(x), α (x)] = −[g(x), α (x)]α (y) g(x), for all x, y ∈ I.

This equation is same as the relation (2.24). Using the similar arguments, we get
the required result.
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