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Abstract. In this paper, we study existence, uniqueness and Ulam-Hyers stability of
solutions for integro-differential equations involving two fractional orders. By using
Banach’s fixed point theorem, we obtain some sufficient conditions for the existence
and uniqueness of solution for the mentioned problem. Furthermore, we derive the
Ulam-Hyers stability and the generalized Ulam-Hyers stability of solution. At the end,
an illustrative example is discussed.
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1. Introduction and Preliminaries

Fractional type differential equations have recently been studied by several sci-
entific researchers due to the fact that they are valuable tools in the modelling
of various problems in sciences and engineering such physics, biology, chemistry,
economics, signal theory, etc. For more details, see [13, 14, 16, 17, 19, 20] and ref-
erence therein. Many studies on differential equations of fractional order, involving
different fractional operators such as Riemann-Liouville fractional derivative [6, 9],
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Caputo fractional derivative [8, 24], Hadamard fractional derivative [1, 25],Caputo-
Hadamard fractional derivative [15, 22] and Atangana-Baleanu-Caputo fractional
derivative [18] have appeared during the past several years. Moreover, by using
many classical fixed-point theorems, several authors presented the existence and
stability results for various classes of fractional differential equations, see for ex-
ample [4, 7, 8, 11, 12, 23]. Recently, considerable attention has been given to
the study of the Ulam-Hyers and Ulam-Hyers-Rassias stability of fractional dif-
ferential equations. Since then, a large number of papers have been published in
connection with various generalizations of Ulam’s type stability theory or the Ulam-
Hyers stability theory. For the advanced contribution on Ulam’s type stability, we
refer to [2, 3, 5, 10, 21]and reference therein. In this work, we discuss the ex-
istence, uniqueness and the Ulam stability, generalized Ulam-Hyers stability and
Ulam-Hyers-Rassias stability for nonlinear fractional differential equation with two
Caputo-Hadamard-type fractional derivatives of the form

C
HD

β [CHD
α + λ]u(t) = ϕ(t, u(t)) +H Iθψ(t, u(t)), t ∈ J = [1, e]

aHIpu(η) = γ1, b
HIqu(ξ) = γ2, 1 < η, ξ < e,

(1.1)

where 0 < α, β ≤ 1, θ, p, q > 0, CHD
β and C

HD
α are the Caputo-Hadamard fractional

derivatives, HIρ, ρ ∈ {θ, p, q} are the Hadamard fractional integrals, with a, b, λ, γ1

and γ2 are real constants and f, g : J ×R→ R are given continuous functions. The
operator HIρ is the Hadamard fractional integral given by:

HIρφ (t) =
1

Γ (ρ)

∫ t

a

(
log

t

s

)ρ−1
φ (s)

s
ds, ρ > 0,

where Γ (ρ) =
∫∞

0
e−xxρ−1dx. The operator C

HD
ρ is the Caputo-Hadamard frac-

tional derivative defined by:

C
HD

ρφ(t) =
1

Γ (n− ρ)

∫ t

a

(
log

t

s

)n−ρ−1

δn
φ(s)

s
ds,

where n − 1 < ρ < n, n = [ρ] + 1, δ = t ddt , [ρ] denotes the integer part of ρ and
log (.) = loge (.) .

We recall the following lemma [12, 15].

Lemma 1.1. Let x ∈ Cnδ ([a, b] ,R) . Then

HIρ
(
CHDρu

)
(t) = u(t)−

n−1∑
i=0

ci(log t)i, ci ∈ R,

where Cnδ ([a, b] ,R) =
{
φ : [a, b]→ R : δn−1φ ∈ C ([a, b] ,R)

}
.

Also, we denote by W = C (J,R) the Banach space of all continuous functions
from J to R endowed with the norm defined by ‖u‖ = sup {|u (t)| : t ∈ J}.
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Now, to study the Hyers–Ulam stability of the problem (1.1), we give the fol-
lowing definitions [3].

Definition 1.1. The fractional boundary value problem (1.1) is Ulam-Hyers stable
if there exists a real number µϕ,ψ > 0 such that for each ϑ > 0 and for each solution
v ∈W of the inequality∣∣C

HD
β
(
C
HD

α + λ
)
v (t)− ϕ (t, v (t))−H Iθψ (t, v (t))

∣∣ ≤ ϑ, t ∈ J,(1.2)

there exists a solution u ∈W of fractional boundary value problem (1.1) with

|v (t)− u (t)| ≤ µϕ,ψϑ, t ∈ J.

Definition 1.2. The fractional boundary value problem (1.1) is generalized Ulam-
Hyers stable if there exists hϕ,ψ ∈ C(R+,R+), hϕ,ψ (0) = 0, such that for each
solution v ∈W of the inequality (1.2) there exists a solution u ∈W of the fractional
boundary value problem (1.1) with

|v (t)− u (t)| ≤ hϕ,ψ (ϑ) , t ∈ J.

Definition 1.3. The fractional boundary value problem (1.1) is Ulam-Hyers-Rass-
ias stable with respect to g ∈ W if there exists a real number µϕ,ψ > 0 such that
for each ϑ > 0 and for each solution v ∈ X of the inequality∣∣C

HD
β
(
C
HD

α + λ
)
v (t)− ϕ (t, v (t))−H Iθψ (t, v (t))

∣∣ ≤ ϑg (t) , t ∈ J,(1.3)

there exists a solution u ∈W of problem (1.1) with

|v (t)− u (t)| ≤ µϕ,ψϑg (t) , t ∈ J.

Definition 1.4. The fractional boundary value problem (1.1) is generalized Ulam-
Hyers-Rassias stable with respect to g ∈W if there exists a real number µϕ,ψ,g > 0
such that for each solution v ∈W of the inequality∣∣C

HD
β
(
C
HD

α + λ
)
v (t)− ϕ (t, v (t))−H Iθψ (t, v (t))

∣∣ ≤ g (t) , t ∈ J,(1.4)

there exists a solution u ∈W of problem (1.1) with

|v (t)− u (t)| ≤ µϕ,ψ,gg (t) , t ∈ J.

Remark 1.1. A function v ∈ W is a solution of the inequality (1.2) if and only if there
exists a function F : [1, e]→ R such that

(i) |F (t)| ≤ ϑ, t ∈ J.
(ii) C

HD
α
(
C
HD

β + λ
)
v (t) = ϕ (t, v (t)) + HIθψ (t, v (t)) + F (t) , t ∈ J.

Remark 1.2. Clearly,

(1) Definition 1.1 ⇒ Definition 1.2

(2) Definition 1.3 ⇒ Definition 1.4
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2. Existence and uniqueness of solution

Lemma 2.1. Assume that Π 6= 0. For a given ϕ ∈ C([1, e],R), the solution of the
linear Caputo-Hadamard fractional differential equation

C
HD

β(CHD
α + λ)u(t) = f(t), t ∈ J, 0 < α, β ≤ 1,(2.1)

subject to the Hadamard fractional integral conditions

aHIpu(η) = γ1, b
HIqu(ξ) = γ2, 1 < η, ξ < e,(2.2)

is given by

u (t) =

∫ t

1

(
log t

s

)α+β−1

Γ (α+ β)
f (s) ds− λ

∫ t

1

(
log t

s

)α−1

Γ (α)
u (s) ds

+
(log t)

α
∆2 −∆1Γ (α+ 1)

Γ (α+ 1) Π

(
γ1 − a

∫ η

1

(
log η

s

)p+α+β−1

Γ (p+ α+ β)
f (s) ds

+ λa

∫ η

1

(
log η

s

)p+α−1

Γ (p+ α)
u (s) ds

)
− (log t)

α
Λ2 − Λ1Γ (α+ 1)

Γ (α+ 1) Π

×

γ2 − b
∫ ξ

1

(
log ξ

s

)q+α+β−1

Γ (q + α+ β)
f (s) ds+ λb

∫ ξ

1

(
log ξ

s

)q+α−1

Γ (q + α)
u (s) ds

 ,

where

Λ1 = a
Γ(p+α+1) (log η)

p+α
, Λ2 = a

Γ(p+1) (log η)
p
,

∆1 = a
Γ(q+α+1) (log ξ)

q+α
, ∆2 = a

Γ(q+1) (log ξ)
q
,

and
Π = Λ1∆2 − Λ2∆1.

Proof. In view of Lemma 1.1, the solution of the Hadamard (2.1), can be expressed
as an equivalent integral equation

u(t) =H Iα+βf(t)− λHIαu (t) +
c0

Γ (α+ 1)
(log t)

α
+ c1,(2.3)

where c0 and c1 are arbitrary constants. To find the value c0 and c1, we apply again
the Hadamard fractional integral on both sides of (2.3), we get

HIpu(t) =H Ip+α+βf(t)− λHIp+αu (t) + c0
(log t)

p+α

Γ (p+ α)
+ c1

(log t)
p

Γ (p+ 1)
.

By using the boundary conditions (2.2), we have

c0Λ1 + c1Λ2 = γ1 − aHIp+α+βh(η) + aλHIp+αx (η) ,

c0∆1 + c1∆2 = γ2 − bHIq+α+βϕ(ξ) + bλHIq+αx (ξ) .
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Thus

c0 =
∆2

Π

[
γ1 − aHIp+α+βϕ(η) + aλHIp+αx (η)

]
− Λ2

Π

[
γ2 − bHIq+α+βϕ(ξ) + bλHIq+αx (ξ)

]
,

and

c1 =
Λ1

Π

[
γ2 − bHIq+α+βϕ(ξ) + bλHIq+αx (ξ)

]
− ∆1

Π

[
γ1 − aHIp+α+βϕ(η) + aλHIp+αx (η)

]
.

Substituting the value of c0 and c1 in (2.3), we obtain the solution .

In view of Lemma 2.1, we define an operator P : W →W as

Pu (t) =

∫ t

1

(
log t

s

)α+β−1

Γ (α+ β)
ϕ (s, x (s))

ds

s

+

∫ t

1

(
log t

s

)α+β+θ−1

Γ (α+ β + θ)
ψ (s, x (s))

ds

s
− λ

∫ t

1

(
log t

s

)α−1

Γ (α)
u (s)

ds

s

+
∆2 (log t)

α −∆1Γ (α+ 1)

Γ (α+ 1) Π

(
γ1 − a

∫ η

1

(
log η

s

)p+α+β−1

Γ (p+ α+ β)
ϕ (s, x (s))

ds

s

− a

∫ η

1

(
log η

s

)p+α+β+θ−1

Γ (p+ α+ β + θ)
ψ (s, x (s))

ds

s
+ λa

∫ η

1

(
log η

s

)p+α−1

Γ (p+ α)
u (s)

ds

s

)

− Λ2 (log t)
α − Λ1Γ (α+ 1)

Γ (α+ 1) Π

γ2 − b
∫ ξ

1

(
log ξ

s

)q+α+β−1

Γ (q + α+ β)
ϕ (s, x (s))

ds

s

− b

∫ ξ

1

(
log ξ

s

)q+α+β+θ−1

Γ (q + α+ β + θ)
ψ (s, x (s))

ds

s
+ λb

∫ ξ

1

(
log ξ

s

)q+α−1

Γ (q + α)
u (s)

ds

s

 .

For computational convenience, we set

Θ1 :=
1

Γ (α+ β + 1)
+

1

Γ (α+ β + θ + 1)

+
|∆2|+ |∆1|Γ (α+ 1)

Γ (α+ 1) |Π|

(
|a| (log η)

p+α+β

Γ (p+ α+ β + 1)
+
|a| (log η)

p+α+β+θ

Γ (p+ α+ β + θ + 1)

)

+
|Λ2|+ |Λ1|Γ (α+ 1)

Γ (α+ 1) |Π|

(
|b| (log ξ)

q+α+β

Γ (q + α+ β + 1)
+
|b| (log ξ)

q+α+β+θ

Γ (q + α+ β + θ + 1)

)
,
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Θ2 :=
|λ|

Γ (α+ 1)
+
|∆2|+ |∆1|Γ (α+ 1)

Γ (α+ 1) |Π|

(
|λ| |a| (log η)

p+α

Γ (p+ α+ 1)

)
,

+
(|Λ2|+ |Λ1|Γ (α+ 1))

Γ (α+ 1) |Π|

(
|λ| |b| (log ξ)

q+α

Γ (q + α+ 1)

)
,

Θ3 :=
|∆2|+ |∆1|Γ (α+ 1)

Γ (α+ 1) |Π|
|γ1|+

|Λ2|+ |Λ1|Γ (α+ 1)

Γ (α+ 1) |Π|
|γ2| .

The following notations and assumptions are considered throughout the rest of this
paper. (A1) : there exists M1 > 0 such that

|ϕ (t, x)− ϕ (t, y)| ≤M1 |x− y| for t ∈ J and (x, y) ∈ R2.

(A2) : there exists M2 > 0 such that

|ψ (t, x)− ψ (t, y)| ≤M2 |x− y| for t ∈ J and (x, y) ∈ R2.

(A3) : Assume that

M̃ =
M1

Γ(α+ β + 1)
+

M2

Γ(α+ β + θ + 1)
+

|λ|
Γ(α+ 1)

< 1

Theorem 2.1. Assume that (A1) and (A2) hold. If there exists a constant M > 0
such that

Θ1M < 1−Θ2,(2.4)

where M = max {Mi, i = 1, 2} , then the fractional boundary value problem (1.1)
has a unique solution.

Proof. Let L = max {Li, i = 1, 2} , where Li are finite numbers given by

L1 = sup
t∈[1,e]

|f (t, 0)| and L2 = sup
t∈[1,e]

|g (t, 0)| .

Selecting

r ≥ LΘ2 + Θ3

1−MΘ1 −Θ2
,

we show that PBr ⊂ Br , Br = {x ∈ X : ‖x‖ ≤ r}. Using (A1) and (A2), we can
write

|f (s, x (s))| ≤ |f (s, x (s))− f (s, 0)|+ |f (s, 0)| ≤M1 ‖u‖+ L1 ≤M1r + L1,

|g (s, x (s))| ≤ |g (s, x (s))− g (s, 0)|+ |g (s, 0)| ≤M2 ‖u‖+ L2 ≤M2r + L2,

for x ∈ Br, we can show that

‖Px‖ ≤
{
M

[(
1

Γ (α+ β + 1)
+

1

Γ (α+ β + θ + 1)

)
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+
|∆2|+ |∆1|Γ (α+ 1)

Γ (α+ 1) |Π|

(
|a| (log η)

p+α+β

Γ (p+ α+ β + 1)
+
|a| (log η)

p+α+β+θ

Γ (p+ α+ β + θ + 1)

)

+
|Λ2|+ |Λ1|Γ (α+ 1)

Γ (α+ 1) |Π|

(
|b| (log ξ)

q+α+β

Γ (q + α+ β + 1)
+
|b| (log ξ)

q+α+β+θ

Γ (q + α+ β + θ + 1)

)]

+
|λ|

Γ (α+ 1)
+

(|∆2|+ |∆1|Γ (α+ 1))

Γ (α+ 1) |Π|

(
|λ| |a| (log η)

p+α

Γ (p+ α+ 1)

)

+
(|Λ2|+ |Λ1|Γ (α+ 1))

Γ (α+ 1) |Π|

(
|λ| |b| (log ξ)

q+α

Γ (q + α+ 1)

)}
r

+ L

[
1

Γ (α+ β + 1)
+

1

Γ (α+ β + θ + 1)

+
|∆2|+ |∆1|Γ (α+ 1)

Γ (α+ 1) |Π|

(
|a| (log η)

p+α+β

Γ (p+ α+ β + 1)
+
|a| (log η)

p+α+β+θ

Γ (p+ α+ β + θ + 1)

)

+
|Λ2|+ |Λ1|Γ (α+ 1)

Γ (α+ 1) |Π|

(
|b| (log ξ)

q+α+β

Γ (q + α+ β + 1)
+
|b| (log ξ)

q+α+β+θ

Γ (q + α+ β + θ + 1)

)]

+
|∆2|+ |∆1|Γ (α+ 1)

Γ (α+ 1) |Π|
|γ1|+

|Λ2|+ |Λ1|Γ (α+ 1)

Γ (α+ 1) |Π|
|γ2| ,

≤ (MΘ1 + Θ2) r + LΘ2 + Θ3 ≤ r.

which implies that PBr ⊂ Br. Now, for x, y ∈ Br, we obtain

‖Px− Py‖

≤ sup
t∈[1,e]

{∫ t

1

(
log t

s

)α+β−1

Γ (α+ β)
|f (s, x (s))− f (s, y (s))| ds

s

+

∫ t

1

(
log t

s

)α+β+θ−1

Γ (α+ β + θ)
|g (s, x (s))− g (s, y (s))| ds

s

+ |λ|
∫ t

1

(
log t

s

)α−1

Γ (α)
|x (s)− y (s)| ds

s

+
∆2 (log t)

α −∆1Γ (α+ 1)

Γ (α+ 1) Π
·(

γ1 − a
∫ η

1

(
log η

s

)p+α+β−1

Γ (p+ α+ β)
|f (s, x (s))− f (s, y (s))| ds

s

−a
∫ η

1

(
log η

s

)p+α+β+θ−1

Γ (p+ α+ β + θ)
|g (s, x (s))− g (s, y (s))| ds

s

+λa

∫ η

1

(
log η

s

)p+α−1

Γ (p+ α)
x (s)

ds

s

)
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− Λ2 (log t)
α − Λ1Γ (α+ 1)

Γ (α+ 1) Π
·γ2 − b

∫ ξ

1

(
log ξ

s

)q+α+β−1

Γ (q + α+ β)
|f (s, x (s))− f (s, y (s))| ds

s

−b
∫ ξ

1

(
log ξ

s

)q+α+β+θ−1

Γ (q + α+ β + θ)
|g (s, x (s))− g (s, y (s))| ds

+λb

∫ ξ

1

(
log ξ

s

)q+α−1

Γ (q + α)
|x (s)− y (s)| ds




≤ M

{[
1

Γ (α+ β + 1)
+

1

Γ (α+ β + θ + 1)

+
|∆2|+ |∆1|Γ (α+ 1)

Γ (α+ 1) |Π|

(
|a| (log η)

p+α+β

Γ (p+ α+ β + 1)
+
|a| (log η)

p+α+β+θ

Γ (p+ α+ β + θ + 1)

)

+
|Λ2|+ |Λ1|Γ (α+ 1)

Γ (α+ 1) |Π|

(
|b| (log ξ)

q+α+β

Γ (q + α+ β + 1)
+
|b| (log ξ)

q+α+β+θ

Γ (q + α+ β + θ + 1)

)]

+
|λ|

Γ (α+ 1)
+

(|∆2|+ |∆1|Γ (α+ 1))

Γ (α+ 1) |Π|

(
|λ| |a| (log η)

p+α

Γ (p+ α+ 1)

)

+
(|Λ2|+ |Λ1|Γ (α+ 1))

Γ (α+ 1) |Π|

(
|λ| |b| (log ξ)

q+α

Γ (q + α+ 1)

)}
‖x− y‖

= (MΘ1 + Θ2) ‖x− y‖ .

Using (2.4), we can see that P is a contraction. Consequently, by the contraction
mapping principle, problem (1.1) has a uniqueness solution.

3. Ulam-Hyers stability

Theorem 3.1. Assume that the assumptions (A1), (A2) and (A3) hold, then prob-
lem (1.1) is Ulam-Hyers stable and consequently, generalized Ulam-Hyers stable.

Proof. Let v ∈W be a solution of the inequality (1.2), i.e.∣∣C
HD

β
(
C
HD

α + λ
)
v (t)− ϕ (t, v (t))− Iθψ (t, v (t))

∣∣ ≤ ϑ, t ∈ J,
and let us denote by u ∈ W the unique solution of the fractional boundary value
problem

C
HD

β
(
C
HD

α + λ
)
u (t) = ϕ (t, u (t)) + Iθψ (t, u (t)) , t ∈ J, 0 < α, β < 1

HIpu (η) = HIpv (η) ,H Iqu (ξ) = HIqv (ξ) , 1 < η, ξ < e
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By using Lemma 1.1 we have

u(t) =H Iα+βfu(t)− λHIαu (t) +
c0

Γ (α+ 1)
(log t)

α
+ c1

and by integration of the inequality (1.2), we obtain∣∣∣∣v (t)−H Iα+βfv(t) + λHIαv (t)− c2
Γ (α+ 1)

(log t)
α − c3

∣∣∣∣ ≤ ε

Γ (α+ 1)
(log t)

α
.

On the other hand, if HIpu (η) = HIpv (η) ,H Iqu (ξ) = HIqv (ξ), then

c0 = c2 and c1 = c3.

For any t ∈ J, we have

v (t)− u (t) = v (t)−H Iα+βfv(t) + λHIαv (t)− c2
Γ (α+ 1)

(log t)
α − c3

+ HIα+β (fv(t)− fu(t))− λHIα (v (t)− u (t)) ,

where
fv(t) = ϕ (t, v (t)) + HIθψ (t, v (t)) ,

and
fu(t) = ϕ (t, u (t)) + HIθψ (t, u (t)) ,

then

HIα+β (fv(t)− fu(t))

= HIα+β [ϕ(s, v(s))− ϕ(s, u(s))]

+ HIα+β+θ[ψ(s, v(s))− ψ(s, u(s))]

=
1

Γ(α+ β)

∫ t

1

(log
t

s
)α+β−1[ϕ(s, v(s))− ϕ(s, u(s))]

ds

s

+
1

Γ(α+ β + θ)

∫ t

1

(log
t

s
)α+β+θ−1[ψ(s, v(s))− ψ(s, u(s))]

ds

s
.

Using (A1) and (A2) we get

∣∣HIα+β (ϕy(t)− ϕx(t))
∣∣ ≤ M1

Γ(α+ β)

∫ t

1

(log
t

s
)α+β−1|v(s)− u(s)|ds

s

+
M2

Γ(α+ β + θ)

∫ t

1

(log
t

s
)α+β+θ−1|v(s)− u(s)|ds

s
.

This yields that

|v (t)− u (t)| ≤
∣∣∣∣v (t)−H Iα+βfv(t) + λHIαv (t)− c2

Γ (α+ 1)
(log t)

α − c3
∣∣∣∣
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+
M1

Γ(α+ β)

∫ t

1

(log
t

s
)α+β−1|v(s)− u(s)|ds

s

+
M2

Γ(α+ β + θ)

∫ t

1

(log
t

s
)α+β+θ−1|v(s)− u(s)|ds

s

+
|λ|

Γ(α)

∫ t

1

(log
t

s
)α−1|v(s)− u(s)|ds

s
.

Then

|v (t)− u (t)| ≤ ϑ

Γ (α+ 1)
+

M1

Γ(α+ β)

∫ t

1

(log
t

s
)α+β−1 ‖v(s)− u(s)‖ ds

s

+
M2

Γ(α+ β + θ)

∫ t

1

(log
t

s
)α+β+θ−1 ‖v(s)− u(s)‖ ds

s

+
|λ|

Γ(α)

∫ t

1

(log
t

s
)α−1 ‖v(s)− u(s)‖ ds

s
.

Thus

|v (t)− u (t)| ≤ ϑ

Γ (α+ 1)
+ M̃ ‖v(s)− u(s)‖ .

Then

‖v(s)− u(s)‖
(

1− M̃
)
≤ ϑ

Γ (α+ 1)
.

Then, for each t ∈ [1, e]

|u (t)− v (t)| ≤ ϑ(
1− M̃

)
Γ (α+ 1)

= µϕ,ψϑ.

So, the fractional boundary value problem (1.1) is Ulam–Hyers stable. By putting
g (ϑ) = µϑ, g (0) = 0 yields that the fractional boundary value problem (1.1) gener-
alized Ulam-Hyers stable.

Theorem 3.2. Assume that the assumptions (A1), (A2) and (A3) hold. In addi-
tion, the following assumption holds

(A4) : There exists an function g ∈ C([1, e] ,R+) and there exists υg > 0 such
that for any t ∈ J

1

Γ(α+ β)

∫ t

1

(log
t

s
)α+β−1g(s)

ds

s
≤ υgg(t).(3.1)

Then the fractional boundary value problem (1.1) is Ulam-Hyers-Rassias stable.

Proof. Let v ∈W be a solution of the inequality (1.3), i.e.∣∣C
HD

β
(
C
HD

α + λ
)
v (t)− ϕ (t, x (t))− Iθψ (t, v (t))

∣∣ ≤ ϑg (t) , t ∈ J,
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and let us denote by u ∈ W the unique solution of the fractional boundary value
problem

C
HD

β
(
C
HD

α + λ
)
u (t) = ϕ (t, u (t)) + Iθψ (t, u (t)) , t ∈ J, 0 < α, β < 1

HIpu (η) = HIpv (η) ,H Iqu (ξ) = HIqv (ξ) , 1 < η, ξ < e

By applying Lemma 1.1, we have

u(t) =H Iα+βfu(t)− λHIαu (t) +
c0

Γ (α+ 1)
(log t)

α
+ c1,

and by integration of the inequality (1.3), we obtain∣∣∣∣v (t)−H Iα+βfv(t) + λHIαv (t)− c2
Γ (α+ 1)

(log t)
α − c3

∣∣∣∣
≤ ϑ

Γ(α+ β)

∫ t

1

(
log

t

s

)α+β−1

g(s)
ds

s
.

Now, using (A1) and (A2), we can write

|v (t)− u (t)| ≤
∣∣∣∣v (t)−H Iα+βfv(t) + λHIαv (t)− c2

Γ (α+ 1)
(log t)

α − c3
∣∣∣∣

+
M1

Γ(α+ β)

∫ t

1

(log
t

s
)α+β−1|v(s)− u(s)|ds

s

+
M2

Γ(α+ β + θ)

∫ t

1

(log
t

s
)α+β+θ−1|v(s)− u(s)|ds

s

+
|λ|

Γ(α)

∫ t

1

(log
t

s
)α−1|v(s)− u(s)|ds

s
.

Then by (A4)

|v (t)− u (t)| ≤ ϑυgg(t)

Γ(α+ β)
+

M1

Γ(α+ β)

∫ t

1

(log
t

s
)α+β−1 ‖v(s)− u(s)‖ ds

s

+
M2

Γ(α+ β + θ)

∫ t

1

(log
t

s
)α+β+θ−1 ‖v(s)− u(s)‖ ds

s

+
|λ|

Γ(α)

∫ t

1

(log
t

s
)α−1 ‖v(s)− u(s)‖ ds

s
.

Thus

|v (t)− u (t)| ≤ ϑυgg(t)

Γ(α+ β)
+ M̃ ‖v(s)− u(s)‖ .

Then

‖v(s)− u(s)‖
(

1− M̃
)
≤ ϑυgg(t)

Γ(α+ β)
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Then, for each t ∈ [1, e]

|v (t)− u (t)| ≤ ϑυg(
1− M̃

)
Γ(α+ β)

g(t).

So, the fractional boundary value problem (1.1) is Ulam-Hyers-Rassias stable.

4. Application

Consider the following nonlinear fractional differential equation with Hadamard-
Caputo type fractional derivatives

C
HD

3
5

(
C
HD

7
11 + 1

32

)
x (t) = x(t)−1

2 ln(t)+21 +H I
1
2

(
x(t)e1−t−3

t+39

)
, t ∈ [1, e] ,

3I
1
3x
(

3
2

)
= 9

2 (ln 3)
2
3 ,−5I

9
10x

(
8
3

)
= − 20

3 (ln 5)
5
3

(4.1)

Here α = 7
11 , β = 3

5 , λ = 1
32 , θ = 1

2 , p = 1
3 , q = 9

10 , a = 3, b = −5, η = 3
2 ,

ξ = 8
3 , f (t, x) = x(t)−1

2 ln(t)+21 and g (t, x) = x(t)e1−t−3
t+39 , t ∈ [1, e] , x ∈ R.

For each x, y ∈ R and t ∈ [1, e] , we have

|f (t, x)− f (t, y)| ≤ 1

21
|x− y| and |g (t, x)− g (t, y)| ≤ 1

40
|x− y| ,

then the conditions (A1) , (A2) are satisfied with

M = max

{
1

21
,

1

40

}
=

1

21
.

We can find that

Λ1 =
a

Γ (p+ α+ 1)
(log η)

p+α ≈ 0.55682,Λ2 =
a

Γ (p+ 1)
(ln η)

p ≈ 1.883036,

∆1 =
b

Γ (q + α+ 1)
(ln ξ)

q+α ≈ −0.987821,∆2 =
b

Γ (q + 1)
(ln ξ)

q ≈ −2.411796,

Π = Λ1∆2 − Λ2∆1 = 0.517168,

Θ1 :=
1

Γ (α+ β + 1)
+

1

Γ (α+ β + θ + 1)

+
|∆2|+ |∆1|Γ (α+ 1)

Γ (α+ 1) |Π|

(
|a| (log η)

p+α+β

Γ (p+ α+ β + 1)
+
|a| (log η)

p+α+β+θ

Γ (p+ α+ β + θ + 1)

)

+
|Λ2|+ |Λ1|Γ (α+ 1)

Γ (α+ 1) |Π|

(
|b| (log ξ)

q+α+β

Γ (q + α+ β + 1)
+
|b| (log ξ)

q+α+β+θ

Γ (q + α+ β + θ + 1)

)
≈ 8.712578,
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Θ2 :=
|λ|

Γ (α+ 1)
+

(|∆2|+ |∆1|Γ (α+ 1))

Γ (α+ 1) |Π|

(
|λ| |a| (log η)

p+α

Γ (p+ α+ 1)

)

+
(|Λ2|+ |Λ1|Γ (α+ 1))

Γ (α+ 1) |Π|

(
|λ| |b| (log ξ)

q+α

Γ (q + α+ 1)

)
≈ 0.318327.

Therefor, we have
Θ1M ≈ 0.414 88 < 1−Θ2 ≈ 0.681 67.

Moreover condition A3

M̃ =
M1

Γ(α+ β + 1)
+

M2

Γ(α+ β + θ + 1)
+

λ

Γ(α+ 1)
= 9.2865× 10−2 < 1,

is satisfied Hence, by the Theorem 2.1, problem (P ) has a unique solution on [1, e],
and by Theorem 3.1 problem (P ) is Ulam-Hyers stable.

Also, the hypothesis (A4) is satisfied with g(t) = µ, µ > 0 and υg = 1
Γ(α+β+1)

Indeed, for each t ∈ [1, e], we get

HIα+βg(t) =H Iα+β(µ) =
µ

Γ(α+ β + 1)
(log t)α+β ≤ µ

Γ(α+ β + 1)
= υgg(t).

Consequently, Theorem 3.2 implies that (P ) is Ulam-Hyers-Rassias stable.
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