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A NOTE ON SOME SYSTEMS OF GENERALIZED SYLVESTER
EQUATIONS *

Jovana Nikolov Radenkovié

Faculty of Sciences and Mathematics, University of Nis, Serbia

Abstract. In this paper, we study two systems of generalized Sylvester operator equa-
tions. We derive necessary and sufficient conditions for the existence of a solution and
provide the general form of a solution. We extend some recent resuts to more general
settings.
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1. Introduction

Let H, K, F, G, L, M, N be complex Hilbert spaces and let B(#,K) denote
the set of all bounded linear operators from H to K. For a given A € B(H,K),
the symbols N (A) and R(A) denote the null space and the range of operator A,
respectively. The identity operator is always denoted by I. If A € B(H,K) has a
closed range, then there exists unique operator X € B(K, H) satisfying the following
equations

(1) AXA=A (2) XAX = X (3) (AX)" = AX (4) (XA)* = XA.

Such operator is called the Moore-Penrose inverse of an operator A € B(H,K)
which is denoted by Af. If X € B(K,H) satisfies the equation (1), i.e. AXA = A,
then X is an inner generalized inverse of A, and is usually denoted by A~. For
A € B(H,K) there exists a Moore-Penrose inverse, if and only if there exists its
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inner generalized inverse if and only if R(A) is closed. In this case, we say that A
is regular. Furthermore, L4 and R4 stand for two projections Ly = I — ATA and
Ry =1— AAT. induced by A, respectively.

In this paper, we study two systems of generalized Sylvester operator equations

(1.1) A1 Xq —XoBy =C1, AxX3—XoBy =0y,

where A; € B(H,K), By € B(F,G), C, € B(F,K), Ay € B(M,K), By € B(L,G),
Cy € B(L,K), and

(1.2) A1 Xy — XoBy =C1, AxXo — X3Bs = (s,

where A1 € B(H,K), By € B(F,G), Ch € B(F,K), As € B(K, M), By € B(G,N),
Cy € B(G,M).

Systems of such type of matrix equations have been considered by many authors
[3, 4, 5, 6, 7]. In this pape,r we extended recent results [7] on systems of quaternion
matrix equations to infinite dimensional settings and provide much simpler proofs
to existing conditions.

2. Main results

The following two lemmas play a key role in this paper:

Lemma 2.1. [1] Let A € B(H,K), B € B(F,G) and C € B(F,K) be such that
R(A) and R(B) are closed. Then the operator equation

AXB=C

is consistent if and only if
AACB B =C,

for some A~ and B~, in which case the general solution is given by
X=A"CB +Y - A"AYBB™,
for arbitrary Y € B(G,H).

Lemma 2.2. [2] Let E,F,G,D, N, M be Banach spaces. Let Ay € B(F,E), Ay €
B(F,N), B; € B(D,G), Bs € B(M,G) and

T:=(Ig—Bi1B{)By and S:=Ay(Ip— A7 A1)

be all reqular. Moreover, let Ay AT C1 By By = Cy and AyA; CoB5 By = Co. Then
the equations

AlXBl = Cl and AQXBQ = CQ

have a common solution if and only if

(Iy — S8 )Co(Iny — T™T) = (In — SS™)Ay A7 C1 By By(Ipy — T™T).
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In this case, the general common solution is given by

X = (ATC1—(Ip — AT A1)ST(AATC, —W))B] (Ig — BeT~(Ig — B1By))
+((Ip—(Up —ATA1)S  A)ATV +(Ip — AT A1)S™Co)T (I — B1By)
+Z — (A7 A1+ (Ip — AT A)S™8)Z(B1By +TT (I — B1By)),

where
vV = ClBl_BQ(I]\/[ —T7T)+ AlAQ_(IN —SST)CT™T + AATQT™T
—AlAg(IN — SS_)AQAIQT_T,
w = (IN — SS’)AQAl_Cl + SSng(IM — TiT)BQ_Bl + SSipBl_Bl

—S8S8~PB; By(In — T~ T)B; By,

in which P,Q, Z are arbitrary elements of B(D,N), B(M, E) and B(G, F), respec-
tively.

Note that in the preceding lemmas, in the solvability conditions and formulas
for general solutions, arbitrary inner generalized inverses can be replaced by the
Moore-Penrose inverse. For example, in Lemma 2.1, if

AACB B=C
holds for some A~ and B, then
AATCB'B = AAT(AA-CB~B)B'B=AA"CB B =_C.

Conversly, if
AATCB'B=C

holds, then for arbitrary A~ and B~ it follows
AA~CB™B = AA=(AATCB'B)B~B = AATCB'B = C.

So, for A~ and B~ in the solvability conditions and formulas for general solutions,
we can choose exactly AT and BT, respectively.

Theorem 2.1. Let Ay € B(H,K), B, € B(F,G), C1 € B(F,K), Ay € B(M,K),
By € B(L,G), Cy € B(L,K) be such that Ay, Aa, By, Ba, S and T are all regular.
Put

T=(—-BB)By, §=(I—A,A)A Al
C = (I — A2 AD)(Cy — (I — 4, AD)CyBIBy) (I = TTT).
The following statements are equivalent:

(i) The system (1.1) is consistent;
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(ZZ) RA1C1L31 = 0, RA2CQL32 = 0, Rsc = 0,’
(iii) Ra,C1Lp, =0, C(I — (B2L1)"(BaL7)) =0, RsC = 0.

In this case, the general solution to the system (1.1) is given by

X, = AlST (R4, CL + W)BIBy + Al ZB, — A15152B, + AlCy + La, R,

Xy = (—RA1C1 -I-ST(RAlCl -|-W)) BI(]_ BQTT)
+ (I = SYRA,V — STCo) T+ Z — (I — A1 A} + ST9)Z2(B,B] + TT"),

X3 = A (~Ra,C1 — ST(Ra,C1 + W)) B B2 Ly
+ AL (I = SHRA,V + S1Cy) TTB,
+ AL ZBy — AN(I — AJ Al + S1S)Z(B1BI By + T) + ALCy + La,Y,

where

V = —Ru,C1BIByLp — Ra, Ra,Rs R, CoT'T
+ RA,QT'T — Ro,Ra,RsRA,RA, QT'T

and

W = —RsRa,Ra,C1 — SSTCo Ly BI B,
+SSTPBIB, — SS'PBIB, LBl B,

where P, Q, R and Y are arbitrary elements of B(F,K), B(G,K), B(F,H) and
B(L,K), respectively.

Proof. (i) = (i9): Since the system (1.1) is consistent, there exists Xo € B(G,K)
such that equations

A Xy - XoBy =C
A2X3 - XQBQ = CQ

are solvable for X; and X3, respectively. According to Lemma 2.1 equation
A1 Xy — XoB) =C,

is solvable for Xj if and only if

(2.1) (I — A1 AD)(C1 4 X2By) = 0,

and equation
A X3 — XoBy = Cs
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is solvable for X5 if and only if
(2.2) (I — Ay AD)(Co 4 X3By) = 0.
So, from (2.1) and (2.2) it follows that equations
(I — A, ANX,By = —(1 — AL ADCy,
(2.3) (I — AsAb) X By = —(I — Ay A))Cs

have a common solution. From Lemma 2.1 and Lemma 2.2 system (2.3) is consistent
if and only if
(I — A ADCy (I — BIBy)
(I — Ay ADCo(I — BiB,) =
(I-8SHo =0

0,
0,

(#4) = (i): If (#) holds, then by Lemma 2.2 it follows that system (2.3) is
consistent. Let Xo € B(G, K) be the solution to the system (2.3) and let X; =
AJ{(XQBl +Ch) and X5 = A;(XQBQ + C5). Then it is easy to see that such X, X5
and X3 satisfy (1.1).

(#4) = (4i1): Suppose that

(24) (I = A ADCy (I - B{By) =0,
(2.5) (I = A ADCy (I = B{By) =0
and

(2.6) (I-SsHc =0

hold. From (2.6) we get

C(I — (ByLt)Y(ByL1))

= CU = (Bl = TD)!(Bo(l = T'T)
(- AT~ TITYI — (BolI - TTT)) (BalI - TVT)))

—(I = A, AD)(T — Ay AD)Cy BBy (1 = TTT)(I = (Bo(I = T'T)) (By(I = TTT)))
= (I - AAD)Cy(I = T'T)(I — (Bo(I = TTT))(By(I = T'T)))
= (I — A ANCyBIBy(I — TTT) (I — (Bo(I — TYT)) (Bo(I — TTT)))
= 0.
(#41) = (it): Suppose that

(2.7) (I - A ADC(I - B{By) =0,
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(2.8) C(I — (By(I —TTT) (Bo(I —T'T))) =0
and
(2.9) (I-SsHhc =0

hold. From (2.8) we get

Ra,Co(I — TTT)(I — (Bo(I — TTT)) (B (I — TTT)))
Ru,Ra,C1B]{Bo(I — T'T) L, (1 iy

(2.10) = 0.
Note that
(I-T'T)Lp,
= (I—((I-BiB})By) (I - B\B)Ba)(I — BIBy)
I — BlB,
(2.11) = Lg,,

so from (2.11) and (2.10) we get

R4,CoLp,
= R, Co(I —T'T)Lg,
= Ru,Co(I —T'T)(By(I —T'T))' By(I — T'T)Lp,
= Ru,Co(I —T'T)(By(I —T'T))'(I —T'Rp,)BoLp,
= 0.
Suppose that system (1.1) is consistent.

Since Xy € B(G, K) is a solution to (1.1) if and only if it satisfies (2.3), its
general form, according to Lemma 2.2, is given by

Xy = (=Ra,C1 + ST(RA,C1 + W)) B{(I — B,T")
+((I = SHRA,V — STCo) TT
+Z—(I- A AL+ STS)Z(By Bl + TTH,
where Z is an arbitrary element of B(G, K), and
V = —Ru,C1BIByLy — Ra, Ra,Rs R, CoT'T
+ RA,QT'T — Ro, Ra,RsRA,RA, QT'T
and

W = —RgRa,Ra,C1 — SSTCo Ly BI B,
+SSTPBIB, — SS'PBIB, LBl B,
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where P and @ are arbitrary elements of B(F,K) and B(G, K).

From the first equation in (1.1) we have
A1 Xy = XoBy + Cy,
so, by Lemma 2.1 we get
X; = A{(X2B; + C1) + L, R
= AlSY(RA,CL + W)BIB, + A1 ZB, — A1S1SZB) + AlCy + L4, R,

where R is an arbitrary element of B(F,H).

From the second equation in (1.1) we have
Ax X3 = XoBs + O,
so, by Lemma 2.1 we get
X3 = AL(XoBy + Co) + La,Y
= A} (~Ra,C1 — ST(Ra,C1 +W)) B{ Bo Ly

+ AL (I = SHYR4,V + 51C,) TTB,

+ AL ZBy — AL(1 — A1 AT + ST8)Z(By B By + T) + AL Cy + La,Y,
where Y is an arbitrary element of B(L£,K). O
Theorem 2.2. Let A; € B(H,K), By € BIM, L), C; € BIM,K), As € B(K,N),

By € B(L,G), Cy € B(L,N) be such that Ay, As, By, Ba, S and T are all regular.
Put

T=(I-BB)I-BIB,), §=A4A,

C = (I — (A3 A1) (A2 A1) 1) (Cy + A (I — A1 A])C1 B])(I — B By).
The following statements are equivalent:
(i) The system (1.2) is consistent;
(19) Ra,C1Lp, =0, Ry,CoLp, =0, CLy =0;
(iii) Ra,CiLp, =0, (I — Ra,a, Az(Ra,a, A2)HC =0, CLy = 0.

In this case, the general solution to the system (1.2) is given by
X, = AlSTARA, ) + AISTWBI B, + Al(1 — SHYV B,
+ Al ZB, — AIS'SZB, + AICy + Ra, R,

Xy = (—Ra,C1 + ST(AsR4,C1 + W) BI(I - T7)
+ ((I — STA2)RA1V + STOQLBQ) ’T]L
+Z—(Ra, +519)Z(B,Bl + TT"),
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X3 = As (—Ra,C1 + ST(AsR4,C1 + W) BI(I — T)B]
+ Ao (I - SYA2)RA,V + STCoLp,) TTB]
+ AyZB) — Ay(Ra, + 518)Z(By Bl + TT"B — C4B) + YRp,,

where
V = —Ra,CiBILp, Ly + Ra,QT'T — Ry, AlRg A3 RA, QT'T

and
W = —RgAsR,Cy + SSTCoLp, B) + SSTPBIB, — SSTPBILp, B,

with P,Q, Z andY arbitrary elements of B(F,K), B(N,K), B(G,K), and BN, M),

respectively.

Proof. (i) = (ii): Since the system (1.1) is consistent, there exists
X2 € B(G,K) such that equations

A1X1 —XoB1 =C4
A Xy — X3By = ()

are solvable for X; and X3, respectively. According to Lemma 2.1 equation
(2.12) A1 Xy — XoB =C,

is solvable for X; if and only if

(2.13) (I — A, AN (Cy + X3By) =0

and equation

(2.14) As Xy — X3By = Cs

is solvable for X3 if and only if

(2.15) (A2 X2 — Co)(I — ByBs) = 0.

So, from (2.13) and (2.15) it follows that equations

(I - A ADNX,B, = —(1 — A, AD)Cy,
(2.16) Ay Xo(I — B{By) = Co(I — B By)
have a common solution. From Lemma 2.1 and Lemma 2.2 system (2.16) is consis-
tent if and only if
(I - AANCI(I - BIBy) =0,
(I — A2 AN)Co(I — BIB2) =0,
C'(I-T'T) =0,



A note on some systems of generalized Sylvester equations 457

where
C' = (I - S8 (Cy+ Ax(I — AL ADCLBN(I — BIB,).

Note that condition
(2.17) C'(I-T'T)=0
is equivalent to
(2.18) C(I-T'T) =0,
since (2.17) implies
C(I-T'T)
= Ruayn,(Cy+ Ay(I — A ANC BN L, Ly
= Rua,n,55T(Co+ Ag(I — AL ANC B L, Ly
= Ruaya, As A ATST(Cy + Ay(1 — A ADCY B L, Ly
= O’
and (2.18) implies
C'(I —-T'T)
= Rg(Cy+ Ay(I — A ANC, BN Lp, Ly
= Rg(A2A1)(A2A)(Cy + Ay(I — A ANCBY) L, Ly
= (I — (AA AN (A AL AT (A A1) (A A1) (Cy + Ay (I — A1 AT)Cy By ) Lp, Ly
0.
I follows that
(I— A ANC (I - BiBy)

(I — A2 AN)Co(I — BIBy)
C(I-T'T)=0.

207
207

(#1) = (i): If (4¢) holds, then by Lemma 2.2 it follows that system (2.16) is
consistent. Let Xy € B(G,K) be the solution to the system (2.16) and let X7 =
AJ{(XQBl +C1) and X5 = (A2 X5 — OQ)B;. Then it is easy to see that such X7, X»
and X3 satisfy (1.2).

(#4) = (#i1): Suppose that

(2.19) (I - A ADCy (I - B{By) =0,

(2.20) (I — Ay ADCo(I — BIBy) =0
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and
(2.21) C(I-T'T)=0.
From (2.20) we obtain
(I - RAzAlAQ(RAzAlAQ)T)C
= (I - Ra,a,As(Ra,a,A2)")Ra,a,(Ca+ Ag(I — A1 A))C1BY) L,
(I - RAzAlAQ(R/hAlAQ)T)RAzAlCQLBz
+(I - RA2A1A2(RA2A1AQ)T)RA2A1A2(I - AlADClBILBz
= (I_ RA2A1AQ(RAzAlAQ)T)RAzAlAQAECQLBz
= 0.

(#9) = (4i1): Suppose that

(2.22) (I — A ADCL (I - BIBy) =0,
(2.23) (I — Rayn, As(Ra,n,A2)HC =0
and

(2.24) C(I-T'T)=0.

From (2.23) we get
(I — AyA})Cy(I — BIB,)
= (I-AA)C
= (I = AsA})Raga, As(Raya,45)'C
= 0.

Suppose that system (1.2) is consistent. Since Xo € B(G, K) is a solution to (1.2)
if and only if it is solution to (2.16), its general form, according to Lemma 2.2, is
given by

Xy = (~Ra,C1 + ST(AsR4,C1 + W) BI(I - TT)
+ ((I = STA2)RA,V + STCoLp,) T'
+Z—(Ra, +519)Z(B,B] + TT"),

where
V = —Ru,CiBl L, Ly + Ra,QTTT — Ry, ASRs A R4, QT'T
and

W = —RgA3Ra,Cy + SSTCyLp, B, + SSTPBIB, — SSTPB] L, B,
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with P, Q, Z arbitrary elements of B(F, M), B(G,K) and B(G, K), respectively.
From the first equation in (1.2) we have

A1 Xy = XoBy + Cy,
so, by Lemma 2.1 we get

X, = Al(XoBy +Cy) + La,R
= AlSY(AyRA,CL + W)BIB, + A1 ZB, — A1S1SZB, + AICy + L, R,

where R is an arbitrary element of B(F, H).

From the second equation in (1.2) we have
X3By = A2 Xy — Cs,
so, by Lemma 2.1 we get

X5 = (42X, — Co)Bl + Y Rp,
= Ay (~Ra,C1 + S (AsR4,Cy + W) Bi(I - T") B}
+ Ao (I — STA2)RA,V + STCoLp,) TTB]
+ AyZB) — Ay(Ra, +519)Z(ByB] + TT" B} — €4 B + YRg,),

where Y is an arbitrary element of B(N, M). O

REFERENCES

1. A. BEN-ISRAEL, T. N. E. GREVILLE, Generalized Inverse: Theory and Applications,
2nd Edition, Springer, New York, 2003.

2. A. DaJic, Common solutions of linear equations in ring, with applications, Electron.
J. Linear Algebra, 30 (2015), 66-79.

3. S.G. LEE, Q.P. Vu, Simultaneous solutions of matriz equations and simultaneous
equivalence of matrices, Linear Algebra Appl., 437 (2012), 2325-2339.

4. Y. H. Liu, Ranks of solutions of the linear matriz equation AX +Y B = C. Comput.
Math. Appl., 52 (2006), 861-872.

5. Q.W. WaANG, Z.H. HE, Solvability conditions and general solution for the mized
Sylvester equations, Automatica, 49 (2013), 2713-2719.

6. Z.H. HE, Q.W. WANG, A pair of mized generalized Sylvester matriz equations, Journal
of Shanghai University (Natural Science), 20 (2014), 138-156.

7. Z.-H. HE, Q.-W. WANG, Y. ZHANG, A system of quaternary coupled Sylvester-type
real quaternion matrix equations, Automatica, 87 (2018), 25-31.



