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Abstract. In this paper, we consider the concept of probabilistic (ε, λ)-local contraction
which is a generalization of probabilistic contraction of Sehgal type, and the concept
of probabilistic G-metric space, which is a generalization of the Menger probabilistic
metric space. Then we prove some new coupled fixed point theorems for uniformly
locally contractive mappings on probabilistic metric spaces. Also, we establish some
coupled fixed point theorems for contractive mappings in probabilistic G-metric space.
The article includes some examples and an application to a system of integral equations
which supports of main results.
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1. Introduction

In 1942, Menger [9] developed the theory of metric spaces and proposed a general-
ization of metric spaces called Menger probabilistic metric spaces (briefly, Menger
PM-space). After that, the study of contraction mappings defined on probabilistic
metric spaces was initiated by Sehgal [15] and Bharucha-Reid [16]. Then different
classes of probabilistic contractions have been defined and probabilistic versions
of Banach theorem were stated in [6]. Also, Golet and Hedrea [5] discussed local
contractions in probabilistic metric spaces, which were formerly introduced by Cain
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and Kasrie [4]. On the other hand, in 2006, Mustafa and Sims [10] introduced a new
version of generalized metric spaces, which is called G-metric spaces, and proved
some of the fixed point theorems in this space (also, see [2, 11]). In 2014, Zhou et
al. [19] defined the probabilistic version of G-metric spaces and obtained new fixed
point results.

In 2004, Ran and Reurings [14] considered a partial order to the metric space
(X, d) and discussed the existence and uniqueness of fixed points for contractive
conditions and for the comparable elements of X. In 2005, Nieto and Rodŕıguez-
López [12] applied this theory for solving ordinary differential equations. After
that, Bhaskar and Lakshmikantham [3] defined coupled fixed point and proved some
coupled fixed point theorems for a mixed monotone mapping in partially ordered
metric spaces. Also, they studied the existence and uniqueness of a solution to a
periodic boundary value problem. For more details on coupled, tripled, and n-tupled
fixed point theorems in various metric spaces especially in G-metric spaces, we refer
to [1, 8, 13, 18] and references therein. On the other hand, Samet and Yazidi [17]
introduced the notation of partially ordered ε-chainable metric spaces and derived
new coupled fixed point theorems for uniformly locally contractive mappings on
such spaces.

In the following, we give some preliminary definitions which are needed.

Definition 1.1. [6] A function f : (−∞,+∞) → [0, 1] is called a distribution
function if it is non-decreasing and left-continuous with inf

x∈R
f(x) = 0. In addition if

f(0) = 0, then f is called a distance distribution function. Furthermore, a distance
distribution function f satisfying lim

x→+∞
f(x) = 1 is called a Menger distance dis-

tribution function. The set of all Menger distance distribution functions is denoted
by D+.

Definition 1.2. [6] A triangular norm (abbreviated, t-norm) is a binary operation
T on [0, 1], which satisfies the conditions: (a) T is associative and commutative; (b)
T is continuous; (c) T (a, 1) = a for all a ∈ [0, 1]; (d) T (a, b) ≤ T (c, d) whenever
a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Definition 1.3. [6] A triangular norm T is said to be of H-type (Hadzić type) if
a family of functions {Tn(t)} is equicontinuous at t = 1; that is, for each ε ∈ (0, 1),
there exists δ ∈ (0, 1) such that t > 1− δ implies that Tn(t) > 1− ε (n ≥ 1), where
Tn : [0, 1] −→ [0, 1] is defined by T 1(t) = T (t, t) and Tn(t) = T (t, Tn−1(t)) for
n = 2, 3, · · ·. Obviously, Tn(t) ≤ t for all n ∈ N and t ∈ [0, 1].

Definition 1.4. [6] A Menger probabilistic metric space (briefly, Menger PM-
space) is a triple (X,F, T ), where X is a nonempty set, T is a continuous t-norm
and F is a mapping from X2 in to D+ such that if Fx,y denotes the value of F at
the pair (x, y), then the following conditions hold:

(PM1) Fx,y(t) = 1 for all t > 0 if only if x = y;
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(PM2) Fx,y(t) = Fy,x(t) for all x, y ∈ X and t > 0;

(PM3) Fx,z(t+ s) ≥ T (Fx,y(t), Fy,z(s)) for all x, y, z ∈ X and t, s ≥ 0.

Note that Definition 1.4 is the probabilistic version of metric spaces. Also, for
notions such as convergent and Cauchy sequences, completeness and examples in
Menger PM-space, we refer to [6].

Definition 1.5. [5] Let (X,F, T,�) be a partially ordered PM-space. The map-
ping f : X2 → X is called an (ε, λ)-uniformly local contraction with a constant
k ∈ (0, 1), if 1

2 (Fx,u(ε) + Fy,v(ε)) ≥ 1− λ for all t, ε > 0 and λ ∈ (0, 1) implies that
Ff(x,y),f(u,v)(t) ≥ 1

2 (Fx,u( t
k ) + Fy,v( t

k )) for all x � u and y � v.

Under the conditions of Definition 1.5, the set X is called (ε, λ)-chainable if for all
x, y ∈ X with x � y, there exists a finite sequence x = x0 � x1 � · · · � xn = y
such that Fxi+1,xi(ε) > 1 − λ for i = 0, 1, · · · , n − 1. Also, the finite sequence
x = x0 � x1 � · · · � xn = y is called (ε, λ)-chain joining x and y.

Definition 1.6. [19] A Menger probabilistic G-metric space (shortly, PGM-space)
is a triple (X,G, T ), where X is a nonempty set, T is a continuous t-norm and G is
a mapping from X3 into D+ (Gx,y,z denotes the value of G at the point (x, y, z))
satisfying the following conditions:

(PG1) Gx,y,z(t) = 1 for all x, y, z ∈ X and t > 0 if and only if x = y = z;

(PG2) Gx,x,y(t) ≥ Gx,y,z(t) for all x, y ∈ X with z 6= y and t > 0;

(PG3) Gx,y,z(t) = Gx,z,y(t) = Gy,x,z(t) = · · · (symmetry in all three variables);

(PG4) Gx,y,z(t+ s) ≥ T (Gx,a,a(s), Ga,y,z(t)) for all x, y, z, a ∈ X and s, t ≥ 0.

Note that Definition 1.6 is the probabilistic version of generalized metric spaces.
Also, for notions such as convergent and Cauchy sequences, completeness, and ex-
amples in Menger PGM-space, we refer to [19].

Definition 1.7. [19] Let (X,G, T ) be a PGM-space and x0 ∈ X. For any ε > 0
and δ with 0 < δ < 1, an (ε, δ)-neighborhood of x0 is the set of all y ∈ X which
Gx0,y,y(ε) > 1− δ and Gy,x0,x0(ε) > 1− δ. We write

Nx0
(ε, δ) = {y ∈ X : Gx0,y,y(ε) > 1− δ,Gy,x0,x0

(ε) > 1− δ} .

This means that Nx0(ε, δ) is the set of all points y in X for which the probability
of the distance from x0 to y being less than ε is greater than 1− δ.

Definition 1.8. [3] Let (X,�) be a partially ordered set. The mapping f : X2 →
X is said to be have the mixed monotone property if f is monotone non-decreasing
in its first argument and is monotone non-increasing in its second argument; that
is, for all x1, x2 ∈ X, x1 � x2 implies f(x1, y) � f(x2, y) for each y ∈ X, and for
all y1, y2 ∈ X, y1 � y2 implies f(x, y1) � f(x, y2) for each x ∈ X.
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Definition 1.9. [7] Let (X,�) be an ordered partial metric space. If relation v
is defined on X2 by (x, y) v (u, v) iff x � u and y � v, then (X2,v) is an ordered
partial metric space.

2. Coupled Fixed Point Theorems on Local Contractions in Menger
PM-space

In this section, we prove some new coupled fixed point theorems for uniformly
locally contractive mappings on probabilistic metric spaces.

Theorem 2.1. Let (X,F, T,�) be a partially ordered complete Menger PM-space
with T of Hadzić-type and f : X2 → X be a mapping having the mixed monotone
property on X. Also, suppose that the following conditions are hold:

1. X is (ε, λ)-chainable with respect to the partial order “ � ” on X,

2. f is continuous,

3. f is (ε, λ)-uniformly locally contractive mapping,

4. there exists x0, y0 ∈ X such that x0 � f(x0, y0) and y0 � f(y0, x0).

Then, f has a coupled fixed point.

Proof. By condition 4, there exists x0, y0 ∈ X such that x0 � f(x0, y0) and y0 �
f(y0, x0). We define x1, y1 ∈ X as x1 = f(x0, y0) � x0 and y1 = f(y0, x0) � y0.
Let x2 = f(x1, y1) and y2 = f(y1, x1). Then we obtain

f2(x0, y0) = f(f(x0, y0), f(y0, x0)) = f(x1, y1) = x2,

f2(y0, x0) = f(f(y0, x0), f(x0, y0)) = f(y1, x1) = y2.

Now, the mixed monotone property of f implies that

x2 = f2(x0, y0) = f(x1, y1) � f(x0, y0) = x1 � x0,
y2 = f2(y0, x0) = f(y1, x1) � f(y0, x0) = y1 � y0.

Continuing the above procedure, we have

x0 � x1 � x2 � · · · � xn+1 � · · ·
y0 � y1 � y2 � · · · � yn+1 � · · ·

for all n ≥ 0, where

xn+1 = fn+1(x0, y0) = f(fn(x0, y0), fn(y0, x0)),

yn+1 = fn+1(y0, x0) = f(fn(y0, x0), fn(x0, y0)).

If (xn+1, yn+1) = (xn, yn), then f has a coupled fixed point. Otherwise, let (xn+1, yn+1) 6=
(xn, yn) for all n ≥ 0; that is, we assume that either xn+1 = f(xn, yn) 6= xn or
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yn+1 = f(yn, xn) 6= yn. Since X is ε-chainable, there exists α0, α1, · · · , αn ∈ X and
β0, β1, · · · , βn ∈ X such that

xi = α0 � α1 � · · · � αn = xi+1

yi = β0 � β1 � · · · � βn = yi+1

for all i = 1, 2, · · · , n. Hence, we have Fxi,xi+1
(ε) ≥ 1 − λ and Fyi,yi+1

(ε) ≥ 1 − λ.
Using condition 3, we have

Ff(xi,yi),f(xi+1,yi+1)(t) ≥
1

2
(Fxi,xi+1

(
t

k
) + Fyi,yi+1

(
t

k
)).

Now, for all i ≥ 0, one can show by induction that

Ff(xi,yi),f(xi+1,yi+1)(t) = Fxi,xi+1
(t) ≥ 1

2
(Fx1,x0

(
t

ki
) + Fy1,y0

(
t

ki
)),

Ff(yi,xi),f(yi+1,xi+1)(t) = Fyi,yi+1(t) ≥ 1

2
(Fy1,y0(

t

ki
) + Fx1,x0(

t

ki
)).

Hence, we have 1
2 (Fx1,x0

( t
ki ) + Fy1,y0

( t
ki ))→ 1 and 1

2 (Fy1,y0
( t
ki ) + Fx1,x0

( t
ki ))→ 1

as i→∞, so
Fxi,xi+1

(t) ≥ 1− λ and Fyi,yi+1
(t) ≥ 1− λ(2.1)

for all i ∈ N and any t > 0. Now, we show by induction that for any k ≥ 0, n ≥ 1
and t > 0,

Fxn,xn+k
(t) ≥ T k(Fxn,xn+1

(t− λt)).(2.2)

For k = 0, since T (a, b) is a real number, T 0(a, b) = 1 for all a, b ∈ [0, 1]. Hence,
Fxn,xn

(t) = T 0(Fxn,xn+1
(t − λt)) = 1, which implies that (2.2) holds for k = 0.

Assume that (2.2) holds for some k ≥ 1. Then, since T is monotone, it follows from
(PM3) that

Fxn,xn+k+1
(t) = Fxn,xn+k+1

(t− λt+ λt)

≥ T (Fxn,xn+1
(t− λt), Fxn+1,xn+k+1

(λt))

≥ T (Fxn,xn+1
(t− λt), Fxn,xn+k

(λt))

≥ T (Fxn,xn+1(t− λt), T k(Fxn,xn+1(t− λt)))
= T k+1(Fxn,xn+1

(t− λt)).(2.3)

Thus, (2.2) is hold. Now, we show that {xn} is a Cauchy sequence in X, i.e.,
lim

m,n→∞
Fxn,xm

(t) = 1 for any t > 0. To this end, by hypothesis of the t-norm T is

H-type we have {Tn : n ≥ 1} is equicontinuous at 1; that is, there exists δ > 0 such
that

Tn(a) ≥ 1− ε(2.4)

for all n ≥ 1 and any a ∈ (1 − δ, 1]. On the other hand, it follows from (2.1) that
lim

n→∞
Fxn,xn+1(t− λt) = 1. Hence, there exists n0 ∈ N such that Fxn,xn+1(t− λt) ∈

(1 − δ, 1] for all n ≥ n0. By (2.3) and (2.4), we conclude that Fxn,xn+k
(t) > 1 − ε
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for any k ≥ 1. This shows lim
n,m→∞

Fxn,xm
(t) = 1 for any t > 0; that is {xn} is a

Cauchy sequence in X. Similarly, {yn} is a Cauchy sequence. Since X is a complete
space, there exists x, y ∈ X such that lim

n→∞
xn = x and lim

n→∞
yn = y. Now, since

xn+1 = f(xn, yn) and f is continuous, and by taking the limit as n→∞, we have
f(x, y) = x. Similarly, f(y, x) = y. Thus, (x, y) is a coupled fixed point of f .

Example 2.1. Let X = [0,∞), “ � ” be a partially ordered on X (note that we consider
the same ordinary order on real numbers) and T (a, b) = min{a, b}. Define F : X2 → D+

by Fx,y(t) = 1 if x = y and otherwise, Fx,y(t) = exp(−t). Clearly, F satisfies in (PM1)-
(PM4). Define the mapping f : X2 → X by f(a, b) = ab. We have

Ff(x,y),f(u,v)(t) ≥
1

2
(Fx,u(

t

k
) + Fy,v(

t

k
))

for k ∈ (0, 1). Therefore, f is (ε, λ)-uniformly locally contractive mapping. Also, f is
continuous, [0,∞) is (ε, λ)-chainable, and there exists x0 = 0 and y0 = 1 such that
0 = x0 � f(x0, y0) = x0y0 and 1 = y0 � f(y0, x0) = y0x0. Therefore, all the hypothesis of
Theorem 2.1 are satisfied and f has a coupled fixed point.

Theorem 2.2. Suppose that the assumptions of Theorem 2.1 is true. If we replace
the assumption the continuity of f by the following conditions:

1. if a non-decreasing sequence {xn} converges to x ∈ X, then xn � x for all n,

2. if a non-increasing sequence {yn} converges to y ∈ X, then yn � y for all n,

then f has a coupled fixed point.

Proof. As in the proof of Theorem 2.1, we construct {xn} and {yn}. Then, by
conditions 1 and 2, we have xn � x and yn � y for all n ≥ 0. Let xn = x and
yn = y for some n. Then, due to the structure of both sequences, we have xn+1 = x
and yn+1 = y. Hence, (x, y) is a coupled fixed point. Now, we assume either xn 6= x
or yn 6= y. Since xn → x and yn → y, for given ε1, ε2, λ1, λ2 > 0, there exists
k1, k2 ∈ N such that Fxn1 ,x

(ε1) ≥ 1−λ1 and Fyn2 ,y
(ε2) ≥ 1−λ2 for all n1 ≥ k1 and

n2 ≥ k2, respectively. Let k = max{k1, k2}, λ = max{λ1, λ2} and ε = max{ε1, ε2}.
Then, by conditions 1 and 2, we have 1

2 (Fxn,x(ε) + Fyn,y(ε)) ≥ 1− λ for all n ≥ k.
Since f is (ε, λ)-uniformly locally contractive, by conditions 1 and 2, we have

Ff(xn,yn),f(x,y)(t) ≥
1

2
(Fxn,x(

t

k
) + Fyn,y(

t

k
)).

Now, by letting n → ∞ by xn+1 = f(xn, yn), we have x = f(x, y). Similarly, one
can show that y = f(y, x). This completes the proof.

Theorem 2.3. Adding the following property to the hypotheses of Theorem 2.1
(Theorem 2.2). Then the coupled fixed point of f is unique.

(H) for all (x, y), (x1, y1) ∈ X2, there exists (z1, z2) ∈ X2 such that is compara-
ble with (x, y) and (x1, y1).
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Proof. Let (x1, y1) be another coupled fixed point of f . We consider two cases.

Case 1. suppose that (x, y) and (x1, y1) are comparable with respect to the
partial ordering v in X2. Without loss of the generality, we can assume that x � x1
and y � y1. Applying the procedure of Theorem 2.1, by X is (ε, λ)-chainable, we
have Fx,x1

(ε) ≥ 1 − λ and Fy,y1
(ε) ≥ 1 − λ. Since f is (ε, λ)-uniformly locally

contractive, we have

Ffn(x,y),fn(x1,y1)(t) ≥
1

2
(Fx,x1(

t

kn
) + Fy,y1(

t

kn
))

for all n ∈ N. Now, by letting n→∞, we have x = x1. Similarly, y = y1.

Case 2. assume that (x, y) and (x1, y1) are not comparable. From (H), there
exists (z1, z2) ∈ X2 that is comparable to (x, y) and (x1, y1). Without loss of the
generality, we can suppose that x � z1 , y � z2, x1 � z1 and y1 � z2. Similar to
the Case 1, we have

Ffn(x,y),fn(z1,z2)(t) ≥
1

2
(Fx,z1(

t

kn
) + Fy,z2(

t

kn
)),

which by letting n → ∞ implies that lim
n→∞

fn(x, y) = lim
n→∞

fn(z1, z2). Similarly,

we have lim
n→∞

fn(y, x) = lim
n→∞

fn(z2, z1), lim
n→∞

fn(x1, y1) = lim
n→∞

fn(z1, z2) and

lim
n→∞

fn(y1, x1) = lim
n→∞

fn(z2, z1). Thus, we obtain Fx,x1
(t) = Ffn(x,y),fn(x1,y1)(t)

and Fy,y1
(t) = Ffn(y,x),fn(y1,x1)(t), which by letting n → ∞ implies that x = x1

and y = y1.

Consequently, the coupled fixed point of f is unique in both cases.

Theorem 2.4. In addition of the hypotheses of Theorem 2.1 (Theorem 2.2), sup-
pose that every pair of elements of X has an upper or a lower bound in X. Then
x = y.

Proof. Case 1. suppose that x and y are comparable. Without loss of the generality,
we can assume that x � y and y � y. Then similar to the proof of Theorem 2.3, we
have x = y

Case 2. suppose x is not comparable to y. Then, there exists an upper bound or
lower bound of x and y; that is, there exists z ∈ X comparable with x and y. For
example, we can suppose that x � z and y � z. Similar to the proof of Theorem
2.3, we have (x, y) = (z, z). Thus, x = y.

3. Coupled Fixed Point Theorems in Menger PGM-spaces

In this section, we establish some coupled fixed point theorems in probabilistic
G-metric spaces.
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Theorem 3.1. Let (X,G, T,�) be a partially ordered complete Menger PGM-
space with T of Hadzić-type and f : X2 → X be a continuous mapping having
the mixed monotone property. Assume that there exists k ∈ [0, 1) such that

Gf(x,y),f(u,v),f(w,z)(t) ≥
1

2
(Gx,u,w(

t

k
) +Gy,v,z(

t

k
))(3.1)

for all x, y, z, u, v, w ∈ X with x � u � w and y � v � z, where either u 6= w or
v 6= z. If there exist x0, y0 ∈ X such that x0 � f(x0, y0) and y0 � f(y0, x0), then f
has a coupled fixed point in X.

Proof. Construct {xn} and {yn} as in the proof of Theorem 2.1. If (xn+1, yn+1) =
(xn, yn), then f has a coupled fixed point. Otherwise, let (xn+1, yn+1) 6= (xn, yn)
for all n ≥ 0; that is, we assume that either xn+1 = f(xn, yn) 6= xn or yn+1 =
f(yn, xn) 6= yn. Now, one can show by induction that

Gxn+1,xn+1,xn(t) ≥ 1

2
(Gx1,x1,x0(

t

kn
) +Gy1,y1,y0(

t

kn
)),

Gyn+1,yn+1,yn(t) ≥ 1

2
(Gy1,y1,y0(

t

kn
) +Gx1,x1,x0(

t

kn
))

for all n ≥ 0. Since X is a Menger PGM-space, we have

lim
n→∞

Gx1,x1,x0
(
t

kn
) = 1 and lim

n→∞
Gy1,y1,y0

(
t

kn
) = 1,(3.2)

which imply that

lim
n→∞

Gxn+1,xn+1,xn
(t) = 1 and lim

n→∞
Gyn+1,yn+1,yn

(t) = 1

for any t > 0. Now, by induction, we show that for any k ≥ 0, n ≥ 1 and t > 0,

Gxn,xn+k,xn+k
(t) ≥ T k(Gxn,xn+1,xn+1(t− λt)).(3.3)

For k = 0, since T (a, b) is a real number, T 0(a, b) = 1 for all a, b ∈ [0, 1]. Hence,

Gxn,xn,xn
(t) ≥ T 0(Gxn,xn+1,xn+1

(t− λt)),

which implies that (3.3) holds for k = 0. Assume that (3.3) holds for some k ≥ 1.
Since T is monotone, it follows from (PG4) that

Gxn,xn+k+1,xn+k+1
(t) = Gxn,xn+k+1,xn+k+1

(t− λt+ λt)

≥ T (Gxn,xn+1,xn+1
(t− λt), Gxn+1,xn+k+1,xn+k+1

(λt))

≥ T (Gxn,xn+1,xn+1
(t− λt), Gxn,xn+k,xn+k

(t))

≥ T (Gxn,xn+1,xn+1(t− λt), T k(Gxn,xn+1,xn+1(t− λt)))
= T k+1(Gxn,xn+1,xn+1

(t− λt)).
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Thus, (3.3) is hold. Now, we show that {xn} is a Cauchy sequence in X, i.e.,
lim

m,n,l→∞
Gxn,xm,xl

(t) = 1 for all t > 0. To this end, we first prove

lim
n,m→∞

Gxn,xm,xm(t) = 1

for any t > 0. By hypothesis of the t-norm T is H-type we have {Tn : n ≥ 1} is
equicontinuous at 1; that is, there exists δ > 0 such that Tn(a) ≥ 1− ε for all a ∈
(1−δ, 1], ε > 0 and n ≥ 1. From (3.2), it follows that lim

n→∞
Gxn,xn+1,xn+1

(t−λt) = 1.

Hence, there exists n0 ∈ N such that Gxn,xn+1,xn+1(t−λt) ∈ (1−δ, 1] for any n ≥ n0.
Thus, by (3.2) and (3.3), we conclude that Gxn,xn+k,xn+k

(t) > 1− ε for any k ≥ 1.
This shows lim

n,m→∞
Gxn,xm,xm

(t) = 1 for any t > 0, similarly lim
n,l→∞

Gxn,xl,xl
(t) = 1

for any t > 0. By (PG4), we have

Gxn,xm,xl
(t) ≥ T (Gxn,xn,xm(

t

2
), Gxn,xn,xl

(
t

2
)),

Gxn,xn,xm
(
t

2
) ≥ T (Gxn,xm,xm

(
t

4
), Gxn,xm,xm

(
t

4
)),

Gxn,xn,xl
(
t

2
) ≥ T (Gxn,xl,xl

(
t

4
), Gxn,xl,xl

(
t

4
)).

Therefore, by the continuity of T , we conclude that lim
m,n,l→∞

Gxn,xm,xl
(t) = 1 for

any t > 0. Hence, {xn} is a Cauchy sequence in X. Similarly, {yn} is a Cauchy
sequence in X. Since X is complete, there exist x, y ∈ X such that lim

n→∞
xn = x and

lim
n→∞

yn = y. Now, we show that f has a coupled fixed point in X. From xn+1 =

f(xn, yn), take the limit as n → ∞. Since f is continuous, we have f(x, y) = x.
Similarly, we have f(y, x) = y.

Example 3.1. Consider X, “ � ” and T (a, b) as in Example 2.1. Define G : X3 → R+

by

Gx,y,z(t) =
t

t+G∗(x, y, z)
,

where G∗(x, y, z) = |x − y| + |x − z| + |y − z| for all x, y, z ∈ X. Clearly, G satisfies in
(PG1)-(PG4) (see [19]). Define the mapping f : X2 → X by f(x, y) = 1. Then, for all
t > 0 and k ∈ [0, 1), we have

Gf(x,y),f(u,v),f(w,z)(t) = G1,1,1(t) = 1 ≥ 1

2
(Gx,u,w(

t

k
) +Gy,v,z(

t

k
))

for all x, y, z, u, v, w ∈ X with x � u � w and y � v � z, where either u 6= w or v 6= z. Also,
there exist x0 = 0 and y0 = 1 such that 0 = x0 � f(x0, y0) = 1 and 1 = y0 � f(y0, x0) = 1.
Therefore, all the hypothesis of Theorem 3.1 are satisfied. Thus, f has a coupled fixed
point.

Theorem 3.2. Assume that the assumptions of Theorem 3.1 are hold and replace
the assumption the continuity of f by the following conditions:
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1. if a non-decreasing sequence {xn} converges to x ∈ X, then xn � x for all n;

2. if a non-increasing sequence {yn} converges to y ∈ X, then yn � y for all n.

Then f has a coupled fixed point.

Proof. As in the proof of Theorem 2.1, we construct {xn} and {yn}. Then, by
conditions 1 and 2, we have xn � x and yn � y for all n ≥ 0. Let xn = x and
yn = y for some n. Then, due to the structure of both sequences, we have xn+1 = x
and yn+1 = y. Hence, (x, y) is a coupled fixed point. Now, we assume that either
xn 6= x or yn 6= y. Then we have

Gf(x,y),x,x(2t) ≥ T (Gf(x,y),f(xn,yn)f(xn,yn)(t), Gf(xn,yn),x,x(t))

≥ T (
1

2
(Gx,xn,xn

(
t

k
) +Gy,yn,yn

(
t

k
)), Gxn+1,x,x(t)).

Now, taking n → ∞, we obtain Gf(x,y),x,x(2t) = 1; that is, f(x, y) = x. Similarly,
we have f(y, x) = y. This completes the proof of the theorem.

Theorem 3.3. Let (X,G, T,�) be a partially ordered complete Menger PGM-
space with T of Hadzić-type and f : X2 → X be a continuous mapping having
the mixed monotone property on X, and f(x, y) � f(y, x) whenever x � y. Assume
that there exists k ∈ [0, 1) such that

Gf(x,y),f(u,v),f(w,z)(t) ≥
1

2
(Gx,u,w(

t

k
) +Gy,v,z(

t

k
))

for all x, y, z, u, v, w ∈ X with x � u � w and y � v � z, where either u 6= w or
v 6= z. If there exist x0, y0 ∈ X such that x0 � y0, x0 � f(x0, y0) and y0 � f(y0, x0),
then f has a coupled fixed point in X.

Proof. By the last assumption of the theorem, there exist x0, y0 ∈ X such that
x0 � f(x0, y0) and y0 � f(y0, x0). We define x1, y1 ∈ X as x1 = f(x0, y0) � x0
and y1 = f(y0, x0) � y0. Since x0 � y0 and by another assumption of the theorem,
we have f(x0, y0) � f(y0, x0). Hence, x0 � x1 = f(x0, y0) � f(y0, x0) = y1 � y0.
Continuing the above procedure, we have two sequences {xn} and {yn} such that

xn � f(xn, yn) = xn+1 � yn+1 = f(yn, xn) � yn

for all n ≥ 0. Now, if xn = yn = c for some n, then c � f(c, c) � f(c, c) � c. Thus,
c = f(c, c) and (c, c) is a coupled fixed point. Hence, we assume that xn � yn for
all n ≥ 0. Further, for the same reason as stated in Theorem 3.1, we assume that
(xn, yn) 6= (xn+1, yn+1). Then, for all n ≥ 0, (3.1) will hold with x = xn+2, u =
xn+1, w = xn, y = yn, v = yn+1 and z = yn+2. The rest of the proof is obtained by
repeating the same steps as in Theorem 3.1.

Theorem 3.4. Suppose that the assumptions of Theorem 3.3 are true and replace
the assumption the continuity of f by the following conditions:
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1. if a non-decreasing sequence {xn} converges to x ∈ X, then xn � x for all n;

2. if a non-increasing sequence {yn} converges to y ∈ X, then yn � y for all n.

Then f has a coupled fixed point.

Proof. The proof is similar to the proof of Theorem 3.2.

Remark 3.1. (i) All the previous results can be considered if instead “mixed mono-
tone property” we suppose so-called only “monotone property” as in 1 and 2. It is
well known that this property has an advantage under the mixed monotone property.

(ii) Some authors think that the notion of coupled fixed point is not still such actual
for research. But Soleimani Rad et al. [18] only showed that some of the results in
coupled fixed point theory can be obtained from fixed point theory and conversely
(also, see [1, 13]).

4. Application to a System of Integral Equations

Consider the following system of integral equations:
x(t) =

∫ b

a
M(t, s)K(s, x(s), y(s))ds

y(t) =
∫ b

a
M(t, s)K(s, y(s), x(s))ds

(4.1)

for all t ∈ I = [a, b], where b > a, M ∈ C(I × I, [0,∞)) and K ∈ C(I × R× R,R).

Let C(I,R) be the Banach space of all real continuous functions defined on
I with the sup norm ||x||∞ = maxt∈I |x(t)| for all x ∈ C(I,R) and C(I × I ×
C(I,R),R) be the space of all continuous functions defined on I × I ×C(I,R) and
the induced G∗-metric be defined by G∗(x, y, z) = ||x− y||+ ||x− z||+ ||y − z|| for
all x, y, z ∈ C(I,R). Now, suppose that G : C(I,R)× C(I,R) → D+ is defined by
Gx,y,z(t) = χ( t

2 −G
∗(x, y, z)) for all x, y, z ∈ C(I,R) and t > 0, where

χ(t) =

{
0 if t ≤ 0,
1 if t > 0.

The space (C(I,R), G, T ) with T (a, b) = min{a, b} is a complete Menger PGM-
space. Also, we define the partial order relation “ � ” on C(I,R) by x � y iff
||x||∞ ≤ ||y||∞ for all x, y ∈ C(I,R). Thus, (C(I,R), F, T,�) is a partially ordered
complete probabilistic G-metric space.

Theorem 4.1. Let (C(I,R), G, T,�) be the partially ordered complete probabilistic
G-metric space and f : C(I,R) × C(I,R) → C(I,R) be an operator defined by

f(x, y)t =
∫ b

a
M(t, s)K(s, x(s), y(s))ds, where M ∈ C(I × I, [0,∞)) and K ∈ C(I ×

R× R,R) are two operators satisfying the following conditions:

(i) ||K||∞ = sup
s∈I, x,y∈C(I,R)

|K(s, x(s), y(s))| <∞,
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(ii) for all x, y ∈ C(I,R) and all t, s ∈ I we have

||K(s, x(s), y(s))−K(s, u(s), v(s))|| ≤ 1
4 (max |x(s)−u(s)|+max |y(s)−v(s)|),

(iii) sup
t∈I

∫ b

a
G(t, s)ds < 1.

Then, the system of integral equations (4.1) has a solution in C(I,R)× C(I,R).

Proof. For all x, y, z ∈ C(I,R), we consider

G∗(x, y, z) = max
t∈I

(|x(t)− y(t)|) + max
t∈I

(|x(t)− z(t)|) + max
t∈I

(|y(t)− z(t)|).

Therefore, for all x, y, z, u, v, w ∈ C(I,R) with x � u � w and y � v � z, where
either u 6= w or v 6= z, we get

G∗(f(x, y), f(u, v), f(w, z))

≤ max
t∈I

∫ b

a

M(t, s)|K(s, x(s), y(s))−K(s, u(s), v(s))|ds

+ max
t∈I

∫ b

a

M(t, s)|K(s, x(s), y(s))−K(s, w(s), z(s))|ds

+ max
t∈I

∫ b

a

M(t, s)|K(s, u(s), v(s))−K(s, w(s), z(s))|ds

≤ max(
1

4
(|x(s)− u(s)|+ |y(s)− v(s)|)) max

t∈I

∫ b

a

M(t, s)ds

+ max(
1

4
(|x(s)− w(s)|+ |y(s)− z(s)|)) max

t∈I

∫ b

a

M(t, s)ds

+ max(
1

4
(|u(s)− w(s)|+ |v(s)− z(s)|)) max

t∈I

∫ b

a

M(t, s)ds

≤ max(
1

4
(|x(s)− u(s)|+ |y(s)− v(s)|))

+ max(
1

4
(|x(s)− w(s)|+ |y(s)− z(s)|))

+ max(
1

4
(|u(s)− w(s)|+ |v(s)− z(s)|)),

which implies that

Gf(x,y),f(u,v),f(w,z)(t) = χ(
t

2
−G∗(f(x, y), f(u, v), f(w, z))

≥ χ(
t

2
− (max(

1

4
(|x(s)− u(s)|+ |y(s)− v(s)|))

+ max(
1

4
(|x(s)− w(s)|+ |y(s)− z(s)|))
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+ max(
1

4
(|u(s)− w(s)|+ |v(s)− z(s)|)))

= χ(
1

2
(t− 1

2
(max(|x(s)− u(s)|+ |x(s)− w(s)|

+|u(s)− w(s)|) + max(|y(s)− v(s)|+ |y(s)− z(s)|
+|v(s)− z(s)|))))

≥ 1

2
χ(t− (max(|x(s)− u(s)|+ |x(s)− w(s)|

+|u(s)− w(s)|))) +
1

2
χ(t− (max(|y(s)− v(s)|

+|y(s)− z(s)|+ |v(s)− z(s)|)))

=
1

2
(Gx,u,w(2t) +Gy,v,z(2t)).

Therefore, all the hypotheses of Theorem 3.1 are held with k = 1
2 and the operator

f has a coupled fixed point which is the solution of the system of the integral
equations.
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