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Abstract. In this study, we examine the condition of the conchoidal surface to be a
Bonnet surface in Euclidean 3-space. Especially, we consider the Bonnet conchoidal
surfaces which admit an infinite number of isometries. In addition, we study the
necessary conditions which have to be fulfilled by the surface of revolution with the
rotating curve c(t) and its conchoid curve cd(t) to be the Bonnet surface in
Euclidean 3-space.
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1. Introduction

The conchoid of Nicomedes, which is called by the Greek geometer Nicomedes’s
name, was originally contrived around 200 BC to trisect an angle and duplicate the
cube. For any curve and a fixed point, let a straight line, which meets the curve at
the point Q, is drawn through the fixed point. If P and R are points on this line
such that RQ = QP = const., then the conchoid of curve with respect to the fixed
point is the locus of P and R [12].

The conchoids play an important role in many applications as the
construction of buildings, astronomy [9], optics [2], physics [19]. Although the
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conchoidal constructions were extensively mentioned by the ancient Greeks in the
seventeenth century, they have been recently addressed by different authors, too.
One of these has been put forward by Odehnal. He obtained a generalized con-
choid transformation considering a construction with the help of cross ratios [13].
Moreover, Peternel, etc. presented the conchoidal surface of rational ruled surfaces,
the conchoidal surfaces of spheres, the conchoids and the pedal surfaces [15, 16, 17].

Surfaces, which admit a one-parameter family of isometries preserving the mean
curvature, have been proposed by Bonnet and although Bonnet raised these surfaces
[3], the term “Bonnet surface” was firstly used by Lalan [11]. Bonnet showed that
all surfaces with the constant mean curvature can be isometrically mapped to each
other and the deformable surfaces with the non-constant mean curvature are the
isothermic Weingarten surfaces which can be deformable to the revolution surfaces.
After that, many mathematicians have contributed these surfaces [18, 10, 7, 1].

Bonnet surfaces may be broken up into three types which is described as follows:

(i) Surfaces of the constant mean curvature other than the plane or the sphere.

(ii) Isothermic Weingarten surfaces of the non-constant mean curvature which
admit a one parameter family of geometrically distinct non-trivial isometries.

(iii) Surfaces of the non-constant mean curvature that admit a single non-trivial
isometry [10].

In [4], the authors studied the conchoidal surfaces, the surfaces of revolution
given with the conchoid curve and their geometrical properties in Euclidean 3-
space. In our work, using the geometric properties obtained for conchoidal surfaces
in reference [4], we have examined the conditions under which the conchoidal surface
and the surface of revolution given with conchoid curve is a Bonnet surface in
Euclidean 3- space. According to that, we get the following results:

(1) If a regular surface M and a conchoidal surface Md are minimal, then they
are the surfaces of the type (i) which can be recognised by an infinite number of
isometries preserving the principal curvatures.

(2) The surfaces M with the radius function r(u0, v) or r(u, v0) are the surfaces
of the type (ii) which admit an infinite number of isometries. Also, the result is
similar for the conchoidal surfaces Md.

(3) If a regular surface M and a conchoidal surface Md, which are the surfaces
of revolution generated by the rotating curve and its conchoid curve, are minimal,
then they are the surfaces of the type (i) which can be recognised by an infinite
number of isometries preserving the principal curvatures.

(4) If a regular surface M and a conchoidal surface Md, which are the surfaces
of revolution generated by the rotating curve and its conchoid curve with the radius
function r(u0, v) or r(u, v0), are the surfaces of the type (ii) which admit an infinite
number of isometries.

2. Preliminaries

Let M be a smooth surface in E3 given with the patch X(u, v) for
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(u, v) ∈ D ⊂ E3. The tangent space to M at an arbitrary point p of M is spanned
by {Xu, Xv}. Let N be the unit normal vector field of the surface M defined by

N =
Xu ×Xv

‖Xu ×Xv‖
. The first fundamental form I and the second fundamental form

II of the surface M are

(2.1) I = edu2 + 2fdudv + gdv2, II = ldu2 + 2mdudv + ndv2,

respectively, where

(2.2) e = 〈Xu, Xu〉 , f = 〈Xu, Xv〉 , g = 〈Xv, Xv〉 ,

and

(2.3) l = 〈Xuu, N〉 , m = 〈Xuv, N〉 , n = 〈Xvv, N〉 .

In [8], the Gaussian curvature K and the mean curvature H are

(2.4) K =
ln−m2

eg − f2
, H =

en− 2fm + gl

2(eg − f2)
.

A surface M in E3 is called Weingarten surface if there exists a non-trivial
functional relation

(2.5) Ω(K,H) = 0

with respect to its Gaussian curvature K and its mean curvature H, where Ω is the
Jakobian determinant [14].

If a surface M in E3 has the coefficients of first fundamental form which satisfy
the conditions e = g, f = 0, then it is called isothermic [5]. According to [18], the
isothermic surface provides the condition

(2.6)
∂2

∂u∂v

(
log

g

e

)
= 0.

We assume a smooth surface M ⊂ E3 and a fixed reference point O which can
be considered as the origin of a cartesian coordinate system. Let M is described by
a polar representation

(2.7) X(u, v) = r(u, v)s(u, v)

with ‖s(u, v)‖ = 1. Considering s(u, v) = (cosu cos v, sinu cos v, sin v) of the unit
sphere S2, so s(u, v) and r(u, v) are called spherical part and radius function of
X(u, v), respectively.

In [17, 15], the one-sided conchoidal surface Md of M is derived by adding d ∈ R
to the radius function r(u, v) and thus Md admits the polar representation

(2.8) Md(u, v) = (r(u, v) + d)s(u, v).
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Let M be a regular surface given with the parametrization (2.7 ). Then the
coefficients of the first fundamental form of the surface M are

(2.9)
e = r2 cos2 v + r2u,
f = rurv,
g = r2 + r2v.

Additionally, its Gaussian curvature and its mean curvature are
(2.10)

K = − 1

r2A2

[
rruv cos v − 2rurv cos v + rru sin v)2

− cos2 v
(
2r2u + rrv sin v cos v + r2 cos2 v − rruu

) (
2r2v + r2 − rrvv

)]
,

and
(2.11)

H = − 1

2r2A3/2

[
cos v

(
2r2u + rrv sin v cos v + r2 cos2 v − rruu

) (
r2 + r2v

)
+ cos v

(
2r2v + r2 − rrvv

) (
r2 cos2 v + r2u

)
+2rurv (rruv cos v − 2rurv cos v + rru sin v)] ,

where A = (r2 + r2v) cos2 v + r2u. Also, if Md is a conchoidal surface given with the
parametrization (2.8), its Gaussian curvature and its mean curvature are

(2.12)

K̃ = − 1

(r ± d)2A2

[
((r ± d)ruv cos v − 2rurv cos v + (r ± d)ru sin v)2

− cos2 v
(
2r2u + (r ± d)rv sin v cos v

+(r ± d)2 cos2 v − (r ± d)ruu
) (

2r2v + (r ± d)2 − (r ± d)rvv
)]

,

and

(2.13)

H̃ = − 1

2(r ± d)2A3/2

[
cos v

(
2r2u + (r ± d)rv sin v cos v

+(r ± d)2 cos2 v − (r ± d)ruu
) (

(r ± d)2 + r2v
)

+ cos v
(
2r2v + (r ± d)2 − (r ± d)rvv

) (
(r ± d)2 cos2 v + r2u

)
+2rurv ((r ± d)ruv cos v − 2rurv cos v + (r ± d)ru sin v)] ,

where A = ((r ± d)2 + r2v) cos2 v + r2u [4].

Let M be a surface of revolution generated by the rotating curve c(t). The
surface is given with the surface patch

(2.14) X(t, s) = (r(t) cos t, r(t) sin t cos s, r(t) sin t sin s),
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where c(t) = r(t)(cos t, sin t). The coefficients of the first fundamental form of the
surface M hold:

(2.15)
e = r2 + (r′)2,
f = 0,
g = r2 sin2 t.

The Gaussian and mean curvatures of the surface M are as follows:

(2.16) K =
(r′ cos t− r sin t)(rr′′ − 2(r′)2 − r2)

r sin t(r2 + (r′)2))3
,

and

(2.17) H =
r sin t(rr′′ − 2(r′)2 − r2) + (r2 + (r′)2)(r′ cos t− r sin t)

2r sin t(r2 + (r′)2)3/2
,

respectively. Let Md be a surface of revolution generated by the conchoid curve
cd(t). The surface is parametrized by

(2.18) X̃(t, s) = ((r(t)± d) cos t, (r(t)± d) sin t cos s, (r(t)± d) sin t sin s),

where cd(t) = (r(t)± d)(cos t, sin t). The coefficients of the first fundamental form
of the surface Md are calculated as

(2.19)

ẽ = (r(t)± d)2 + (r′)2,

f̃ = 0,
g̃ = (r(t)± d)2 sin2 t.

The Gaussian and mean curvatures of the surface Md become

(2.20) K̃ =
(r′ cos t− (r(t)± d) sin t)((r(t)± d)r′′ − 2(r′)2 − (r(t)± d)2)

(r(t)± d) sin t((r(t)± d)2 + (r′)2))3
,

(2.21)

H̃ =
(r(t)± d) sin t((r(t)± d)r′′ − 2(r′)2 − (r(t)± d)2)

2(r(t)± d) sin t((r(t)± d)2 + (r′)2)3/2

+
((r(t)± d)2 + (r′)2)(r′ cos t− (r(t)± d) sin t)

2(r(t)± d) sin t((r(t)± d)2 + (r′)2)3/2
,

respectively [4].

3. Discussion and Conclusion

3.1. An examination of the condition of the conchoidal surface to be a
Bonnet surface in E3

In this section, we will examine condition which is the conchoidal surface to be
a Bonnet surface in Euclidean 3-space. Especially, we will deal with the conchoidal
surfaces admitting an infinite number of isometries. Thus, it will be sufficient to
determine: (a) the conchoidal surfaces of the constant mean curvature and (b) the
isothermic Weingarten conchoidal surfaces.
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(a) The conchoidal surfaces of the constant mean curvature

Let M be a regular surface given with the parametrization (2.7). It is possible
that the mean curvature H given by (2.11) is equal to a non-zero constant when the
radius function r(u, v) is a constant. This means that the surface M is a sphere.

Example 3.1. Let the radius function be a constant. For r(u, v) = 3 and d = 1, the
conchoidal surface Md is given by the parametrization

Figure 3.1: Conchoidal surface with r(u, v) = 3 and d = 1

(3.1) Xd(u, v) = (4 cosu cos v, 4 sinu cos v, 4 sin v).

It denotes a sphere as given in Figure 3.1.

The mean curvature is a constant when the surface M is minimal, except that
the radius function is a constant. In this case, considering [4], if u-parameter radius
function is

(3.2) r(u) = ±
√

cos v√
c1 sin(2u cos v)− c2 cos(2u cos v)

or if v-parameter radius function is

(3.3) r(v) =
1

c1 sin v
,

where c1, c2 are constants, then M is the minimal surface. So, the surfaces M
determined by (3.2) and (3.3) are the surfaces of the type (i) which can be recognised
by an infinite number of isometries preserving the principal curvature.

Similar results for conchoidal surface Md are obtained as follows:

If the radius function is a constant, the mean curvature H̃ of the conchoidal

surface is equal to
1

r ± d
. This means that the surface Md is a sphere. If u-parameter
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radius function is

(3.4) r(u) = ±
√

cos v√
c1 sin(2u cos v)− c2 cos(2u cos v)

± d

or if v-parameter radius function is

(3.5) r(v) = ∓d +
1

c1 sin v
,

where c1, c2 are constants, then the surface Md is minimal. So, the conchoidal
surfaces Md determined by (3.4) and (3.5) are the conchoidal surfaces of the type
(i) which can be recognised by an infinite number of isometries preserving the
principal curvature.

Example 3.2. Let the radius function is given by

(3.6) r(u) =

√
cos v√

sin(2u cos v)− cos(2u cos v)

and d = −1. Then, the conchoidal surface Md is parametrized by

Figure 3.2: Conchoidal surface with r(u) and d = −1

(3.7) Xd(u, v) = (r(u)− 1)(cosu cos v, sinu cos v, sin v).

It is shown as given in Figure 3.2.

Example 3.3. Let the radius function is given by r(v) =
1

2 sin v
and d = −1. Then, the

conchoidal surface Md is parametrized by

(3.8) Xd(u, v) =

(
1

2 sin v
− 1

)
(cosu cos v, sinu cos v, sin v).

It is shown as given in Figure 3.3.
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Figure 3.3: Conchoidal surface with r(v) and d = −1

(b) The isothermic Weingarten conchoidal surfaces of the non-constant
mean curvature

Firstly, let’s calculate the condition which is satified by the surface M to be
an isothermal surface. When the curves of an orthogonal system have the con-
stant geodesic curvature, the system is an isothermal [6]. For this, we assume that
the parameter curves of the surface M constitute the orthogonal system, namely,
〈Xu, Xv〉 = 0. When the surface is assigned by these parametric curves and the
linear element is written ds2 = edu2+gdv2, from [6], the condition that the geodesic

curvature is a constant becomes
∂2

∂u∂v

(
log

g

e

)
= 0.

When the parameter curves are orthogonal, 〈Xu, Xv〉 = rurv = 0. This means
that ru = 0 or rv = 0. Therefore the parametric curves of the conchoidal surface
Md are orthogonal. Thus, when the surface M is isothermal, the obtained cases are
valid for the conchoidal surface Md. So, we have the following cases:

Case 1: We assume that ru = 0 and rv 6= 0. In order to examine whether the
surface M with the radius function r(u0, v) is a Bonnet surface, we will work the
isothermic Weingarten surfaces.

Using (2.9) into (2.6), then we obtain as follows:

(3.9)
∂2

∂u∂v

(
log

r2 + r2v
r2 cos2 v

)
= 0.

From (3.9), we conclude that the surface M with the radius function r(u0, v) is the
isothermal surface.

Secondly, we investigate the necessary conditions for the surface M to be a
Weingarten surface. Differentiating (2.10) and (2.11) with respect to u and

considering ru = 0, then we find
∂K

∂u
= 0 and

∂H

∂u
= 0. Hence, the surface

M with the radius function r(u0, v) is the Weingarten surface. Additionally, from
(2.11), we see that the mean curvature of the surface M with the radius function
r(u0, v) is the non-constant.
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As a result, since the surface M is both the isothermal and Weingarten surface
with the non-constant mean curvature, then it has an infinite number of the Bonnet
nets. Thus, the following theorem is given.

Theorem 3.1. The surface M with the radius function r(u0, v) is a surface of the
type (ii) which admits an infinite number of isometries. So, this surface is a Bonnet
surface.

Let Md be a conchoidal surface of M given with the parametrization ( 2.8). If
the radius function r(u, v) is a v−parameter function, then the coefficients of the
first fundamental form of the surface Md are

(3.10)

ẽ = (r ± d)2 cos2 v,

f̃ = 0,
g̃ = (r ± d)2 + r2v.

Considering these coefficients, the conchoidal surface Md of M with the radius
function r(u0, v) is the isothermic surface, since we get

(3.11)
∂2

∂u∂v

(
log

(r ± d)2 + r2v
(r ± d)2 cos2 v

)
= 0.

To determine the necessary condition to be a Weingarten surface of Md, we have

(2.12) and (2.13) for ru = 0. From ∂K̃

∂u
= 0 and

∂H̃

∂u
= 0, the conchoidal surface

Md of M with the radius function r(u0, v) is the Weingarten surface. From (2.13),

it is easily seen that H̃ 6= const. Therefore, the following theorem is given for the
conchoidal surface Md.

Theorem 3.2. The conchoidal surface Md with the radius function r(u0, v) is a
surface of the type (ii) which admits an infinite number of isometries. So, this
surface is a Bonnet surface.

Corollary 3.1. There is no surfaces M and Md that admits a single non-trivial
isometry with the non-constant mean curvature.

Example 3.4. Let the radius function is given by r(v) =
1

cos v
and d = 2. Then, the

conchoidal surface Md is parametrized by

(3.12) Xd(u, v) =

(
1

cos v
+ 2

)
(cosu cos v, sinu cos v, sin v).

It is a Bonnet surface and shown as given in Figure 3.4.
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Figure 3.4: Conchoidal surface with r(v) =
1

cos v
and d = 2

Case 2: We assume that rv = 0 and ru 6= 0. In order to examine whether the
surface M with the radius function r(u, v0) is a Bonnet surface, we will study this
kind of surface to be the isothermic Weingarten surface.
Using (2.9) into (2.6), then we obtain as follows:

(3.13)
∂2

∂u∂v

(
log

r2

r2 cos2 v + r2u

)
=

2rru sin 2v(r2u − rruu)

(r2 cos2 v + r2u)2
.

For
∂2

∂u∂v

(
log

g

e

)
= 0, there exists r2u − rruu = 0 from (3.13), that is, the surface

M admitting r2u−rruu = 0 is an isothermic surface. When we solve this differential
equation, we find r(u) = ec1uc2, where c1, c2 are constants. Thus, the following
theorem can be written.

Theorem 3.3. The surface M with the radius function r(u, v0) is an isothermic
surface if and only if it is parametrized by

(3.14) X(u, v) = ec1uc2(cosu cos v, sinu cos v, sin v).

Let Md be a conchoidal surface of M given with the parametrization ( 2.8). If
the radius function r(u, v) is a u−parameter function, then the coefficients of the
first fundamental form of the surface Md are

(3.15)

ẽ = (r ± d)2 cos2 v + r2u,

f̃ = 0,
g̃ = (r ± d)2.

Considering these coefficients for the conchoidal surface Md of M with the radius
function r(u, v0), we get

(3.16)
∂2

∂u∂v

(
log

(r ± d)2

(r ± d)2 cos2 v + r2u

)
=

2(r ± d)ru sin 2v(r2u − (r ± d)ruu)

((r ± d)2 cos2 v + r2u)2
.
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For
∂2

∂u∂v

(
log

g

e

)
= 0, there exists r2u − (r ± d)ruu = 0 from (3.16), that is, the

surface M admitting r2u − (r ± d)ruu = 0 is an isothermic surface. Solving this
differential equation, then we obtain r(u) = ec1uc2 ∓ d, where c1, c2 are constants.
Thus, the following theorem can be written.

Theorem 3.4. The conchoidal surface Md with the radius function r(u, v0) is an
isothermic surface if and only if it is parametrized by

(3.17) Xd(u, v) = (ec1uc2 ∓ d)(cosu cos v, sinu cos v, sin v).

Secondly, we investigate the necessary condition for the surface M to be a

Weingarten surface, namely
∂K

∂u

∂H

∂v
− ∂K

∂v

∂H

∂u
= 0. Differentiating (2.10), (2.11)

and considering rv = 0, then we get

(3.18)
∂K

∂u

∂H

∂v
− ∂K

∂v

∂H

∂u
=

2c31 sin v(− cos4 v + 2 cos2 v + c21)

c32e
3c1u(cos2 v + c21)7/2

.

If (3.18) is equal to zero, then (cos2 v − 1)2 = c21 + 1. Thus, cos v is a constant
and this contradicts with M , which is defined (3.14), being a surface. There is
no surface M given by (3.14) that is a Weingarten surface and so, the surface M
with the radius function r(u, v0) is not a Bonnet surface. When we examine the
conchoidal surface Md, we get similar results. There is no surface Md given by
(3.17) that is a Weingarten surface and so, the surface Md with the radius function
r(u, v0) is not a Bonnet surface.

Example 3.5. Let the radius function is given by r(u) = 2eu and d = 1. Then, the
conchoidal surface Md is parametrized by

Figure 3.5: Conchoidal surface with r(u) = 2eu and d = 1

(3.19) Xd(u, v) = (2eu + 1) (cosu cos v, sinu cos v, sin v).

It is the isothermic surface, however it is not the Weingarten surface. Thus, it is not a
Bonnet surface and it is shown as given in Figure 3.5.
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3.2. An examination of the condition of the surface of revolution given
with conchoid curve to be a Bonnet surface in E3

In this section, we will examine condition which is the surface of revolution given
with the rotating curve c(t) and its the conchoid curve cd(t) to be a Bonnet surface.

(a) The surfaces of revolution of the constant mean curvature

Assume that M and Md are the surfaces of revolution generated by the rotating
curve c(t) and its conchoid curve cd(t) parametrized by ( 2.14) and (2.18). It is
possible that the mean curvature H given by (2.17) is equal to a non-zero constant
when the radius function r(t) is a constant. This means that the surfaces M and
Md are the spheres.

Example 3.6. Let Md be a surface of revolution generated by the conchoid curve cd(t) =
5. Then, its parametrization is given by

Figure 3.6: Surface of revolution with a constant radius function

(3.20) Xd(t, s) = (5 cos t, 5 sin t cos s, 5 sin t sin s).

It denotes a sphere and it is shown as given in Figure 3.6.

Their mean curvatures are constants when the surfaces M and Md are the
minimal surfaces. According to that, considering [4], if the radius function is

r(t) =
c

cos t
, the surface M is a minimal and if the radius function is

r(t) = ±d+
c

cos t
, the surface Md is a minimal. So, the surfaces M and Md are the

surfaces of the type (i) which can be recognised by an infinite of
isometries preserving the principal curvatures where M is determined by ( 2.14)

with r(t) =
c

cos t
and Md is determined by (2.18) with r(t) = ±d +

c

cos t
.
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Figure 3.7: Surface of revolution with cd(t) =

(
1

cos t
− 1

)
(cos t, sin t)

Example 3.7. Let Md be a surface of revolution generated by the conchoid curve cd(t) =(
1

cos t
− 1

)
(cos t, sin t). Then, its parametrization is given by

(3.21) Xd(t, s) =

(
1

cos t
− 1

)
(cos t, sin t cos s, sin t sin s).

It is shown as given in Figure 3.7.

(b) The isothermic Weingarten surface of revolution of the non-constant
mean curvature

According to (2.15), from f = 0, we see that the parameter curves of the surface

M constitute the orthogonal system. Similarly, from f̃ = 0, the parameter curves
of the surface of revolution Md are the orthogonal system.

Firstly, we consider the surface providing the condition
∂2

∂t∂s

(
log

g

e

)
= 0 since

every Bonnet surface is an isothermic surface. For the surface M, using (2.15), then

we have
∂2

∂t∂s

(
log

r2 sin2 t

r2 + (r′)2.

)
= 0.

Then, we need to show the necessary condition for the surface of revolution M

to be a Weingarten surface. From (2.5), (2.16) and (2.17), we find
∂K

∂s
= 0 and

∂H

∂s
= 0. So, the surface of revolution M is the isothermic Weingarten surface.

Using (2.17), we realize that the mean curvature of the surface M is a non-
constant. Hence, the surface of revolution M generated by the rotating curve c(t)
with the non-constant mean curvature is the Bonnet surface since it is the isothermic
Weingarten surface. Also, if we study the surface of revolution Md generated by
the conchoid curve cd(t) with the help of the above calculations, then we conclude
that the surface Md is the Bonnet surface.
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Theorem 3.5. The surface of revolution M parametrized by (2.14) and the surface
of revolution Md parametrized by (2.18) are the surfaces of the type (ii) which admit
an infinite number of isometries. So, the surfaces of revolution M and Md are the
Bonnet surfaces.

Corollary 3.2. There is no surface of revolution given with the conchoid curve
that permits a single non-trivial isometry with the non-constant mean curvature.

Example 3.8. Let Md be a surface of revolution generated by the conchoid curve cd(t) =
(2 sin t + 2) (cos t, sin t). Then, its parametrization is given by

Figure 3.8: Surface of revolution with cd(t) = (2 sin t + 2) (cos t, sin t)

(3.22) Xd(t, s) = (2 sin t + 2) (cos t, sin t cos s, sin t sin s).

It is shown as given in Figure 3.8 and it is a Bonnet surface.
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