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Abstract. In this paper, we have established some geometric inequalities for the
squared mean curvature in terms of warping functions of a doubly warped product
pointwise bi-slant submanifold of a conformal Sasakian space form with a quarter sym-
metric metric connection. The equality cases havve also been considered. Moreover,
some applications of obtained results are derived.
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1. Introduction

In 2000, B. Unal [17] introduced the notion of doubly warped products as a gen-
eralization of warped products and it states that: let V; and Ns be two Riemannian
manifolds with Riemannian metrics g; and g respectively. Further, let us suppose
that f; & fo are positive differentiable functions on N; and N> respectively. Then,
the doubly warped product N = ,N; Xy, N» is defined as the product manifold
N1 x Ny equipped with the warped metric g = f2g1 + fg2. In a meticulous manner,
if t1 : Ny Xx No — Ny and t3 : N; X Ny — Ny are natural projections, then the
metric g is given by [17]

(1.1) 9(X,Y) = (foota)’ g1 (X, Y) + (frot)? go (X, 15Y),
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for any vector fields X,Y on N, where * denotes the symbol for tangent maps.

It is important to note that on a doubly warped product manifold N = , Ny x ¢,
Ny if either f; or f5 is constant on N but not both, then IV is a single warped
product. Furthermore, if both f; and f; are constant function on N, then N is
locally a Riemannian product. A doubly warped product manifold is said to be
proper if both f; and f; are non-constant functions on V.

On the other hand, the immersibility /non-immersibility of a Riemannian man-
ifold in a space form is one of the most fundamental problems in the theory of
submanifold which started with the most celebrated Nash embedding theorem [11].
In this theorem, actually Nash was aiming to take extrinsic help. However, due to
the lack of control of the extrinsic properties of the submanifolds by the known in-
trinsic invariant, the aim cannot be reached. Motivated by this and to overcome the
difficulties, Chen introduced new types of Riemannian invariants and established
general optimal relationship between extrinsic invariants and intrinsic invariants
on the submanifold. Motivated by Chen’s result, several inequalities have been
obtained by many geometers for warped products and doubly warped products in
different setting of the ambient manifolds [4, 5, 8, 9, 10, 12, 13, 15, 16, 19, 20].
In this paper, we have studied doubly warped product pointwise bi-slant subman-
ifolds isometrically immersed into a conformal Sasakian space form with a quarter
symmetric metric connection. The inequalities which we shall obtain in this paper
are very fascinating because we derive upper bound and lower bound for warping
functions in terms of mean curvature, scalar curvature and pointwise constant -
sectional curvature c. The obtained results generalize some other inequalities as
special cases.

2. Preliminaries

Let N be a Riemannian manifold with Riemannian metric g. A linear connection
V on N is called a quarter-symmetric connection if its torsion tensor 1" given by

T(X,Y)=VxY —VyX — [X,Y]
and satisfies
T(X,Y) =7(Y)pX — m(X)pY,

where 7 is a 1-form and V is a vector field such that 7(X) = ¢(X,V) and ¢ is a (1,1)
tensor field. If Vg = 0, then V is known as quarter-symmetric metric connection
and Vg # 0, then V is known as quarter symmetric non-metric connection. In
this setting, it is shown in [14], one can easily obtain a special quarter-symmetric
connection defined as

(2.1) VxY = VxV 4+ (V)X — Aag(X, Y)V.

This is a general class of connection in the sense of (2.1) can be obtained as:
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1. when A\; = Ay = 1, then the above connection reduces to semi-symmetric
metric connection.

2. when A\; = 1 and A2 = 0, then the above connection reduces to semi-symmetric
non metric connection.

The curvature tensor with respect to V is given by
(2.2) ROX,Y)Z = VxVyvZ — VyVxZ — Vi Z.

Similarly, we can define the curvature tensor with respect to V. Now, using (2.1),
the curvature tensor takes the following form [18]

R(Xv Yv Za W) = R<X7 Yv Zv W) + Ala(Xa Z)g(}/v W) - Ala(Yv Z)g(Xv W)
FhoalY, W)g(X, Z) — doa( X, W)g(Y, Z)
A2 (A1 = A2)g(X, Z2)B(Y, W) — Aa(A1 — A2)g(Y, Z)B(X, W).

(2.3)
where

a(X,Y) = (Vxm)(¥) = Mr(X)r(Y) + 290X,V )m(V)
and

55,¥) = "y, ¥) + (X))
are (0,2) tensors.

For simplicity, we denote by tr(a) = a and tr(8) = b.

_ Let N be an m-dimensional submanifold of a Riemannian manifold N and V,
V be the induced quarter symmetric-metric connection and Levi-Civita connection
of N, respectively. Then the corresponding Gauss formulas are given by:

(2.4) VxY =VxY +0(X,Y), X,Y €T(TN),

(2.5) VxY =VyY +5(X,Y), X,Y eT(TN),
where & is the second fundamental form given by o(X,Y) = 5(X,Y)—Xag(X,Y)V+.

Furthermore, the equation of Gauss is given by [18]:

RX,Y,ZW) = RX,Y,ZW)—g(c(X,W),0(Y,2)) +g(c(Y,W),0(X, 2))
+(/\1 - >\2)g(a(y7 Z)a VL)g(Xv W)
(2.6) +(he = M)g(a(X, Z),VH)g(Y, W).
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Now, let N be a (2n+1) odd-dimensional Riemannian manifold. Then N is said
to be an almost contact metric manifold with structure (¢,&,7,¢g) if there exist
a tensor ¢ of type (1,1), a vector field ¢ (structure vector field) and a 1-form 7
satisfying [3]

P’X = X +n(X)E, 9(X,8) =n(X),

(2.7) g(pX,9Y) = g(X,Y) —n(X)n(Y),

for any X,Y on N. The 2-form ® is called the fundamental 2-form in N and the
manifold is said to be a contact metric manifold if & = dn. A Sasakian manifold is
a normal contact metric manifold. In fact, an almost contact metric manifold is a
Sasakian manifold if and only if

(Vxp)Y =g(X, V) —n(Y)X.

A (2n + 1)-dimensional Riemannian manifold N endowed with the almost contact
metric structure (¢,7,§,g) is called a conformal Sasakian manifold if for a C'*°
function f : N — R, there are [1]

(2.8) g =exp(f)g,® = o.71 = (exp(f))in,€ = (exp(—f))*¢

is a Sasakian structure on N . Using Koszul formula, we derive the following relation
between the connections V and V

~ 1
(2.9) VxY = VxV + {w(X)Y +w(Y)X - g(X, Y)w#},
for all vector fields X,Y on N, where w(X) = X(f) and g(w#, X) = w(X).

An almost contact metric manifold (]\7 ,©,€,m, g) whose curvature tensor satisfies

con(] 2 o0, 29X W) - g (X, Z)g(v. 1)

g(R(X,Y)Z, W)

+%(’7(X>77(Z)9(Y, W) = n(Y)n(2)g(X, W)

+9(X, Z)g(& W)n(Y) — g(Y, Z)g(&§, W)n(X)
—9(9Y, Z)g(0 X, W) — g(0X, Z)g(pY, W)

(X, V)gl0Z. W)} - 5 (BX, 2907 W)
~B(Y, 2)g(X, W) + B(Y,W)g(Y, Z) — B(X,W)g(Y, Z))
(210) L1 (90X, 2)a(¥, W) — g(X, W)g(Y, 2),
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for any vector fields X,Y, Z, W tangent to N, where B = Vw — %w ® w, is said to
be a conformal Sasakian space form [1].

From (2.1) and (2.10), we get

SREZI) = eap ] T2 (o0, 20906 W) - (X, D))

+% ((X)n(2)g(Y, W) = n(Y)n(Z)g(X, W)
+9(X, Z)g(&, W)n(Y) — g(Y, Z)g(&, W)n(X)

—9(eY, Z)g(e X, W) — g(pX, Z)g(Y, W)
—29(¢X,Y)g(pZ, W)} - %(B(X, Z)9(Y, W)

—B(Y, 2)g(X,W) + B(Y,W)g(Y, Z) — B(X,W)g(Y, Z))
P (90X, Z)g(Y, W) — g(X, W)y (Y. 2)

Faa(X, 2)g(Y, W) — Ma(Y, Z)g(X, W)

+A29(X, Z)a(Y, W) = Aog(Y, Z)ol( X, W)

FA2(A1 = A2)g(X, Z)B(Y, W) = Aa(A1 = A2)g(Y, Z)B(X, W).
(2.11)

The squared norm of T at p € N is given by

(2.12) ITI? =D ¢°(Jeirey),
ij=1
where {eq, -, e} is any orthonormal basis of the tangent space TN of N.

It was proved in [6] that a submanifold N of an almost Hermitian manifold
(N, J,g) is pointwise slant if and only if

(2.13) T? = —cos®O(p)I, Vp€E N,

for some real-valued function 6(p) on N. A pointwise slant submanifold is proper if
it contains neither totally real points nor complex points.

Clearly, it is easy to check that

(2.14) 9(TX,TY) = cos? §(p)g(X.Y),
(2.15) g(FX,FY) =sin?0(p)g(X,Y),

for any X,Y € T(TN).

The following definition is given by Chen and Uddin in [8]:
A submanifold N of dimension m of an almost Hermitian manifold N4" is said to
be a pointwise bi-slant submanifold if there exists a pair of orthogonal distributions
1 and 39, such that
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(i) TN =9, ® D,
(11) J©1 1 @2 and J@Q 1 @1,

(iii) Each distribution ®; is pointwise slant with slant function 6, : TN — {0} — R
fori=1,2.

In fact, pointwise bi-slant submanifold are more general class of submanifolds
and bi-slant, pointwise semi-slant, semi-slant and CR-submanifolds are the partic-
ular cases of these submanifolds.

Since N is a pointwise bi-slant submanifold, we defined an adapted orthonormal
frame as m = 2d; + 2dsy follows

{e1,ea =sectTey, -, e24,-1,€24, = secthTezq, 1,

o, e2d,+1,€2d, 42 = sec0aTeaq, 1, -, €2d, 42ds—15 €2d, +2ds = S€C 02T €24, 424, —1}-
Thus, we defined it such that g(e, Jea) = —g(Jeq, ea) = —g(Jer,sec1Ter), which
implies that g(eq, Jea) = —secb1g(Ter, Tes).

Following (2.14), we get g(e1, Jea) = coshig(e1,ea). Therefore, we easily ob-
tained the following relation

m
(2.16) ITI1> = > g*(ei, Jej) = (ma cos® 61 + my cos® Ba),
i,j=1
where m; = dim®; and my = dim D,.
Let ¢ : N = s, N1 Xy, No — N be isometric immersion of a doubly warped prod-
uct y, N1 Xy, N into a Riemannian manifold of IV of constant sectional curvature c.

Suppose that my, mo and m be the dimensions of N1, No and IN; X y N, respectively.
Then for unit vector fields X and Z tangent to IN; and N, respectively, we have

K(XANZ) = g(VzVxX —-VxVzX,2)
1 1

(2.17) = LX) S X0} (V2) - 25).
If we consider the local orthonormal frame {e1, ea, - - - , €, } such that {e1, ea, -+, e, }
tangent to Ny and {em, 41, -, em} are tangent to Na, then the sectional curvatre
in terms of doubly warped product is defined by

A A
(218) Z Z /ﬁ(ei/\ej) _ mzf lfl + mlf 2f2’

1 2

1<i<mi mi+1<j<m

foreach j=m; +1,---,m.

In this context, we shall define another important Riemannian intrinsic invariant
called the scalar curvature of N™ and denoted by 7(T, N™), which at some p in N”
is given as :

(2.19) F(T,N") = Z Fij,

1<i<j<n
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where &;; = R(e; A ej). It is clear that first equality (2.19) is congruent to the
following equation, which will be frequently used in the subsequent proof:

(2.20) TN = Y ki

1<i#j<n

Similarly, scalar curvature 7(L,) of L-plane is given by

(2.21) FLp)= Y Fy

1<i<j<n
An orthonormal basis of the tangent space T,N is {ei1,---,en} such that e, =
{€m41," ", eani1} belongs to the normal space T+ N. Then, we have

r m 2n+1 m r
054 :g( (6“61) ) ||0H2 Zij 19( (ei7ej) (ei7ej)) = Zr:m-‘,—l i,jzl(UijV,
||I{||2 m2 Zz 1g (61,61) (eivei)),

where ||H||? is the squared norm of the mean curvature vector H of N.

Let x;; and &;; be the sectional curvature of the plane section spanned by e; and
e; at p in a submanifold N and a Riemannian manifold N™ respectively. Thus, x;;
and R;; are the intrinsic and the extrinsic sectional curvatures of the span {e;,e;}
at p. Thus from the Gauss Equation, we have

2r(T,N™) = ki =27(T,N™) — Z {()\1 —A2)g(o(e;,e5), Ql)g(ei,ei)
ij=1

2n+1 m

+ (AQ - Al)g(U(ei,ej) 6]761 }+ Z Z Tii ]J 1])2)
r=m+1i,j=1

= Fig— ) {0 = X)glo(ejie;), Q@ )gles i)

ij=1

2n+1 m

+ (A2 —A)glo(eise;), Q7 )glej. e }+ Z Z T ]J 11)2)'

r=m+11,j=1

(2.22)

The following consequences come from Gauss equation and (2.22)

T(TpN:™) = 7(T,N{™) — Z {(A = X2)g(o(es, e5), @ )gler, ex)
1<j<k<my
2n+1

+ (e = M)glolegen). Qglew et + Do D (050k — (05)%)

r=m+11<j<k<m;

T(T,N"2) = #(T,N;) = > {1 = Ao)g(o(er er), @1 )gles, e)

mi+1<s<t<m
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2n+1

+ e Aglolene). Q@Oglene)} + S S m(oloh — (00)?).

r=m+1m;+1<s<t<m

(2.23)

3. Main Inequalities
First, we recall the following result of B.-Y. Chen for later use.

Lemma 3.1. [7] Let m > 2 and a1, -+, am,b be (m+1) real numbers such that

(Zai> =(m—-1) (Za?—i—b).

Then 2a1as > b, with equality holding if and only if a1 +as = as =+ = @
Now, we prove the following main result of this section.

Theorem 3.1. Let N(c) be a (2n+1)-dimensional conformal Sasakian space form
and ¢ 5, N1 xp Ny — ]\7(0) be an isometric immersion of an m-dimensional
pointwise bi-slant doubly warped product into N (¢) equipped with quarter symmetric
connection. Then

(i) The relation between warping functions and the squared norm of mean curvature
is given by

A A 2 3 1 1
mebih  mbafe T e [ LB Rl
h fa 4 2 4
(c—1) 2 2
— 5 [2 4+ 3mycos by + 3macos®Bs]
1
(31) — 5{(/\1 —l—)\g)a-i-/\g(/\l —)\g)b+2m1m2()\1 —/\Q)F(H)},

where V and A are the gradient and the laplacian operators, repectively and H is
the mean curvature vector of N™.

(i) The equality case holds in (3.1) if and only if ¢ is a mized totally geodesic
isometric immersion and the following satisfies mi1H, = moHsy, where Hy and Hy
are partial mean curvature vectors of H along N{"' and N3J*?, respectively and

m(H) = o i mlo(ei ) = 9(Q, H).

Proof. let {e1,...,em} and {€m41, ..., €2n+1} as orthonormal tangent frame and or-
thonormal normal frame on N, respectively. Putting X = W =¢;, Y = Z = ej,
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i # j in (2.21) and using(2.6), we obtain

9(72(61‘,63‘783',61') = €$p(f){c—£3(9(€j>€j)9(€i,€i)—g(ei,ej)g(ej,ei))

+ % (U(ez’)n(ej)g(ej, ei) — U(ej)ﬁ(ej)g(ei, ei)
+  glei,e5)g(€,einle;) — glej, ej)g(€, ei)nleq)

- (906]76]) (peise;) — (‘Pehej) (Soejaez)

- 2glpeneilalvese) | - g (Bleselese)

— Blej,ej)g(ei,ei) + Blej, ei)glei, e5) — B(ei»ei)g(ejvej))

— P (glen e ates ) — ales ei)glen o)

+ Aiales,e))glej,e) — Aale;, e;)g(ei, e;)

+  oglei,ej)ale), e;) — Aaglej, ej)a(e;, e;)

+ >\2()\1 —A2)g(eis e;)B(ej, i) — A2 (M — A2)g(ej, e5)B(es, e:),
— (A1 = A2)g(hlej,e5), P L)g(ez,ei)

— (A2 = A)g(h(es e5), PH)glej, eq)

(3.2)
By taking summation 1 < 4,5 < m and using Gauss equation with (3.2), we have
3 -1
9 = ea:p(f){(cz)m(m BRI - V(2 om+ 3||P||2} +(m—1)irB

im(m = DIw™]12 + (A1 + A2)(1 = m)a+ Ao (A = A2)(1 —m)b

(A2 = A)m(m — 1w (H) +m?|[H]|* — ||o]?

-1
= €$p(f){(cj£3)m(m -1+ %(2 — 2m + 3mycos*0; + 3macos®0s)

+ (m—1B+ im(m _ 1)||w#|2} + (M 4 22)(1 = m)a
(33) + Aa( — Ao)(1—m)b-+ (o — Axym(m — V(M) + m2 M — [lo].

where

>_mhlej ) = gV, H).

- 1
1P| =) o*(peire;) and m(H)=—

Q=1
Let us assume that

§d = 21— {emp(f){(c—;?))ml(ml -1)+

3mycos®6,

(=1
T(Q — 2m1) +

(=1
4

1 1
+ §(m1 —DtrB + §m1(m1 = Dlw® |17}
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(c+3) (c—1)
8 8

1 1
+ i(mg —1)trB + gmg(mg — D]w®|P} + (A + A2)(1 — m)a

+ ma(mg — 1) + (2 —2mg) + (c ; 1)3m2008292
B4 e =)= mlb+ (4 = A — () } — I

Then, from (3.3) and (3.4), we have

(3.5) m?||H|[> = 2(5 +||o][?).
Thus, the orthonormal frame {ey, -, en} the proceeding equation takes the follow-
ing form
2 m 2n-+1 m
oo 3o ) ~afs S e e 3 3
i=1 i#] r=m+11,j=1
By using the algebraic Lemma 3.1 and relation (3.6), we have
m 2n+1

(37) 20m+10_2775+1 Z m+1 + Z Z

i#£] i,j=1r=m-+2

If we substitute ay = oyt ag = S, ot and a3 = > 41 ot in the above
equation (3.6), we have

m 2 2n+1 m

1;£j<m r=m+14,j=1
m—+1 _m+1 m+1 m—+1
(3.8) - g ol o — E Ogs O

2Sj7fksm1 m1+1§s;£tsm

Thus a1, a2, ag satisfy the Chen’s Lemma (for m = 3), that is

(Z) - <b+z> |

Then 2a1a2 > b, with equality holding if and only if a1 + as = az. In the case of
under considering, this means that

m+1 _m-+1 m+1 _m—+1 ) m—+1\2
Z Oji Okk + Z Oss Ot 2 2 + Zl§a3<B3§m (Uagﬁg)
1<j<k<ma mi1+1<s<t<m
2n+1 2
(3.9) +Zr =m+1 ozgﬁg 1( 04353) :

Equality holds if and only if

(3.10) Zam“: i omtL,

t=mi+1
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Again, using Gauss equation, we derive

A A
ma l'fl _|_m1 2f2 = T = Z H(@j /\ek) - Z K’(es/\et)'

h f2 1<j<k<my mi+1<s<t<m

(3.11)

Then, the scalar curvature for the conformal Sasakian space form with quarter-
symmetric connection from (2.22), we get

m2A1f1 n m1A2f2
fi f2

= 7- emp(f){(c—g?))ml(ml -1+ (c; 1)(2 —2my)

-1 1 1
+ (c 1 )3m1008291 + §(m1 — 1)trB + gml(ml — 1)||w#||2}

- %{(/\1 + X2)(1 —my)a+ Aa(A1 — A2)(1 —my)b

2n+1

+ (A2 = A)ma(my — V)m(H)} — Z Z (0700, — (051)?)
r=m+1m;+1<j<k<m
(c+3) (c—1)

_ exp(f){smg(m21)+ 3 (2 —2my)

-1 1 1
+ (c 1 )3m2005292 + §(m2 — DtrB + gmg(mg — 1)||w#||2}

- %{(/\1 + A2)(1 —ma)a+ Aa(A1 — A2)(1 — ma)b

2n+1

(312)  + (= A)ma(mg — Dr(H)}— > S (ol —(00)?).

r=m+1m;+1<s<t<m

Now making use of (3.9) and (3.12), we have

mgA}lfl +my A;f < - exp(f){ (Cg 3) (m(m — 1) — 2myma] + (c; Y (4~ 2m)
+ 5m— 2B + Lm(m — 1) = 2mums] |
I - Y (31m1c0526, + 3m2003292]}
+ %{(A1 +A2)(2—m)a+ Aa(A1 — X2)(2 —m)b
(3.13) © O = A)[m(m — 1) — 2mymaln(H)) — g

Using (3.4) in the above equation, we obtain

m A m A m2 C+3 1 ]‘
28fi | mldefy ||H||2+exp(f){( )m1m2+7tTB+*m1m2|\W*\|2
fi Ja 4 4 2 4
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(=1
8

[2 + 3mycos?0; + 3m2005292]}

(3.14) — %{()\1 +)\2)a+)\2()\1 —Ag)b+2m1m2()\1 — AQ)W(H)},

which is inequality (3.1). The equality sign holds in (3.1) if and only if the leaving
term in (3.9) and (3.10) imply that

2n+1 mq 2n+1 m
ro_ ro__
(3.15) E g on = g E oy =0,
r=m-+1 i=1 r=m-+1t=mi+1

and m1H1 = mQHQ.

Moreover from (3.10), we obtain
(316) 0;=0,V1<j<mim+1<t<mm+1<r<2n+1

This shows that ¢ is a mized, totally geodesic immersion. The converse part
of (3.16) is true for pointwise bi-slant warped product immersion into conformal
Sasakian space form. Hence, the proof is complete. [

Following corollaries are easy consequence of the above theorem.

Corollary 3.1. Let N(~c) be a (2n+1)-dimensional conformal Sasakian space form
and ¢ 15, N1 x5, Ny — N(c) be an isometric immersion of an m-dimensional point-
wise semi-slant doubly warped product into N(c) equipped with quarter symmetric

connection. Then

2
m2A1f1+m1A2f2 < mT'

c+3 1 1 .
7 7 < ( )mlmg—l—ftrB—FfmlmgHw H2
1 2

P + o] Bt

(c=1)
8

(3.17) - %{(Al 1 A)a+ Aa(Ar — )b+ 2mama(h — Ao)r(H) .

[243m; + 3m2003292]}

Similarly, if 61 = 7/2 and 63 = 6, in Theorem 3.1, then we have

Corollary 3.2. Let N(Nc) be a (2n+1)-dimensional conformal Sasakian space form
and ¢ 15, N1 x5, Ny = N(c) be an isometric immersion of an m-dimensional point-
wise hemi-slant doubly warped product into N(c) equipped with quarter symmetric

connection. Then

c+3 1 1 N
exp(f){ﬂmlmg + —trB + —mima||w ||2

maAi fi n m1As fo <
fi fa 2 4
(c—1)

8
(318) — %{()\1 +)\2)a+)\2()\1 —)\g)b+2m1m2()\1 —)xg)’ﬂ'(H)}

[2 + 3macos0] }
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Also, if 1 = 0 and 03 = 7/2, in Theorem 3.1, then we have

Corollary 3.3. Let N(c) be a (2n+1)-dimensional conformal Sasakian space form

and ¢ :y, N1 X5, No = N(c) be an isometric immersion of an m-dimensional from

poitwise CR-doubly warped product into N(c¢) equipped with quarter symmetric con-
nection. Then

maA1fi | miAafo n’ 2 (c+3) 1 1 |2
< _ -
I + 7o = 7 [HI|* + exp(f) 1 mimeo + 2t7“B+ 4m1m2\|w I
-1
— (C )[2—|—3m1]}
8
1
(319) - 5{(/\1 +>\2)a+>\2(>\1 —/\2)b+2m1m2()\1 7A2)7T(H)}

Furthermore, we have the following corollary of Theorem 3.1

Corollary 3.4. Let ]\NIN(C) be a (2n+1)-dimensional conformal Sasakian space form
and ¢ :, N1X 5, No — N(c) be an isometric minimal immersion of an m-dimensional

pointwise bi-slant doubly warped product into N(c) equipped with quarter symmetric
connection. Then the following inequality holds:

maAfi | milafo (c+3) 1 1 X2
7 + 7 < exp(f) e + §tTB + Zmlmgﬂw [l
(c—1) 2 2
— 5 [2 4+ 3micos”01 + 3macos O]
1
(3.20) - 5{(Al + X2)a + A2(A1 — A2)b + 2myma (A — Ao)m(H) }.

For the semi-symmetric metric connection A\; = Ay = 1, we have

Theorem 3.2. Let N(c) be a (2n+1)-dimensional conformal Sasakian space from
and ¢ 5, N1 Xy Ny — N(c) be an isometric immersion of an m-dimensional
pointwise bi-slant doubly warped product into N (¢) equipped with semi-symmetric
connection. Then the following inequality holds:

A A 2 3 1 1
mesali el < TP+ eap({ o mima + 5B+ ol
(c—1) 2 2
(3.21) — T[Q + 3mycos®0y + 3macos“bs] p — a.

For the semi-symmetric metric nonmetric connection, if we put Ay =1 and Ao =0
in Theorem 3.1, then we have
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Theorem 3.3. Let N(g) be a (2n+1)-dimensional conformal Sasakian space form
and ¢ 15, N1 x5, No = N(c) be an isometric immersion of an m-dimensional point-
wise bi-slant doubly warped product into N(c) equipped with semi-symmetric metric

non metric connection satisfies the following inequality

A A 2 3 1 1
m2f11fl +m1f22f2 < Z||H||2+exp(f){(cz )m1m2+§trB+1m1m2\|w*|\2
(c—1) 2 2
— 5 [2 4+ 3mycos 6y + 3macos®Bs]
1
(3.22) - i(a + 2mymen(H)).

Next, we have the following theorem

Theorem 3.4. Let N(c) be a (2n+1)-dimensional conformal Sasakian space form
and ¢ iy, N1y X3 Ny — ]\7(0) be an isometric immersion of an m-dimensional
pointwise bi-slant doubly warped product into N (c) equipped with quarter symmetric
connection. Then

Al 1 AQ 2 m2 m —
() G+ (22 > - D
— emp(f){(c—gg)(m—kl)(m—%—k (0;1) (2—2m+3m1003291
+  3macos?ly) + %(m —1)trB + ém(m - 1)|w#||2}
- %{()\1 +>\2)(1 —n)a+)\2()\1 —>\2)(1 —n)b
(323) + (/\1 — )\g)n(n — 1)7T(H)},

where m; = dimN;, i=1,2 and A? is the laplacian operator on N;, i=1,2.

(i) If the equality sign holds in (3.23), then the equality sign in (3.36) holds auo-
tomatically.

(iii) If m = 2, then equality sign in (3.23) holds identically.

Proof. Let us consider that p,N1 Xz Na be an isometric immersion of an m-
dimensional pointwise bi-slant doubly warped product ]\7(0) with pointwise p-sectional
curvature ¢ endowed with quarter symmetric connection. Then from the equation
of Gauss, we obtain

2r = exp(f){(czg)m(m -1+ (67%(2 — 2m + 3mycos0; + 3macos®0y)



Geometric Inequalities in Conformal Sasakian Space Form 665

+ (m—1)trB+ im(m — 1)||w#|2} + (M +A)(1—m)a

(3:24)+ Aa(Ap = A) (1 —m)b+ (Aa — A\)m(m — Dr(H) + m?||H|]* — ||o]]*.
Now, we consider that
(c+3)

5 = 27— exp(f){4(m +1)(m —2) + (C; D (2 — 2m + 3mycos®0; + 3macosds)

+ (m—1trB+ im(m - 1)||w#||2} — (M +A)(1—m)a

2
-2
— Aa(A1 =) (X —m)b— (Aa — A\)m(m — D)m(H) — mrgzm— T )||’H||2
(3.25)
Then from (3.24) and (3.25), it follows that
c+3
(326)  m¥HI = (0 D{llolf? 16— ean() ST,
Let {e1, -, em} be an orthonormal frame, the equation takes the following form
2n+1 m 2 2n+1 m 2n+1
(3 5] = monfor 3 Stere 3 Sy
r=m-+1 i=1 r=m-+1i=1 r=m+1 i<j
2n+1 m
. c+3
(3.27) + Z Z (Uij)2 - exp(f)%}
r=m-+2i,j=1

which implies that

mi

2
ma m
<01’i+1+202?“+ 5 m) S el 4 Sy
1=2

t=mi1+1 =2

DD A D D A
t=mq1+1 2<g#AI<m,

- Yoo @+ Y (et
mi+1<t#s<m, i<j=1
2n+1 m

3
(3.25) Y Y o) - ean(nCEY.

r=m+4114,j=1

Let us consider that by = ojit, by = S (07 th)2 and by = >, (omth2,

Then from (3.1) and the equation (3.28), we have

d (C + 3) < m—+1\2 1 o - r\2 m+1 _m+1
5~ exp(f) 5 T Z (7)) + ) Z Z (07)" < Z % u
i<j=1 r=m+1i,j=1 2< A<My
(3.29) + > ottt

mi1+1<t#s<m
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Equality holds if and only if
ma m
(3.30) dontt= 3" ot
1=1 t=mi+1
On the other hand from (3.29) and the definition of scalar curvature, we have

2n+1 2n+1 i#£]

1
T \2 T \2
k(e1 A emyr1) = E E (01;)" + 3 E E (o)
r=m+1jEPim, 11 r=m+1j€Pim 1
2n+1 1 2n+1
r 2 T \2
+ E E (Omy+15)” + 3 E E (07;)

r=m+1jE€P1m,+1 r=m+14,j€Pim; 41

2n+1 my+1 5

+ % Z Z(a{j)QJr?

r=m+1 4,5=1
where Py, 11 = {1,...,m} — {1,my + 1}. Thus, it implies that

0
(3.31) 5(61 A 6m1+1) = 9’
Since, N =5, N1 Xy, Na is a pointwise bi-slant doubly warped product submanifold,
we have VxZ = VzX = (XInf1)Z 4+ (Zn fo) X, for any unit vector fields X
and Z tangent to N1 and No, respectively. Then from (2.18),(3.25) and (3.31), the
scalar curvature derives as;

ro< (Ve - A+ fi {(Vese2) f2 = 3o}

f
+ ea:p(f){(cgg)(m—k (m—2)+ (C; 1

(2 — 2m 4+ 3mycos?01 + 3mycos®6s)

1 1
+ §(m —1)trB+ gm(m —1)||w™)?

——

+ %{(/\1 FA0)(1 = m)a+ Aa(h — Ao)(1 — m)b + (g — A)m(m — 1)r(H)}.
(3.32)

Let the equality holds in (3.32), then all leaving terms in (3.29) and (3.31), we obtain
the follwing conditions, i.e.

01, =0, 0,41 =0, 0;;=0, where i#j, and re{m+1,.-,2n+1}

T ' T T
(3.33) 01 = Ohpyr1 =04, =0, and  o7] + Oy t1my+1-

Similarly, we extend the relation (3.32) as follows

T <

% {(Veaeoc) fl - eifl} + % {(VE[seﬁ) f2 - 6?.3]02}
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(c=1)
8

+ WHHH? +exp(f){(c—i8_3)(m_~_ (m —2) +

(2 — 2m + 3mqcos®6;
1 1
+  3macos®ly) + i(m —1trB + ém(m - 1)||w#||2}

+ %{(/\1 + )\2)(1 — m)a + )\2()\1 — /\2)(1 — m)b + (/\2 — Al)m(m — 1)7T(H)}
(3.34)

foranya=1,--- mq and 8 =mq + 1,---m. Taking the summing up a from 1 to
m1 and summing up B from my + 1 to mo repectively, we arrive at

A A
mimor < 2 i | m 2f2+e$p(f){(c+3)(m+1)(m—2)
J1 fo 8
+ (c_l)(2—2m+3m 20, +3 29
3 1€08°01 + 3macos=6s)
+ ;(ml)trBJr;m(mle#Hz}

Similarly, the equality sign holds in (3.35) identically. Thus the equality sign in
(8.82) holds for each o € {1,---,n1} and B € {n1 +1,---,n}. Then we get

04; =0, 0;=0, 0;;=0, where i#j, and rec{n+1,---,2m+1}
0hj =04, =0;;=0, and o4, +0p3=0, 4,j€ Pipyq1,7=n+2,---,2m+ L

(3.36)

Moreover, If m = 2. Then my; = mg = 1. thus from (2.18), we get 7 = Ay f1+As fo.
Hence the equality in (3.23) holds, which proves the theorem completely. [
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