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COMMON HERMITIAN LEAST-RANK SOLUTION OF MATRIX
EQUATIONS A1X1A∗1 = B1 AND A2X2A∗2 = B2 SUBJECT TO INEQUALITY

RESTRICTIONS

SihemGuerarra and Said Guedjiba

Abstract. In this paper, we establish a set of explicit formulas for calculating the maximal
and minimal ranks and inertias of P − X with respect to X, where P ∈ Cn

H is given, X is a
commonHermitian least-rank solution of matrix equations A1XA∗1 = B1 and A2XA∗2 = B2.
As application, we drive necessary and sufficient conditions for X � P (≥ P, ≺ P, ≤ P) in
the Löwner partial ordering. As consequence,we give necessary and sufficient conditions
for the existence of common Hermitian positive (nonnegative, negative, nonpositive)
definite least-rank solution to A1XA∗1 = B1 and A2XA∗2 = B2.

Keywords: Matrix equation, Rank formulas, Moore-Penrose generalized inverse,
Hermitian, Least-rank solution, Inertia.

1. Introduction

Throughout this paper,Cm×n andCn
H stand for the sets of allm×n complexmatrices

and all n × n complex Hermitian matrices respectively. The symbols, A∗, r (A),
Re (A), stand for the conjugate transpose, the rank, and the range ofA, respectively.
Im denotes the identity matrix of order m. We write A � 0 (A ≥ 0) if A is Hermitian
positive (nonnegative) definite. Two Hermitian matrices A and B of the same size
are said to satisfy the inequality A � B (A ≥ B) in the Löwner partial ordering if
A − B is positive (nonnegative) definite. The Moore-Penrose generalized inverse
of a matrix A ∈ Cm×n, denoted by A+, is defined to be the unique matrix X ∈ Cn×m
satisfying the following four matrix equations:

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

Results on the generalized inverse and the Moore-Penrose generalized inverse
can be found in [1, 2, 4, 8, 11].

Further, define EA and FA stand for the two orthogonal projectors EA = I−AA+,
FA = I − A+A induced by A. Their ranks are given by r (EA) = m − r (A), r (FA) =
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n − r (A).
The inertia of A ∈ Cm

H is defined to be the triplet In (A) = {i+ (A) , i− (A) , i0 (A)}.
Where i+ (A), i− (A) and i0 (A) are the number of positive, negative and zero eigen-
values of A counted with multiplicities, respectively. The two numbers i+ (A) and
i− (A) are usually called the partial inertias of A. For a matrix A ∈ Cm

H, we have
r (A) = i+ (A) + i− (A) and i0 (A) = m − r (A).

We need the following lemmas concerning ranks and inertias of matrices in the
latter part of this paper.

Lemma 1.1. [9] Let S be a set consisting of matrices over Cm×n, and let H be a set con-
sisting of Hermitian matrices over Cm

H. Then,

a) For m = n, S has a non singular matrix if and only if max
X∈S

r (X) = m.

b) For m = n, all X ∈ S are non singular if and only if min
X∈S r

(X) = m.

c) 0 ∈ S if and only ifmin
X∈S r

(X) = 0.

d) All X ∈ S have the same rank if and only if max
X∈S

r (X) = min
X∈S r

(X) .

e) H has a matrix X�0 (X ≺ 0) if and only if max
X∈H i+ (X)=m (max

X∈H i− (X)=m).

f) H has a matrix X ≥ 0 (X ≤ 0) if and only if min
X∈H i− (X) = 0 (min

X∈H i+ (X) = 0).

g) All X ∈ H satisfy X�0 (X ≺ 0) if and only ifmin
X∈H i+

(X)=m (min
X∈H i−

(X)=m).

h) All X ∈ H satisfy X ≥ 0 (X ≤ 0) if and only if max
X∈H

i− (X)=0 (max
X∈H

i+ (X)=0).

Lemma 1.2. [11] Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n, D ∈ Cl×k. Then,

r
[
A, B

]
= r (A) + r (EAB) = r (B) + r (EBA) ,

r

(
A
C

)
= r (A) + r (CFA) = r (C) + r (AFC) ,

r

[
A B
C 0

]
= r (B) + r (C) + r (EBAFC) .

The following formulas follow from Lemma 1.2

r
[

A BFP
EQC 0

]
= r

⎡⎢⎢⎢⎢⎢⎢⎣
A B 0
C 0 Q
0 P 0

⎤⎥⎥⎥⎥⎥⎥⎦ − r (P) − r (Q) ,

r

[
M N
EPA EPB

]
= r

[
M N 0
A B P

]
− r (P) ,
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r

[
M AFP
N BFP

]
= r

⎡⎢⎢⎢⎢⎢⎢⎣
M A
N B
O P

⎤⎥⎥⎥⎥⎥⎥⎦ − r (P) .

Lemma 1.3. [9] Let A ∈ Cm
H, B ∈ Cm×n and denote M =

[
A B
B∗ 0

]
. Then,

i± (M) = r (B)+i± (EBAEB) .

In particular,
a) If A ≥ 0, then i+ (M) = r [A,B] and i− (M) = r (B),
b) If A ≤ 0, then i+ (M) = r (B) and i− (M) = r [A,B],
c) i± (A) ≤ i± (M) ≤ i± (A) + r (B).

Some useful formulas derived from lemma 1.3 are given below

i±
[

A BFP
FPB∗ 0

]
= i±

⎡⎢⎢⎢⎢⎢⎢⎣
A B 0
B∗ 0 P∗
0 P 0

⎤⎥⎥⎥⎥⎥⎥⎦−r (P) ,

i±
[
EQAEQ EQB
B∗EQ D

]
= i±

⎡⎢⎢⎢⎢⎢⎢⎣
A B Q
B∗ D 0
Q∗ 0 0

⎤⎥⎥⎥⎥⎥⎥⎦−r (Q) .

Lemma 1.4. [10, 12] Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n. Then,

i) min
X∈Ck×n,Y∈Cm×l

r (A − BX − YC) = r
[
A B
C 0

]
− r (B) − r (C).

ii) if A ∈ Cm×m, A∗ = −A. Then,
min
X∈Ck×m

r (A − BX − X∗B∗) = r

[
A B
B∗ 0

]
− 2r (B).

Lemma 1.5. [11] Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n and D ∈ Cl×k be given. Then the
rank of the Shur complement SA = D − CA†B satisfies the equality

r
(
D − CA†B

)
= r

[
A∗AA∗ A∗B
CA∗ D

]
− r (A) .

Lemma 1.6. [11] Let A1, A2, B1, B2, C1, C2, and D are matrices such that expression
D − C1A+1B1 − C2A+2B2 is defined. Then,

r
(
D − C1A†1B1 − C2A†2B2

)
= r

⎡⎢⎢⎢⎢⎢⎢⎣
A∗1A1A∗1 0 A∗1B1

0 A∗2A2A∗2 A∗2B2

C1A∗1 C2A∗2 D

⎤⎥⎥⎥⎥⎥⎥⎦−r (A1)−r (A2) .
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Lemma 1.7. [9] Let A ∈ Cm
H, B ∈ Cm×n and D ∈ Cn

H. Then,

i±
(
D − B∗A†B

)
= i±

[
A3 AB

(AB)∗ D

]
−i± (A) .

We consider the linear matrix equation

(1.1) AXA∗ = B

Where A ∈ Cm×n, B ∈ Cm
H, are given and X ∈ Cn

H is unknown matrix.
Equation (1.1) is one of the best knownmatrix equations inmatrix theory and appli-
cations. Many results have been obtained on solving rank minimization problems
and many results have been obtained on rank minimizations associated with ma-
trix equations and their solutions (see e.g. [5, 6, 7, 16]). Obviously, the concept of
least-rank solution was first proposed and studied in [14, 18].

In [13] The Hermitian least-rank solution of (1.1) is the matrix X which minimizes
the rank of the difference (B − AXA∗) or equivalently

(1.2) r (B − AXA∗) = min

The Hermitian least-rank solution of (1.1) is the solution of the consistent equa-
tion

(1.3) ET1 (X + TM+T∗)ET1 = 0

Equation (1.3) is called the normal equation associated with (1.2). Hence the
general expression of the Hermitian least-rank solution of (1.1) can be written by

(1.4) X = −TM+T∗ + T1U +U∗T∗1,

whereM =
[

B A
A∗ 0

]
, T =

[
0 In

]
, T1 = TFM, and U ∈ C(m+n)×n is arbitrary.

Many papers on the rank, inertia, consistency and solutions of the equation (1.1)
and its applications can be found in the literature, see, e.g. in [10, 15, 17, 19, 22]

2. Common Hermitian least rank solution of matrix equationsA1XA∗1 = B1 and
A2XA∗2 = B2 subject to inequality restrictions

Following the work of [3, 13, 20, 21, 22, 23], in this section we study the existence
of a Hermitian matrix satisfying the matrix inequality X � P (≥ P, ≺ P, ≤ P) in the
löwner partial ordering.
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Consider the pair of matrix equations

(2.1) A1XA∗1 = B1 and A2XA∗2 = B2.

where Aj ∈ Cmj×n, Bj ∈ Cmj

H , j = 1, 2.are given matrices and X ∈ Cn
H is unknown

matrix.

We need the following lemma

Lemma 2.1. [10, 16] Let M =

⎡⎢⎢⎢⎢⎢⎢⎣
C1 0 A1

0 −C2 A2
A∗1 A∗2 0

⎤⎥⎥⎥⎥⎥⎥⎦. Then the pair of matrix equations

A1X1A∗1 = C1 and A2X2A∗2 = C2 have a common solution X ∈ Cn
H if and only if Re

(
Cj

)
⊆

Re
(
Aj

)
and r (M) = 2r (A), j =1, 2.

where A =
[
A1

A2

]
. In this case the general common Hermitian solution of A1X1A∗1 = C1

and A2X2A∗2 = C2 can be written in the following parametric form

X = X0 + FAU1 + (FAU1)
∗ + FA1U2FA2 +

(
FA1U2FA2

)∗ .

where X0 is a special solution of A1X1A∗1 = C1 and A2X2A∗2 = C2, and U1, U2, U3 ∈ Cn×n
are arbitrary.

It is well known that the least squares solution ofmatrix equation is the solution
of its normal equation. Therefore the commonHermitian least-rank solution of pair
of matrix equations (2.1) is the common Hermitian solution of matrix equations:

(2.2) ET11XET11 = −ET11

(
T1M+1T

∗
1

)
ET11 and ET22XET22 = −ET22

(
T2M+2T

∗
2

)
ET22 .

From Lemma 2.1 the general common Hermitian solution of (2.1) can be written in
the following parametric form

(2.3) X = X0 + FGU1 + (FGU1)
∗ + FET11

U2FET22
+

(
FET11

U2FET22

)∗
.

Where G∗ =
[
ET11 , ET22

]
and U1, U2 ∈ Cn×n are arbitrary.

For convenience of representation, the following notation for the collection of all
common Hermitian least-rank solutions of (2.1) is adopted
(2.4)
S =

{
X ∈ Cn

H�ET11XET11 = −ET11

(
T1M+1T

∗
1

)
ET11 , ET22XET22 = −ET22

(
T2M+2T

∗
2

)
ET22

}
.

We need the following Lemma
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Lemma 2.2. [20] Let

(2.5) P (X,Y) = A − BX − (BX)∗ − CYD − (CYD)∗ .

Where A ∈ Cm
H, B ∈ Cm×n, C ∈ Cm×p and D ∈ Cq×m are given, and X ∈ Cn×m, Y ∈ Cp×q

are variable matrices. Also, let

M =

[
A B C D∗
B∗ 0 0 0

]
,M1 =

⎡⎢⎢⎢⎢⎢⎢⎣
A B C
B∗ 0 0
C∗ 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,M2 =

⎡⎢⎢⎢⎢⎢⎢⎣
A B D∗
B∗ 0 0
D 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

N1 =

⎡⎢⎢⎢⎢⎢⎢⎣
A B C D∗
B∗ 0 0 0
C∗ 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,N2 =

⎡⎢⎢⎢⎢⎢⎢⎣
A B C D∗
B∗ 0 0 0
D 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .
Then,

(2.6) max
X,Y

r [P (X,Y)] = min {m, r (M) , r (M1) , r (M2)} ,

(2.7) min
X,Y

r [P (X,Y)] = 2r (M) − 2r (B) +max
{

s+ + s−, s− + t+,
s+ + t−, t+ + t−

}
,

(2.8) max
X,Y

i± [P (X,Y)] = min {i± (M1) , i± (M2)} ,

(2.9) min
X,Y

i± [P (X,Y)] = r (M) − r (B) +max {s±, t±} ,

where s± = i± (M1) − r (N1) and t± = i± (M2) − r (N2).

Theorem 2.1. Let Aj ∈ Cmj×n, Bj ∈ Cmj

H , j = 1, 2 and P ∈ Cn
H be given, and assume that

(2.1) have a common Hermitian least-rank solution and S is as given in (2.4). Also, let

Q1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
M∗1M1M∗1 0 0 M∗1T

∗
1ET11 0

0 M∗2M2M∗2 0 0 M∗2T
∗
2ET22−ET11T1M∗1 0 ET11 ET11PET11 0

0 ET22T2M∗2 ET22 0 −ET22PET22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

Q2 =

⎡⎢⎢⎢⎢⎢⎢⎣
M∗1M1M∗1 0 M∗1T

∗
1ET11−ET11T1M∗1 ET11 ET11PET11

0 ET22 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Q3 =

⎡⎢⎢⎢⎢⎢⎢⎣
M∗2M2M∗2 0 M∗2T

∗
2ET22

ET22T2M∗2 ET11 0
0 ET22 −ET22PET22

⎤⎥⎥⎥⎥⎥⎥⎦ ,
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Q4 =

⎡⎢⎢⎢⎢⎢⎢⎣
M3

1 0 M1T∗1ET11

0 0 ET11

ET11T1M∗1 ET11 −ET11PET11

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Q5 =

⎡⎢⎢⎢⎢⎢⎢⎣
M3

2 0 M2T∗2ET22

0 0 ET22

ET22T2M∗2 ET22 −ET22PET22

⎤⎥⎥⎥⎥⎥⎥⎦ .
Then,

(2.10) max
X∈S

r (P − X) = min {n, c1, c2, c3} ,

(2.11) min
X∈S

r (P − X) = 2r (Q1) − 2r (M1) − 2r (M2) +max {s1, s2, s3, s4} ,

(2.12) max
X∈S

i± (P − X) = min
{

n + i± (Q4) − i± (M1) − r
(
ET11

)
,

n + i± (Q5) − i± (M2) − r
(
ET22

)
}
,

(2.13)

min
X∈S i± (P − X) = r (Q1)−r (M1)−r (M2)+max

{
i± (Q4) − i± (M1) + r (M1) − r (Q2) ,
i± (Q5) − i± (M2) + r (M2) − r (Q3)

}
,

where

c1 = 2n+r (Q1)−r (ET11

)−r (ET22

)−r (G)−r (M1)−r (M2) ,

c2 = 2n+r (Q4)−r (M1)−2r (ET11

)
, c3 = 2n+r (Q5)−r (M2)−2r (ET22

)
,

s1 = r (Q4)−2r (Q2)+r (M1) , s2 = r (Q5)−2r (Q3)+r (M2) ,

s3 = i+ (Q4)+i− (Q5)−r (Q2)−r (Q3)+i− (M1)+i+ (M2) ,

s4 = i− (Q4)+i+ (Q5)−r (Q2)−r (Q3)+i+ (M1)+i− (M2) .

Proof. Substituting (2.3) into P − X yields

(2.14) P − X = P − X0 − FGU1 − (FGU1)∗ − FET11
U2FET22

−
(
FET11

U2FET22

)∗
.

Let

L =

[
P − X0 FG FET11

FET22

FG 0 0 0

]
,

G1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 FG FET11

FG 0 0
FET11

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , G2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 FG FET22

FG 0 0
FET22

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
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L1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 FG FET11

FET22

FG 0 0 0
FET11

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , L2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 FG FET11

FET22

FG 0 0 0
FET22

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .
Applying Lemma 2.2 to (2.14) yields

(2.15) max
X∈S

r (P − X) = min {n, r (L) , r (G1) , r (G2)} ,

(2.16) min
X∈S

r (P − X) = 2r (L) − 2r (FG) +max {t1, t2, t3, t4} ,

(2.17) max
X∈S

i± (P − X) = min {i± (G1) , i± (G2)} ,

(2.18) min
X∈S i± (P − X) = r (L) − r (FG) +max

{
i± (G1) − r (L1) ,
i± (G2) − r (L2)

}
,

Where

(2.19) t1 = r (G1) − 2r (L1) ,

(2.20) t2 = r (G2) − 2r (L2) ,

(2.21) t3 = i+ (G1) + i− (G2) − r (L1) − r (L2) ,

(2.22) t4 = i− (G1) + i+ (G2) − r (L1) − r (L2) .

We will simplify r (L), r (L1), r (L2), i± (G1), i± (G2) by applying three types of ele-
mentary block matrix operations, elementary block congruence matrix operations
and Lemmas 1.2, 1.3, 1.5, 1.6 and 1.7.
It is easy to show that R (FG) ⊂ R

(
FET1

)
and R (FG) ⊂ R

(
FET2

)
. Therefore,

we obtain

r (L) =
[
P − X0 FG FET11

FET22

FG 0 0 0

]
= r

[
P − X0 FET11

FET22

FG 0 0

]

= r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 In In 0

In 0 0 G∗
0 ET11 0 0
0 0 ET22 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦−r
(
ET11

)−r (ET22

)−r (G)

= 2n+r
[
ET11 0
ET22 ET22 (X0 − P)G∗

]
−r (ET11

)−r (ET22

)−r (G)
= 2n+r

[
ET11 0 0
ET22 ET22 (X0 − P)ET11 ET22 (X0 − P)ET22

]
−r (ET11

)−r (ET22

)−r (G)
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= 2n+r
[
ET11 −ET11 (X0 − P)ET11 0
ET22 0 ET22 (X0 − P)ET22

]
−r (ET11

)−r (ET22

)−r (G)

= 2n + r
[
ET11 −ET11X0ET11 + ET11PET11 0
ET22 0 ET22X0ET22 − ET22PET22

]

(2.23) − r
(
ET11

) − r
(
ET22

) − r (G)

r

⎡⎢⎢⎢⎢⎣ ET11 −ET11

(
T1M†1T

∗
1

)
ET11 + ET11PET11 0

ET22 0 ET22

(
T2M†2T

∗
2

)
ET22 − ET22PET22

⎤⎥⎥⎥⎥⎦

= r

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
ET11 ET11PET11 0
ET22 0 −ET22PET22

]
−

[
ET11T1

0

]
M†1

[
0, T∗1ET11 , 0

]

−
[

0
ET22T2

]
M†2

[
0, 0, T∗2ET22

]
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
M∗1M1M∗1 0 0 M∗1T

∗
1ET11 0

0 M∗2M2M∗2 0 0 M∗2T
∗
2ET22−ET11T1M∗1 0 ET11 ET11PET11 0

0 ET22T2M∗2 ET22 0 −ET22PET22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦−r (M1)−r (M2)

(2.24) = r (Q1) − r (M1) − r (M2)

Substituting (2.24) into (2.23) yields

(2.25) r (L) = 2n + r (Q1) − r
(
ET11

) − r
(
ET22

) − r (G) − r (M1) − r (M2) ,

r (L1) = r

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 FG FET11

FET22

FG 0 0 0
FET11

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = r

[
P − X0 FET11

FET22

FET11
0 0

]

= r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 In In 0

In 0 0 ET11

0 ET11 0 0
0 0 ET22 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦−2r
(
ET11

)−r (ET22

)

= 2n+r
[
ET11 −ET11 (X0 − P)ET11

ET22 0

]
−2r (ET11

)−r (ET22

)

= 2n+r
[
ET11 −ET11X0ET11 + ET11PET11

ET22 0

]
−2r (ET11

)−r (ET22

)
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(2.26)

= 2n+r
[
ET11 −ET11

(
T1M†1T

∗
1

)
ET11 + ET11PET11

ET22 0

]
−2r (ET11

)−r (ET22

)

r

[
ET11 −ET11

(
T1M†1T

∗
1

)
ET11 + ET11PET11

ET22 0

]

= r
([

ET11 ET11PET11

ET22 0

]
−

[ −ET11T1
0

]
M†1

[
0, T∗1ET11

])

= r

⎡⎢⎢⎢⎢⎢⎢⎣
M∗1M1M∗1 0 M∗1T

∗
1ET11−ET11T1M∗1 ET11 ET11PET11

0 ET22 0

⎤⎥⎥⎥⎥⎥⎥⎦−r (M1)

(2.27) = r (Q2) − r (M1)

Substituting (2.27) into (2.26) yields

(2.28) r (L1) = 2n + r (Q2) − 2r
(
ET11

) − r
(
ET22

) − r (M1) ,

r (L2) = r

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 FG FET11

FET22

FG 0 0 0
FET22

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = r
[
P − X0 FET11

FET22

FET22
0 0

]

= r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 In In 0

In 0 0 ET22

0 ET11 0 0
0 0 ET22 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦−r
(
ET11

)−2r (ET22

)

= 2n+r
[
ET11 0
ET22 ET22 (X0 − P)ET22

]
−r (ET11

)−2r (ET22

)

= 2n+r
[
ET11 0
ET22 ET22X0ET22 − ET22PET22

]
−r (ET11

)−2r (ET22

)
(2.29)

= 2n+r
[
ET11 0
ET22 −ET22

(
T2M†2T

∗
2

)
ET22 − ET22PET22

]
−r (ET11

)−2r (ET22

)

r
[
ET11 0
ET22 −ET22

(
T2M†2T

∗
2

)
ET22 − ET22PET22

]

= r

([
ET11 0
ET22 −ET22PET22

]
−

[
0

ET22T2

]
M†2

[
0, T∗2ET22

])
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= r

⎡⎢⎢⎢⎢⎢⎢⎣
M∗2M2M∗2 0 M∗2T

∗
2ET22

ET22T2M∗2 ET11 0
0 ET22 −ET22PET22

⎤⎥⎥⎥⎥⎥⎥⎦−r (M2)

(2.30) = r (Q3) − r (M2)

Substituting (2.30) into (2.29) yields

(2.31) r (L2) = 2n + r (Q3) − r
(
ET11

) − 2r
(
ET22

) − r (M2) ,

i± (G1) = i±

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 FG FET11

FG 0 0
FET11

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = i±
[
P − X0 FET11

FET11
0

]

= i±

⎡⎢⎢⎢⎢⎢⎢⎣
P − X0 In 0

In 0 ET11

0 ET11 0

⎤⎥⎥⎥⎥⎥⎥⎦−r
(
ET11

)

= i±

⎡⎢⎢⎢⎢⎢⎢⎣
0 In 1

2 (X0 − P)ET11

In 0 ET11
1
2ET11 (X0 − P) ET11 0

⎤⎥⎥⎥⎥⎥⎥⎦−r (ET11

)

= n+i±
[

0 ET11

ET11 ET11 (X0 − P)ET11

]
−r (ET11

)

= n+i±
[

0 ET11

ET11 −ET11

(
T1M†1T

∗
1

)
ET11 + ET11PET11

]
−r (ET11

)

= n+i±
([

0 ET11

ET11 −ET11PET11

]
−

[
0

ET11T1

]
M†1

[
0, T∗1ET11

])

= n+i±

⎡⎢⎢⎢⎢⎢⎢⎣
M3

1 0 M1T∗1ET11

0 0 ET11

ET11T1M∗1 ET11 −ET11PET11

⎤⎥⎥⎥⎥⎥⎥⎦−i± (M1)−r (ET11

)

So

(2.32) i± (G1) = n + i± (Q4) − i± (M1) − r
(
ET11

)
,

i± (G2) = i±

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 FG FET22

FG 0 0
FET22

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = i±
[
P − X0 FET22

FET22
0

]

= i±

⎡⎢⎢⎢⎢⎢⎢⎣
P − X0 In 0

In 0 ET22

0 ET22 0

⎤⎥⎥⎥⎥⎥⎥⎦−r
(
ET22

)
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= i±

⎡⎢⎢⎢⎢⎢⎢⎣
0 In 1

2 (X0 − P)ET22

In 0 ET22
1
2ET22 (X0 − P) ET22 0

⎤⎥⎥⎥⎥⎥⎥⎦−r
(
ET22

)

= n+i±
[

0 ET22

ET22 ET22 (X0 − P)ET22

]
−r (ET22

)

= n+i±
[

0 ET22

ET22 −ET22

(
T2M†2T

∗
2

)
ET22 − ET22PET22

]
−r (ET22

)

= n+i±
([

0 ET22

ET22 −ET22PET22

]
−

[
0

ET22T2

]
M†2

[
0, T∗2ET22

])
−r (ET22

)

= n+i±

⎡⎢⎢⎢⎢⎢⎢⎣
M3

2 0 M2T∗2ET22

0 0 ET22

ET22T2M∗2 ET22 −ET22PET22

⎤⎥⎥⎥⎥⎥⎥⎦−i± (M2)−r (ET22

)

So

(2.33) i± (G2) = n + i± (Q5) − i± (M2) − r
(
ET22

)
.

Therefore we get

(2.34) r (G1) = 2n + r (Q4) − r (M1) − 2r
(
ET11

)
,

(2.35) r (G2) = 2n + r (Q5) − r (M2) − 2r
(
ET22

)
.

Substituting the above results into (2.19)-(2.22) yields

(2.36) t1 = r (Q1) − 2r (Q2) + r (M1) + 2r
(
ET11

)
+ 2r

(
ET22

) − 2n,

(2.37) t2 = r (Q5) − 2r (Q3) + r (M2) + 2r
(
ET11

)
+ 2r

(
ET22

) − 2n,

t3 = i+ (Q4) − i− (Q5) − r (Q3) − r (Q2) + 2r
(
ET11

)
+

(2.38) 2r
(
ET22

)
+ i− (M1) + i+ (M2) − 2n,

t4 = i− (Q4) + i+ (Q5) − r (Q3) − r (Q2) + 2r
(
ET11

)
+

(2.39) 2r
(
ET22

)
+ i+ (M1) + i− (M2) − 2n.

Substituting (2.36)-(2.39) into (2.15)-(2.18) yields (2.10)-(2.13).

From Theorem 2.1 and Lemma 1.1 we have the result
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Theorem 2.2. The assumption and the symbols are the same as in Theorem 2.1. Then,
a) Eq (2.1) has a common Hermitian least-rank solution X ≥ P if and only if

r (Q1) = r (Q2) + r (M2) = r (Q3) + r (M1) ,
Q4 ≥ 0, Q5 ≥ 0, M1 ≤ 0, M2 ≤ 0.

b) Eq (2.1) has a common Hermitian least-rank solution X ≤ P if and only if

r (Q1) = r (Q2) + r (M2) = r (Q3) + r (M1) ,
Q4 ≥ 0, Q5 ≥ 0, M1 ≥ 0, M2 ≥ 0.

c) Eq (2.1) has a common Hermitian least-rank solution X � P if and only if

i− (Q4) = i− (M1) + r
(
ET11

)
, i− (Q5) = i− (M2) + r

(
ET22

)
.

d) Eq (2.1) has a common Hermitian least-rank solution X ≺ P if and only if

i+ (Q4) = i+ (M1) + r
(
ET11

)
, i+ (Q5) = i+ (M2) + r

(
ET22

)
.

e) There exists a nonsingular matrix P −X such that X is a common Hermitian least-rank
solution to (2.1) if and only if

n + r (Q1) ≥ r
(
ET11

)
+ r

(
ET22

)
+ r (G) + r (M1) + r (M2) ,

n + r (Q4) ≥ r (M1) + 2r
(
ET11

)
and n + r (Q5) ≥ r (M2) + 2r

(
ET22

)
.

If P is the zero matrix in Theorem 2.2, we can achieve equivalent conditions
for the existence of common Hermitian positive (negative, nonpositive, nonnega-
tive)definite least-rank solution to(2.1)

Corollary 2.1. The assumption and the symbols are the same as in Theorem 2.1.
Define

R1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
M∗1M1M∗1 0 0 M∗1T

∗
1ET11 0

0 M∗2M2M∗2 0 0 M∗2T
∗
2ET22−ET11T1M∗1 0 ET11 0 0

0 ET22T2M∗2 ET22 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

R2 =

⎡⎢⎢⎢⎢⎢⎢⎣
M∗1M1M∗1 0 M∗1T

∗
1ET11−ET11T1M∗1 ET11 0

0 ET22 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

R3 =

⎡⎢⎢⎢⎢⎢⎢⎣
M∗2M2M∗2 0 M∗2T

∗
2ET22

ET22T2M∗2 ET11 0
0 ET22 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

R4 =

⎡⎢⎢⎢⎢⎢⎢⎣
M3

1 0 M1T∗1ET11

0 0 ET11

ET11T1M∗1 ET11 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,
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R5 =

⎡⎢⎢⎢⎢⎢⎢⎣
M3

2 0 M2T∗2ET22

0 0 ET22

ET22T2M∗2 ET22 0

⎤⎥⎥⎥⎥⎥⎥⎦ .
Then,

a) Eq (2.1) has a common Hermitian positive definite least-rank solution if and only
if

i− (R4) = i− (M1) + r
(
ET11

)
, i− (R5) = i− (M2) + r

(
ET22

)
.

b) Eq (2.1) has a common Hermitian negative definite least-rank solution if and only if

i+ (R4) = i+ (M1) + r
(
ET11

)
, i+ (R5) = i+ (M2) + r

(
ET22

)
.

c) Eq (2.1) has a common Hermitian nonpositive definite least-rank solution if and only if

r (R1) = r (R2) + r (M2) = r (R3) + r (M1) ,
R4 ≥ 0, R5 ≥ 0, M1 ≥ 0, M2 ≥ 0.

d) Eq (2.1) has a common Hermitian nonnegative definite least-rank solution if and only if

r (R1) = r (R2) + r (M2) = r (R3) + r (M1) ,
R4 ≥ 0, R5 ≥ 0, M1 ≤ 0, M2 ≤ 0.

e) There exists a nonsingular common Hermitian least-rank solution to (2.1) if and only if

n + r (R1) ≥ r
(
ET11

)
+ r

(
ET22

)
+ r (G) + r (M1) + r (M2) ,

n + r (R4) ≥ r (M1) + 2r
(
ET11

)
and n + r (R5) ≥ r (M2) + 2r

(
ET22

)
.
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universitatis (Niš).Ser. Math. Inform, 21 (2006), 41-48.

5. Y. Liu and Y. Tian, Extremal ranks of submatrices in an Hermitian solution to the matrix
equation AXA∗ = B with applications, J. Appl. Math. Comput. 32 (2010), 289-301.

6. Y. Liu and Y. Tian, Y. Takane, Ranks of Hermitian and skew-Hermitian solutions to the matrix
equation AXA∗ = B, Linear Algebra Appl. 431 (2009), 2359-2372.

7. Y. Liu and Y. Tian, More on extremal ranks of the matrix expressions A − BX ± X∗B∗ with
statistical applications, Numer. Linear algebra Appl. 15 (2008), 307-325.
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