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1. Introduction and Preliminaries

We need the following sequence spaces in the sequel:

c0 =

{
x = {xk}/ lim

k→∞
xk = 0

}
;

c =

{
x = {xk}/ lim

k→∞
xk exists

}
.

We know that c0 and c are Banach spaces under the norm

‖x‖ = sup
k≥0
|xk|, x = {xk} ∈ c0 or c.

Let A = (ank), n, k = 0, 1, 2, . . . be an infinite matrix. Then we write A ∈ (c0, c)
if

(Ax)n =

∞∑
k=0

ankxk, n = 0, 1, 2, . . .
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is defined and the sequence A(x) = {(Ax)n} ∈ c, whenever x = {xk} ∈ c0. A(x) is
called the A-transform of x = {xk}. We write A ∈ (c0, c;P ) if A ∈ (c0, c) and

lim
n→∞

(Ax)n = lim
k→∞

xk = 0, x = {xk} ∈ c0.

The following results can be easily proved.

Theorem 1.1. [2] A = (ank) ∈ (c0, c) if and only if

sup
n≥0

∞∑
k=0

|ank| <∞;(1.1)

and

lim
n→∞

ank = δk exists, k = 0, 1, 2, . . . .(1.2)

Further, A ∈ (c0, c;P ) if and only if (1.1) holds and

lim
n→∞

ank = 0, k = 0, 1, 2, . . . .(1.3)

The following definitions are needed ([1]).

Definition 1.1. Given the infinite matrices A = (ank), B = (bnk), we define

(A ∗B)nk =

k∑
i=0

anibn,k−i, n, k = 0, 1, 2, . . . .(1.4)

A ∗B = ((A ∗B)nk) is called the “first convolution” of A and B;

(A ∗ ∗B)nk =
1

k + 1

k∑
i=0

anibn,k−i, n, k = 0, 1, 2, . . . .(1.5)

A ∗ ∗B = ((A ∗ ∗B)nk) is called the “second convolution” of A and B.

2. Main Results

We now have

Theorem 2.1. (c0, c) is a Banach space under the norm

‖A‖ = sup
n≥0

∞∑
k=0

|ank|, A = (ank) ∈ (c0, c).(2.1)
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Proof. We can check that ‖ · ‖, defined by (2.1), is indeed a norm. We will prove
that (c0, c) is complete with respect to the norm defined by (2.1). To this end, let
{A(n)} be a Cauchy sequence in (c0, c), where

A(n) = (a
(n)
ij ), i, j = 0, 1, 2, . . . ;n = 0, 1, 2, . . . .

Since {An} is Cauchy, for ε > 0, there exists a positive integer n0 such that

‖A(m) −A(n)‖ < ε,m, n ≥ n0,

i.e., sup
i≥0

∞∑
j=0

|a(m)
ij − a

(n)
ij | < ε,m, n ≥ n0.(2.2)

Thus, for all i, j = 0, 1, 2, . . .,

|a(m)
ij − a

(n)
ij | < ε,m, n ≥ n0.(2.3)

So, {a(n)ij }∞n=0 is a Cacuhy sequence of real (or complex) numbers. Since the field
of real (or complex) numbers is complete,

a
(n)
ij → aij , n→∞,

where aij is a real (or complex) number, i, j = 0, 1, 2, . . .. Consider the infinite
matrix A = (aij). From (2.2), we get, for all i = 0, 1, 2, . . .,

J∑
j=0

|a(m)
ij − a

(n)
ij | < ε,m, n ≥ n0, J = 0, 1, 2, . . . .(2.4)

Now, for all n ≥ n0, allowing m→∞ in (2.4), we get

J∑
j=0

|aij − a(n)ij | ≤ ε, n ≥ n0, i, J = 0, 1, 2, . . . ,

from which we have

∞∑
j=0

|aij − a(n)ij | ≤ ε, n ≥ n0, i = 0, 1, 2, . . . ,

i.e., sup
i≥0

∞∑
j=0

|aij − a(n)ij | ≤ ε, n ≥ n0,(2.5)

i.e., ‖A(n) −A‖ ≤ ε, n ≥ n0,
i.e., A(n) → A,n→∞.
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We now claim that A ∈ (c0, c). In view of (2.5),

sup
i≥0

∞∑
j=0

|aij − a(n0)
ij | ≤ ε.(2.6)

Since A(n0) = (a
(n0)
ij ) ∈ (c0, c),

sup
i≥0

∞∑
j=0

|a(n0)
ij | = M <∞(2.7)

and

lim
i→∞

a
(n0)
ij = δ

(n0)
j exists, j = 0, 1, 2, . . . .(2.8)

Now, for all i = 0, 1, 2, . . .,

∞∑
j=0

|aij | =

∞∑
j=0

|{aij − a(n0)
ij }+ a

(n0)
ij |

≤
∞∑
j=0

|aij − a(n0)
ij |+

∞∑
j=0

|a(n0)
ij |

≤ sup
i≥0

∞∑
j=0

|aij − a(n0)
ij |+ sup

i≥0

∞∑
j=0

|a(n0)
ij |

≤ ε+M, using (2.6) and (2.7)

< ∞,

so that

sup
i≥0

∞∑
j=0

|aij | <∞.

Next, we claim that {aij}∞i=0 is a Cauchy sequence of real (or complex) numbers,
j = 0, 1, 2, . . .. To this end,

|auj − avj | = |{auj − a(n0)
uj }+ {a(n0)

vj − avj}

+{a(n0)
uj − a

(n0)
vj }|

≤ |auj − a(n0)
uj |+ |a

(n0)
vj − avj |

+|a(n0)
uj − a

(n0)
vj |

≤ 2ε+ |a(n0)
uj − a

(n0)
vj |, using (2.6).(2.9)

Since {a(n0)
uj }∞u=0 converges, A(n0) ∈ (c0, c), it is a Cauchy sequence and so, for ε > 0,

there exists a positive integer L such that

|a(n0)
uj − a

(n0)
vj | < ε, u, v ≥ L.(2.10)
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In view of (2.9) and (2.10), we have

|auj − avj | < 2ε+ ε, u, v ≥ L.

Consequently, {aij}∞i=0 is a Cauchy sequence of real (or complex) numbers and so
it converges, i.e.,

lim
i→∞

aij exists, j = 0, 1, 2, . . . .

Hence A = (aij) ∈ (c0, c), completing the proof of the theorem.

Theorem 2.2. (c0, c) is a commutative Banach algebra with identity under the
first convolution ∗.

Proof. It suffices to prove closure under ∗ and the submultiplicative property of
the norm. Let A = (ank), B = (bnk) ∈ (c0, c) and C = (cnk) = A ∗ B. Now, for
k = 0, 1, 2, . . .,

cnk = (A ∗B)nk

=

k∑
i=0

anibn,k−i

→
k∑

i=0

aibk−i, n→∞,

where, lim
n→∞

ank = ak, lim
n→∞

bnk = bk, k = 0, 1, 2, . . ..

For n = 0, 1, 2, . . .,

∞∑
k=0

|cnk| =

∞∑
k=0

∣∣∣∣∣
k∑

i=0

anibn,k−i

∣∣∣∣∣
≤

∞∑
k=0

k∑
i=0

|ani||bn,k−i|

=

( ∞∑
k=0

|ank|

)( ∞∑
k=0

|bnk|

)

≤

(
sup
n≥0

∞∑
k=0

|ank|

)(
sup
n≥0

∞∑
k=0

|bnk|

)
= ‖A‖‖B‖,

so that

sup
n≥0

∞∑
k=0

|cnk| ≤ ‖A‖‖B‖,

i.e., ‖A ∗B‖ ≤ ‖A‖‖B‖,
completing the proof of the theorem.
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Theorem 2.3. (c0, c) is a Banach space, which is a commutative, non-associative
algebra without identity, under the second convolution ∗∗, with norm defined by
(2.1).

Proof. Let A = (ank), B = (bnk) ∈ (c0, c). Then

(A ∗ ∗B)nk =
1

k + 1

k∑
i=0

anibn,k−i, by (1.5).

We first claim that (c0, c) is closed under the second convolution ∗∗. For k =
0, 1, 2, . . .,

(A ∗ ∗B)nk →
1

k + 1

k∑
i=0

aibk−i, n→∞,

where lim
n→∞

ank = ak, lim
n→∞

bnk = bk, k = 0, 1, 2, . . ..

Also, for n = 0, 1, 2, . . .,

∞∑
k=0

|(A ∗ ∗B)nk| ≤
∞∑
k=0

k∑
i=0

|ani||bn,k−i|

=

( ∞∑
k=0

|ank|

)( ∞∑
k=0

|bnk|

)
≤ ‖A‖‖B‖.

Thus,

sup
n≥0

( ∞∑
k=0

|(A ∗ ∗B)nk|

)
≤ ‖A‖‖B‖,

so that A ∗ ∗B ∈ (c0, c) and

‖A ∗ ∗B‖ ≤ ‖A‖‖B‖.

Commutativity can be easily checked. Non-associativity can be established as fol-
lows: Let

A = B =


1 0 0 0 . . .
1 1 0 0 . . .
0 0 0 0 . . .
. . . . . . . . . . . . . . .

 ,

C =


1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
. . . . . . . . . . . . . . .

 .

Note that A,B,C ∈ (c0, c), using Theorem 1.1. Simple computation shows that

((A ∗ ∗B) ∗ ∗C)11 =
1

2
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and

(A ∗ ∗(B ∗ ∗C))11 =
1

4
,

which proves that
(A ∗ ∗B) ∗ ∗C 6= A ∗ ∗(B ∗ ∗C),

i.e., (c0, c) is non-associative. Again (c0, c) does not have an identity under ∗∗.
Suppose an identity E = (enk) exists. Then

A ∗ ∗E = A, for all A = (ank) ∈ (c0, c).

Consider

A =


1 0 0 0 . . .
1 1 0 0 . . .
0 0 0 0 . . .
. . . . . . . . . . . . . . .

 ∈ (c0, c).

Simple computation shows that

e11 = 1.(2.11)

Again, consider

A =


1 0 0 0 . . .
1 0 0 0 . . .
1 0 0 0 . . .
. . . . . . . . . . . . . . .

 ∈ (c0, c).

Again, simple computation shows that

e11 = 0.(2.12)

(2.11) and (2.12) lead to a contradiction, proving that (c0, c) has no identity. By
Theorem 2.1, (c0, c) is a Banach space under the norm defined by (2.1). This
completes the proof of the theorem.

As noted in ([1], p. 183), the set S of all infinite matrices is a groupoid under
the second convolution ∗∗, i.e., S is closed under ∗∗. Also S is commutative, non-
associative and S has no identity. We now have

Theorem 2.4. (c0, c;P ) is a subgroupoid of S under the second convolution ∗∗.

Proof. Let A = (ank), B = (bnk) ∈ (c0, c;P ). Let C = (cnk) = A ∗ ∗B. We already
know that A ∗ ∗B ∈ (c0, c).
Now,

lim
n→∞

ank = lim
n→∞

bnk = 0, k = 0, 1, 2, . . . .

cnk =
1

k + 1
[an0bnk + an1bn,k−1 + · · ·+ ankbn0]

→ 0, n→∞, k = 0, 1, 2, . . . .

Thus, A ∗ ∗B ∈ (c0, c;P ), completing the proof.
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Let (c0, c)
′ denote the subclass of (c0, c) consisting of all A = (ank) ∈ (c0, c) such

that
ank → 0, k →∞, n = 0, 1, 2, . . . .

Theorem 2.5. (c0, c)
′ is an ideal of (c0, c) under the second convolution ∗∗.

Proof. Let A = (ank) ∈ (c0, c) and B = (bnk) ∈ (c0, c)
′. We claim that A ∗ ∗B ∈

(c0, c)
′. We know that (c0, c) is commutative under the second convolution ∗∗. We

already know that A ∗ ∗B ∈ (c0, c). Now,

(A ∗ ∗B)nk =
1

k + 1

(
k∑

i=0

anibn,k−i

)
,

|(A ∗ ∗B)nk| ≤
1

k + 1

(
k∑

i=0

|ani||bn,k−i|

)

≤ 1

k + 1
‖A‖‖B‖

→ 0, k →∞, n = 0, 1, 2, . . . .

Consequently, A ∗ ∗B ∈ (c0, c)
′, completing the proof.
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