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Abstract. In this paper, we propose a numerical method for Riesz space fractional
telegraph equation with time delay. The Riesz fractional telegraph equation is approx-
imated with the interpolating polynomial P2. First a system of fractional differential
equations are obtained from the telegraph equation with respect to the time variable.
Then our numerical algorithm is proposed. The convergence order and stability of
the fractional order algorithms are proved. Finally, some numerical examples are con-
structed to describe the usefulness and profitability of the numerical method. Numerical
results show that the accuracy of order O(∆t3).
Key words: fractional telegraph equation, delay equation, polynomial approximation,
Riesz fractional equation, stability and convergence.

1. Introduction

In primitive definitions, the order of derivatives and integrals in calculus is called
integers. Recently fractional calculus includes part of the applied mathematics
research. Its origin comes from the hospital and Leibnitz’s inquisition about con-
sidering the result, if m was taken as half in the mth derivative of a function [1].

During the last three decades, fractional calculus has been recently applied to
physics, biology, engineering, and other sciences [19]. Fractional calculus is an
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important part of the field of science and technology as it is the generality of ordinary
differentiation and integration with arbitrary order [12, 22, 23, 24, 25].

Telegraph equations are a pair of linear differential equations due to their ex-
tensive applications in high frequency transmission lines, propagation of electrical
signals [1]. The author of [7], implement the meshless method for solving the Riesz
fractional equation.

By reference to classical books [5, 6] a delay fractional telegraph equation is a
differential equation in which the derivative of the function at any time depends on
the solution at previous time. It seems that, so far, an analytical solution is not pre-
sented for the Riesz space fractional telegraph equation with time delay. However,
there are fewer works dealing with numerical methods for delay fractional differen-
tial equations [19]. Some authors investigated fractional order partial differential
equations [2, 15, 17] and delay fractional partial differential equations [8]. Numeri-
cal approximations and solution techniques for the space-time fractional telegraph
equations were studied in [14]. The development of efficient numerical methods
to solve the Riesz space fractional telegraph equation with time delay is still an
important issue. For more examples and details we refer [16, 20] and therein.

Since delay problem has important applications in many fields for example
physics, electrical engineering, and telecommunications [20], then analytical solution
will be a comprehensive answer to this phenomenon.

In this paper, we propose a new numerical method to approximate the solution
of the Riesz space fractional telegraph equation with time delay based on the poly-
nomial interpolation of degree three. The interpolation for the time variable and
mesh schemes for the space variable is presented with error analysis and stability.

After introducing the numerical method to approximate the Riesz space frac-
tional telegraph equation, numerical results show that the accuracy of the present
scheme is of order O(∆t3).

The rest of this paper is as follows. In Section 2, we present some necessary def-
initions. In Section 3, we present our idea to approximate of Riesz space fractional
telegraph equation with time delay and discretize them. In Section 4, a numeri-
cal method for solving Riesz space fractional telegraph equation with time delay
and error analysis are outlined. In Section 5, the error and stability analysis are
discussed based on the error estimate of the compound trapezoidal formula. Some
example and their figures and tables in Section 6, shows the accuracy of the present
scheme. Finally, the conclusions are included in the last section.

2. Preliminaries

In this section, we present some necessary definitions, preliminary facts and pre-
sentation that will be used further in this study. We focus on these definitions of
fractional calculus.

Definition 2.1. [12] The Liouville-Caputo fractional derivative of order α > 0 of
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the function f ∈ Cm(I,R) is defined as:

C
d D

α
t f(t) =

{

1
Γ(m−α)

∫ t

d

f(m)(s)

(t−s)α−m+1 ds, m− 1 < α < m, m ∈ N,

f (m)(t), α = m,

where C(I,R) denotes the Banach space of all continuous functions from I = [0, t]
into R and the norm

‖f‖∞ = sup{|f(t)| : t ∈ I}, t > 0,

Cm(I,R) denotes the class of all real valued functions defined on I = [0, t], t > 0
which have continuous mth order derivatives.

Definition 2.2. [18] The left and right Riemann-Liouville derivatives with order
α > 0 of the given function f(t), t ∈ (d, e) are defined as:

RL
d Dα

t f(t) =
1

Γ(m− α)

dm

dxm

∫ t

d

(t− s)
m−α−1

f(s)ds,

RL
t Dα

e f(t) =
(−1)

m

Γ(m− α)

dm

dxm

∫ e

t

(s− t)m−α−1f(s)ds,

respectively, where m is a positive integer satisfying m− 1 < α < m.

Definition 2.3. [18] The Riesz derivative with order β > 0 of the given function
f(x), x ∈ (d, e) are defined by:

RZD
β
xf(x) = Cβ(

R
d D

β
xf(x) +

R
t D

β
e f(x)),

where Cβ = −1

2 cos( βπ
2 )

, β 6= 2k + 1, k = 0, 1, 2, ....

RZD
β
t f(t) is sometimes expressed as ∂βf(x)

∂|x|β .

Definition 2.4. [12] The Mittag-Leffler function is defined by series when the real
part of α is strictly positive

Eα,β(z) =

∞
∑

k=0

zk

Γ(αk + β)
,

where Γ is the Gamma function as the following form:

Definition 2.5. [18] The Grunwald-Letnikov fractional derivative for all α ∈ R
+

is defined as:

GL
a Dα

t f(t) = lim
h→0

1

hα

[ t−a
h ]

∑

k=0

(−1)
k

(

α
k

)

f(t− kh),

where

(

α
k

)

= Γ(α+1)
k!Γ(α−k+1) .
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3. The Model

If n,m are positive integers and [d, e] , [0, T ] is given, let h = e−d
n

, ∆t = T
m
. The

solution domain [d, e] × [0, T ] is covered by a uniform grid of mesh points (x, t).
Note that h and ∆t are the uniform spatial step size and temporal step size.

For every β (1 < β 6 2) the left and right Riemann-Liouville derivatives exist
and match with the left and right Grunwald-Letnikov derivatives under suitable con-
ditions. Then the Riesz derivative with order β (1 < β 6 2) can be discretized By
the standard, shifted Grunwald-Letnikov formulas, or fractional centered difference
method [3].

Recently second-order and fourth-order methods are used for the Riesz space and
time fractional diffusion equations. It points that these methods and techniques are
useful for solving some other fractional differential equations with Riesz fractional
derivatives.

Now consider the following space-fractional telegraph delay equation with Riesz
operation and fractional derivatives in time over a finite one-dimensional domain

∂α

∂tα
(
∂α

∂tα
T (x, t)) + 2a

∂α

∂tα
T (x, t) + b2T (x, t)

(3.1) +W (x, t− τ) = c
∂β

∂|x|β
T (x, t) + f(x, t),

subjected to the initial conditions

T (x, t) = u(x, t), d 6 x 6 e,

∂α

∂tα
T (x, t) = S(x, t), d 6 x 6 e,

and Dirichlet boundary conditions

T (a, t) = T (b, t) = 0, 0 6 t 6 T ,

where 0 6 b < a and c > 0 are constants, and 1 < β 6 2, 0.5 < α < 1.
Equations of the form (3.1), arise in the study of electrical signals in a cable of trans-
mission line and wave phenomena. In fact the telegraph equation is more suitable
than ordinary diffusion equation in modeling reaction-diffusion [4]. Furthermore,
we should mention that with the appropriate coefficient and forcing terms, the
one-dimensional telegraph equation describes a diverse array of physical systems;
for example, voltage and current signals in coaxial transmissions lines of negligible
leakage conductance and/or resistance [11]. The Riesz space fractional operator
∂β

∂|x|β over [d, e] is defined by right and left Riemann-Liouville fractional derivation

[18] into following

(3.2)
∂β

∂|x|β
T (x, t) = − 1

2 cos βπ
2

× 1

Γ(2− β)
× ∂2

∂x2

e
∫

d

T (s, t)

|x− s|β−1
ds,
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The authors of [9], proposed the Chebyshev spectral collocation for one-dimensi-
onal linear hyperbolic telegraph equation. This method is very useful in providing
highly accurate solutions to fractional partial differential equations. Another bene-
fit of this method is using of spectral differentiation matrices. Ding et al. [3], used
polynomial interpolation to design a novel high-order algorithm for the numerical
estimation of fractional differential equations. They utilized Hadamard finite-part
integral and the piecewise cubic interpolation polynomial to approximate the inte-
gral.

In this section, we present our idea to approximate of Riesz space fractional
telegraph equation with time delay.

We discretize the space-fractional derivative operator through the following frac-
tional central difference [16]:

∂β

∂|x|β
T (x, t) = − 1

hβ

x−d
h

∑

i=− e−x
h

(−1)
i
Γ(β + 1)

Γ(β2 − i+ 1)Γ(β2 + i+ 1)
T (x− ih, t) +O(h2)

= − 1

hβ

x−d
h

∑

i=− e−x
h

viT (x− ih, t) +O(h2),

where h → 0 and 1 < β 6 2.

We introduce a new variable S(x, t) = ∂α

∂tα
T (x, t) to transform (3.1) to the

following equivalent system

(3.3)







dα

dtα
Ti(t) = Si(t), i = 1, 2, 3, ..., n− 1

dα

dtα
Si(t) + 2aSi(t) + b2Ti(t) = −c 1

hβ

∑j=
xi−d

h

j=− e−xi
h

vjTi−j(t) + Fi(t),

where Fi(t) = fi(t)−W (xi, t− τ).

Now, we define T (xi, t) = Ti(t), S(xi, t) = Si(t). By approximating [10]

∂β

∂|x|β T (xi, t) by
1
hβ

∑j=
xi−d

h

j=− e−xi
h

vjTi−j(t) where vj =
(−1)jΓ(β+1)

Γ( β
2 +j+1)Γ( β

2 −j+1)
.

Also from boundary conditions one can see T0(t) = Tn(t) = 0. By setting

T (t) = [T1(t), T2(t), ..., Tn−1(t)]
t,

S(t) = [S1(t), S2(t), ..., Sn−1(t)]
t
,

we can rewrite (3.3), as the following matrix form

(3.4)

{

dα

dtα
T (t) = S(t),

dα

dtα
S(t) = −CT (t)− 2aS(t) + F (t),

where

C = cB + b2In−1.
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The matrix In−1 is the identity matrix of order n-1, and

B =
1

hβ

















v0 v−1 . . . v−n+2

v1 v0 . . . v−n+3

. . . .

. . . .

. . . .
vn−2 vn−3 . . . v0

















(n−1)(n−1)

.

Let

D =

[

0 −In−1

C 2aIn−1

]

(2n−2)(2n−2)

.

If we set

Y (t) = [T1(t), T2(t), ..., Tn−1(t), S1(t), S2(t), ..., Sn−1(t)]
t
,

Then, from (3.3), we obtain

(3.5)

{

dα

dtα
Y (t) = −DY (t) +G(t)

Y (0) = Y0
,

where

G(t) =

[

0
F (t)

]

(2n−2)×1

.

In order to obtain an error, we need the following theorems:

Theorem 3.1. Assume that vj = (−1)jΓ(β+1)

Γ( β
2 +j+1)Γ( β

2 −j+1)
, j = 0,±1,±2, ... are the

coefficients in the fractional central difference (3.3) for 1 < β 6 2. Then

1.
∞
∑

j=−∞
vj = 0,

2. ∀m,n ∈ N :
n
∑

j=−m
j 6=0

|vj | = v0

Proof. (see [10], [12]).

Theorem 3.2. For the matrix D, we have

‖D‖∞ = Max

{

1,
2c

hβ
(v0 + a) + b2

}

.

Proof. (see [10]).
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4. Numerical method

It is well known that the initial value problem (3.5), is equivalent to the following
Volterra integral equation

(4.1) Y (t) = Y (t0) +
1

Γ(α)

∫ t

t0

(t− s)
α−1

(−DY (s) +G(s))ds,

Let P (s) = −DY (s) + G(s). We consider (4.1) at t = tk (k = 1, 2, ...,m − 1) and
rewrite it as the following form

(4.2) Y (tk) = Y (t0) +
1

Γ(α)

k−1
∑

j=0

∫ tj+1

tj

(tk − s)
α−1

(−DY (s) +G(s))ds,

Now we approximate P (s) by its piecewise linear interpolation
P (s) = −DY (s) +G(s) at the nodes t0 and t1 as the following form

(4.3)
⌣

P j(s) ≃
s− tj

tj−1 − tj
P (tj−1) +

s− tj−1

tj − tj−1
P (tj).

Let Ȳ (tj) be the approximate solution of Y (tj), j = 0, 1, which has been determined.
By using relations (4.1) and (4.3). Also for tj−2 6 s 6 tj , by using

⌢

P j(s) ≃ (s− tj−1)(s− tj)

(tj−2 − tj−1)(tj−2 − tj)
P (tj−2) +

(s− tj−2)(s− tj)

(tj−1 − tj−2)(tj−1 − tj)
P (tj−1)

+
(s− tj−1)(s− tj−2)

(tj − tj−1)(tj − tj−2)
P (tj), j = 2, 3, ..., k.(4.4)

We can obtain the following formula

∫ tk

t0

(tk − s)
α−1

P (s)ds ≃
∫ t1

t0

(tk − s)
α−1

⌣

P 1(s)ds

+

k
∑

j=2

∫ tj

tj−1

(tk − s)
α−1

⌢

P j(s)ds.(4.5)

According to article [10]

∫ t1

t0

(tk − s)
α−1

⌣

P 1(s)ds ≃
∫ t1

t0

(tk − s)
α−1 s− t1

t0 − t1
P (t0)ds

+

∫ t1

t0

(tk − s)α−1 s− t0
t1 − t0

P (t1)ds

=
tα

α(α + 1)

{

(kα(α+ 1− k) + (k − 1)
α+1

)P (t0)

+(kα+1 − (k − 1)
α
(α+ k))P (t1)

}

.(4.6)
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We can prove that
∫ tj

tj−1

(tk − s)
α−1

ds =
tα

α
((k − j + 1)

α − (k − j)
α
),

∫ tj

tj−1

s(tk − s)
α−1

ds =
tα+1

α
((k − j + 1)

α
(j − 1 +

(k − j + 1)

(α+ 1)
)

−(k − j)
α
(j +

(k − j)

(α+ 1)
)),

∫ tj

tj−1

s(tk − s)
α−1

ds =
tα+1

α
((k − j + 1)

α
(j − 1 +

(k − j + 1)

(α+ 1)
)

(4.7) −(k − j)α(j+
(k − j)

(α+ 1)
))− (k − j)αtα+2

α
(j2 +

2j(k − j)

(α+ 1)
)+

2(k − j)2

(α+ 1)(α+ 2)
)).

By using relationship (4.4) for all j = 2, 3, ..., k we get

∫ tj

tj−1

(tk − s)
α−1

⌢

P j(s)ds =
P (tj−2)

2t2

∫ tj

tj−1

(tk − s)
α−1

(s2 − (tj + tj−1)s+ tjtj−1)ds

−P (tj−1)

t2

∫ tj

tj−1

(tk − s)α−1(s2 − (tj + tj−2)s+ tjtj−2)ds

+
P (tj)

2t2

∫ tj

tj−1

(tk − s)
α−1

(s2 − (tj−1 + tj−2)s+ tj−1tj−2)ds.

Using (4.7) shows that
∫ tj

tj−1

(tk − s)α−1
⌢

P j(s)ds

=
P (tj−2)t

α

2α

{

(k − j + 1)
α
(
2(k − j + 1)

2

(α+ 1)(α+ 2)

− (k − j + 1)

(α+ 1)
)− (k − j)

α
(

2(k − j)
2

(α+ 1)(α+ 2)
+

(k − j)

(α+ 1)
)

}

−P (tj−1)t
α

α

{

(k − j + 1)α(
2(k − j + 1)2

(α + 1)(α+ 2)
− 1)

−(k − j)
α
(

2(k − j)
2

(α+ 1)(α+ 2)
+

2(k − j)

(α+ 1)
)

}

−P (tj)t
α

2α

{

(k − j + 1)
α
(
2(k − j + 1)

2

(α + 1)(α+ 2)

+
(k − j + 1)

(α+ 1)
)− (k − j)α(2 +

2(k − j)
2

(α+ 1)(α+ 2)
+

3(k − j)

(α+ 1)
)

}

.
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Therefore

k−2
∑

j=2

∫ tj

tj−1

(tk − s)
α−1

⌢

P j(s)ds =
tα

2







k−2
∑

j=2

(Lj +Mj +Nj)P (tj)

(4.8)
+L0P0 + (L1 +M1)P1 + (Mk−1 +Nk−1)Pk−1 +NkPk

}

,

where

Lj =
1

α(α+ 1)(α+ 2)

k−2
∑

j=0

{

(k − j − 1)
α+1

(2k − 2j − α− 4)

−(k − j − 2)α+1(2k − 2j + α− 2)
}

,

Mj =
4

α(α+ 1)(α+ 2)

k−1
∑

j=1

{

(k − j − 1)
α+1

(k − j + α+ 1)

−(k − j)
α
((k − j)

2 − (α+ 1)(α+ 2)

2
)

}

,

Nj =
1

α(α+ 1)(α+ 2)

k
∑

j=2

{

(k − j + 1)
α+1

(2k − 2j + α+ 4)

−(k − j)
α
(2(k − j)

2
+ 3(k − j)(α+ 2) + 2(α+ 1)(α+ 2))

}

.

Recall that
P (s) = −DY (s) +G(s).

Finally, we get our approximation

Y (tk) =

{

I +
Nkt

αD

2Γ(α+ 3)

}−1 {

Y (t0) +
tα

Γ(α+ 2)
((kα(α+ 1− k) + (k − 1)

α+1
)P0

+(kα+1 − (k − 1)
α
(α+ k))P1) +

tα

2Γ(α+ 3)







k−2
∑

j=2

(Lj +Mj +Nj)P (tj)

(4.9) +L0P0 + (L1 +M1)P1 + (Mk−1 +Nk−1)Pk−1 +NkGk}} .

5. Error and Stability Analysis

In this section, the error analysis for the proposed scheme in the previous section is
discussed based on the error estimate of the compound trapezoidal formula. From
previous section, we have

Y (tk) = Y (0) +
1

Γ(α)

k−1
∑

j=0

∫ tj+1

tj

(tk − s)
α−1

P (s)ds
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and

Ȳ (tk) = Ȳ (0) +
1

Γ(α)

k−1
∑

j=0

∫ tj+1

tj

(tk − s)
α−1

P̄ (s)ds.

We can easily get that

(5.1) Y (tk)− Ȳ (tk) =
1

Γ(α)

k−1
∑

j=0

∫ tj+1

tj

(tk − s)
α−1

(−DY (s) +G(s) − P̄ (s))ds

where on each interval [tj , tj+1], j = 0, 1, ..., n− 1, we have

Y (tk)− Ȳ (tk) =
1

Γ(α)

∫ t1

t0

(tk − s)
α−1

(−DY (s) +G(s) − P̄ (s))ds

+
1

Γ(α)

k−1
∑

j=2

∫ tj

tj−1

(tk − s)α−1(−DY (s) +G(s) − P̄ (s))ds,

The reader refer to [10] for the first integral. But for the second integral on the
interval [tj , tj+1], j = 0, 1, ..., n− 1, we have

P (s)− P̄ (s) = (s− tj−1)(s− tj)(s− tj+1)
P ′′′(δj)

3!
, tj < δj < tj+1.

In this case, we get

∥

∥Y (tk)− Ȳ (tk)
∥

∥

∞

6
1

6Γ(α)

k−1
∑

j=2

∫ tj

tj−1

∥

∥

∥
(tk − s)

α−1
(s− tj−1)(s− tj)(s− tj+1)

∥

∥

∥

∞
·

‖−DY ′′′(δj) +G′′′(δj)‖∞ds

6
1

6Γ(α)

k−1
∑

j=2

∫ tj

tj−1

∥

∥

∥
(tk − s)α−1(s− tj−1)(s− tj)(s− tj+1)

∥

∥

∥

∞
·

(‖D‖∞Ȳ + Ḡ)ds.(5.2)

Assuming

Ȳj = Max‖Y ′′′(s)‖∞
tj−16s6tj+1

, Ȳ = Max Ȳj
26j6k−1

Ḡj = Max‖G′′′(s)‖∞
tj−16s6tj+1

, Ḡ = Max Ḡj
26j6k−1

R = ‖D‖∞Ȳ + Ḡ

And knowing that
g(s) = (s− tj−1)(s− tj)(s− tj+1).
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From there one can see that

|g(s)| 6 2
√
3

9
∆t3.

So we can write for relationship (5.2)

∥

∥Y (tk)− Ȳ (tk)
∥

∥

∞

6
R

6Γ(α)

k−1
∑

j=2

∫ tj

tj−1

∥

∥

∥
(tk − s)

α−1
∥

∥

∥

∞
‖(s− tj−1)(s− tj)(s− tj+1)‖∞ds

6

R
∣

∣

∣
− 2

√
3

9 t3
∣

∣

∣

6Γ(α)

k−1
∑

j=2

∣

∣

∣

∣

∣

(

(tk − s)
α

α

]tj

tj−1

∣

∣

∣

∣

∣

=
2
√
3R(1− (k − 1)α)

54Γ(α+ 1)
∆t3+α.

Therefore

∥

∥Y (tk)− Ȳ (tk)
∥

∥

∞ 6 O(∆t3).

In sequence, we give the theoretical stability analysis of our scheme. A numerical
initial value problem solver is stable if small perturbations in the initial conditions
do not cause the numerical approximation to diverge away from the true solution
provided the true solution of the initial value problem is bounded [13].

Theorem 5.1. Let Y (tk) and Ȳ (tk) be numerical solutions in (4.1), with the ini-
tial conditions Y (t0) and Ȳ (t0), respectively. Then

(5.3)
∥

∥Y (tk)− Ȳ (tk)
∥

∥

∞ 6 E
∥

∥Y (t0)− Ȳ (t0)
∥

∥

∞,

for any k, i.e. the new scheme is numerically stable. Where

E =
Q(Γ(α+ 1) + 5

2T
α‖D‖∞)

Γ(α+ 1)− Tα‖D‖∞
.

Proof. This proof will be used based on mathematical induction. In view of the
given initial condition, suppose that (5.3) is true for (j=1,2,...,k-1). We must prove
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that this also holds for j=k. Assume that

Y (tk) = Y (t0) +
1

Γ(α)

{
∫ t1

t0

(tk − s)
α−1 s− t1

t0 − t1
P (t0)ds

+

∫ t1

t0

(tk − s)
α−1 s− t0

t1 − t0
P (t1)ds

+

k
∑

j=2

∫ tj

tj−1

(tk − s)
α−1 (s− tj−1)(s− tj)

(tj−2 − tj−1)(tj−2 − tj)
P (tj−2)ds

+
k
∑

j=2

∫ tj

tj−1

(tk − s)α−1 (s− tj−2)(s− tj)

(tj−1 − tj−2)(tj−1 − tj)
P (tj−1)ds

+
k
∑

j=2

∫ tj

tj−1

(tk − s)α−1 (s− tj−1)(s− tj−2)

(tj − tj−1)(tj − tj−2)
P (tj)ds







.

Then, we have
∥

∥Y (tk)− Ȳ (tk)
∥

∥

∞
6

∥

∥Y (t0)− Ȳ (t0)
∥

∥

∞

+
‖D‖∞
Γ(α)

{∣

∣

∣

∣

−1

t

∫ t1

t0

(tk − s)
α−1

(s− t1)ds

∣

∣

∣

∣

∥

∥Y (t0)− Ȳ (t0)
∥

∥

∞

+

∣

∣

∣

∣

1

t

∫ t1

t0

(tk − s)α−1(s− t0)ds

∣

∣

∣

∣

∥

∥Y (t1)− Ȳ (t1)
∥

∥

∞

+

k−2
∑

j=0

∣

∣

∣

∣

∣

1

2t2

∫ tj+2

tj+1

(tk − s)
α−1

(s− tj+1)(s− tj+2)ds

∣

∣

∣

∣

∣

∥

∥Y (tj)− Ȳ (tj)
∥

∥

∞

+

k−1
∑

j=1

∣

∣

∣

∣

∣

−1

t2

∫ tj+1

tj

(tk − s)
α−1

(s− tj−1)(s− tj+1)ds

∣

∣

∣

∣

∣

∥

∥Y (tj)− Ȳ (tj)
∥

∥

∞

+
k−1
∑

j=2

∣

∣

∣

∣

∣

1

2t2

∫ tj

tj−1

(tk − s)α−1(s− tj−1)(s− tj−2)ds

∣

∣

∣

∣

∣

∥

∥Y (tj)− Ȳ (tj)
∥

∥

∞

+

∣

∣

∣

∣

∣

1

2t2

∫ tk

tk−1

(tk − s)α−1(s− tk−1)(s− tk−2)ds

∣

∣

∣

∣

∣

∥

∥Y (tk)− Ȳ (tk)
∥

∥

∞

}

.

Since
∣

∣

∣

∣

−1

t

∫ t1

t0

(tk − s)α−1(s− t1)ds

∣

∣

∣

∣

6

∣

∣

∣

∣

s̃1 − t1
−t

∣

∣

∣

∣

t06s̃16t1

∫ t1

t0

(tk − s)α−1ds 6
1

α
(tαk − tαk−1),

∣

∣

∣

∣

1

t

∫ t1

t0

(tk − s)
α−1

(s− t0)ds

∣

∣

∣

∣

6

∣

∣

∣

∣

s̃1 − t0
t

∣

∣

∣

∣

t06s̃16t1

∫ t1

t0

(tk − s)
α−1

ds 6
1

α
(tαk − tαk−1),
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Combining above results, we can derive the following inequalities

k−2
∑

j=0

∣

∣

∣

∣

∣

1

2t2

∫ tj+2

tj+1

(tk − s)
α−1

(s− tj+1)(s− tj+2)ds

∣

∣

∣

∣

∣

6

k−2
∑

j=0

∣

∣

∣

∣

(s̃1 − tj+1)(s̃1 − tj+2)

2t2

∣

∣

∣

∣

tj+16s̃16tJ+2

∫ tj+2

tj+1

(tk − s)
α−1

ds 6
1

2α
tαk−1,

k−1
∑

j=1

∣

∣

∣

∣

∣

−1

t2

∫ tj+1

tj

(tk − s)
α−1

(s− tj−1)(s− tj+1)ds

∣

∣

∣

∣

∣

6

k−1
∑

j=1

∣

∣

∣

∣

(s̃2 − tj−1)(s̃2 − tj+1)

−t2

∣

∣

∣

∣

tj6s̃26tJ+1

∫ tj+1

tj

(tk − s)
α−1

ds 6
2

α
tαk−1,

k−1
∑

j=2

∣

∣

∣

∣

∣

1

2t2

∫ tj

tj−1

(tk − s)
α−1

(s− tj−1)(s− tj−2)ds

∣

∣

∣

∣

∣

6

k−1
∑

j=2

∣

∣

∣

∣

(s̃3 − tj−2)(s̃3 − tj−1)

2t2

∣

∣

∣

∣

tj−16s̃36tJ

∫ tj

tj−1

(tk − s)α−1ds 6
1

α
(tαk−1 − tα1 ),

∣

∣

∣

∣

∣

1

2t2

∫ tk

tk−1

(tk − s)α−1(s− tk−1)(s− tk−2)ds

∣

∣

∣

∣

∣

6
tα

α
.

Let us
∀j : 0 6 j 6 k − 1

∥

∥Y (tj)− Ȳ (tj)
∥

∥

∞ 6 Qj

∥

∥Y (t0)− Ȳ (t0)
∥

∥

∞,

Q = Max Qj
06j6k−1

In this case

∥

∥Y (tk)− Ȳ (tk)
∥

∥

∞ − ‖D‖∞tα

αΓ(α)

∥

∥Y (tk)− Ȳ (tk)
∥

∥

∞

6 Q
∥

∥Y (t0)− Ȳ (t0)
∥

∥

∞ +
‖D‖∞
Γ(α)

·
{

Q

α
(tαk − tαk−1) +

Q

α
(tαk − tαk−1) +

Q

2α
tαk−1 +

2Q

α
tαk−1 +

Q

α
(tαk−1 − tα1 )

}

·
∥

∥Y (t0)− Ȳ (t0)
∥

∥

∞

∥

∥Y (tk)− Ȳ (tk)
∥

∥

∞ 6
QΓ(α+ 1)

Γ(α+ 1)− ‖D‖∞tα

{

1 +
5‖D‖∞tαk
2Γ(α+ 1)

}

∥

∥Y (t0)− Ȳ (t0)
∥

∥

∞

6
Q(Γ(α+ 1) + 5

2T
α‖D‖∞)

Γ(α+ 1)− Tα‖D‖∞
∥

∥Y (t0)− Ȳ (t0)
∥

∥

∞,
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where T = Max(tj); j = 0, 1, 2, ...,m. Therefore
∥

∥Y (tk)− Ȳ (tk)
∥

∥

∞ 6 E
∥

∥Y (t0)− Ȳ (t0)
∥

∥

∞.

Now, applying the mathematical induction and choosing suitable E leads to the
end of the proof.

6. Numerical examples

In this section, two examples for which the exact solutions are known are solved by
the proposed method to illustrate the efficiency and effectiveness of the suggested
numerical scheme. We estimate the maximum error and show its values graphically
in different modes. Both examples and their figures and Tables show that the
accuracy of the present scheme. The distinction between the measured value of the
approximate solution and its absolute error, is given by

|Y (x, t) − T (x, t)| ,

where Y (x, t) and T (x, t) are the exact and the numerical solution at the point
(x, t), respectively.

Example 6.1. Consider the following Riesz space fractional telegraph equation with
time delay

∂α

∂tα
(
∂α

∂tα
T (x, t)) + 2a

∂α

∂tα
T (x, t) + b2T (x, t) +W (x, t− τ ) = c

∂β

∂|x|β
T (x, t) + f(x, t),

where the initial and boundary conditions are

T (0, t) = T (1, t) = 0, 0 6 t 6 1

T (x, 0) = 0,
∂α

∂tα
T (x, 0) = 0,

and the inhomogeneous term is

F (x, t) = x2(1− x)2
{

t2−2αE2,3−2α(−t2) + 2at2−αE2,3−α(−t2) + 2b2sin2 t

2

}

+
2csin2 t

2

2 cos βπ

2

{

Γ(5)

Γ(5− β)
(x4−β + (1− x)4−β)− 2

Γ(4)

Γ(4− β)
(x3−β + (1− x)3−β)

+
Γ(3)

Γ(3− β)
(x2−β + (1− x)2−β)

}

− x6(1− x)8sin2(
1

2
(t− τ )).

This problem has the exact solution T (x, t) = 2x2(1− x2)sin2 t

2
.

We use the method of (4.9) to solve this problem for a = 5, b = .25, c = 1. The numer-

ical solution are shown in Table 6.1 with take τ = .0001, α = .9, β = 1.9 we find that,
the numerical results fit well with the theoretical analysis. Table 6.2 shows the maximum
error in difference α, β.
Figures 6.1 and 6.2 show that the analytical and numerical solution. Figure 6.3 shows
the comparison between the different β in hx = ∆t = 1/5. Figure 6.4 shows that the
comparison between the analytical and numerical solutions in terms of time and space at
α = 0.9, hx = 1/100.
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Table 6.1: Maximum errors and temporal convergence order of example 1 for β = 1.9
hx=∆t Maximum error Temporal convergence order

1
9 2.131321e-4 -
1
18 4.463033e-5 2.255651
1
36 7.085532e-6 2.655076
1
72 8.858860e-7 2.999683

Table 6.2: Maximum errors in difference α, β of example 1
hx=∆t τ α β The maximum error
.01 .1 .6 1.3 1.898990e-6
.01 .1 .6 1.6 1.688523e-6
.01 .1 .6 1.9 2.438964e-6
.01 .1 .7 1.3 1.883214e-6
.01 .1 .7 1.6 1.694502e-6
.01 .1 .7 1.9 2.157194e-6
.01 .1 .8 1.3 1.934076e-6
.01 .1 .8 1.6 1.765036e-6
.01 .1 .8 1.9 1.521870e-6
.01 .1 .9 1.3 3.927010e-6
.01 .1 .9 1.6 2.651678e-6
.01 .1 .9 1.9 7.383265e-7
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Fig. 6.1: The analytical solution T (x, t) = 2x2(1− x2)sin2 t
2 for example 1
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Fig. 6.2: The numerical solution at α = .9 and hx = 1/100 for example 1
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Fig. 6.3: Comparison between the numerical solution for hx = 1/5 at different β
for example 1
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Example 6.2. Consider the following Riesz space fractional telegraph equation with
time delay and constant coefficients

∂α

∂tα
(
∂α

∂tα
T (x, t)) + 2a

∂α

∂tα
T (x, t) + b2T (x, t) +W (x, t− τ ) = c

∂β

∂|x|β
T (x, t) + f(x, t),

With initial condition
T (0, t) = T (1, t) = 0, 0 6 t 6 1

and boundary conditions

T (x, 0) = 0,
∂α

∂tα
T (x, 0) = 0,

since

∂β

∂|x|β
T (x, t) = −

1

2 cos βπ

2

×
1

Γ(2− β)
×

∂2

∂x2

b
∫

a

T (s, t)

|x− s|λ−1
ds

and the forced term is

F (x, t) = x2(1− x)2
{

6t3−2α

Γ(4− 2α)
+

12at3−α

Γ(4− α)
+ b2t3

}

+
ct3

2 cos βπ

2

×

{

Γ(5)

Γ(5− β)
(x4−β + (1− x)4−β)− 2

Γ(4)

Γ(4− β)
(x3−β + (1− x)3−β)

+
Γ(3)

Γ(3− β)
(x2−β + (1− x)2−β)

}

− x6(1− x)6(t− τ )6.

The above equation has the exact solution T (x, t) = x2(1 − x2)t3. We used our proposed
method to solve this problem for a = 3, b = 1, c = 1. In this test, corresponding with
the last example the computational results are tabulated in Table 6.3 and 6.4.
Figure 6.5 shows the analytical solution for T (x, t) = x2(1− x2)t3 . Figure 6.6 shows the
numerical solution of T (x, t) at α = .9 and hx = 1/100. Figure 6.7 shows a comparison
between the numerical solution for hx = 1/5 at different β. At least 6.8 the comparison
between the analytical and numerical solutions in terms of time and space has been shown.
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Fig. 6.4: Comparison between the analytical and numerical solutions in terms of
time and space for example 1 at α = .9 and hx = 1/100

Table 6.3: Maximum errors and temporal convergence order of example 2 for β = 1.9
hx=∆t Maximum error Temporal convergence order

1
8 6.758348e-4 -
1
16 1.677320e-4 2.010514
1
32 3.963873e-5 2.081175
1
64 7.869601e-6 2.332549
1

128 9.834845e-7 3.000316

Table 6.4: Maximum errors in difference α, β, τ of example 2
α hx = ∆t β τ The maximum error
.6 1

6 1.2 .1 4.364050e-4
.6 1

12 1.8 .01 3.650731e-4
.6 1

24 1.9 .001 1.089647e-4
.8 1

6 1.2 .1 3.302924e-4
.8 1

12 1.8 .01 2.806825e-4
.8 1

24 1.9 .001 8.471009e-5
.9 1

6 1.2 .1 2.851935e-4
.9 1

12 1.8 .01 2.404663e-4
.9 1

24 1.9 .001 7.280021e-5
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Fig. 6.5: The analytical solution T (x, t) = x2(1− x2)t3 for example 2
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Fig. 6.6: The numerical solution at α = .9 and hx = 1/100 for example 2
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Fig. 6.7: Comparison between the numerical solution for hx = 1/5 at different β
for example 2
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Fig. 6.8: Comparison between the analytical and numerical solutions in terms of
time and space for example 2 at α = .9 and hx = 1/100
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7. Conclusion

Riesz derivative operators are used in some partial differential equations such as
wave equation, diffusion equation, telegraph equations, and some other partial dif-
ferential equations. This paper provides an iterative solution to the Riesz space tele-
graph equation with time delay. We present an algorithm to approximation based
on the piecewise polynomial interpolation of degree 2 that is used for discretizing
of Riesz space fractional telegraph equation. The approximate results approach in
analytic form with order O(∆t3). The conclusions are verified and compared by
two numerical examples. We believe that this approximation will be possible to
have a better comprehension of the telegraph equation with time delay in electrical
systems and transmission lines. The gained results show that, this method required
less amount of similar numerical methods. This claim can be substantiated by other
examples.
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