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Abstract. Let R be a commutative ring with unity, A, B be R-algebras and M be an
(A, B)-bimodule. Let ¥ = Tri(A,M,B) be a (n — 1)-torsion free triangular algebra.
In this article, we prove that every multiplicative Lie n-higher derivation on triangular
algebras has the standard form. Also, the main result is applied to some classical exam-
ples of triangular algebras such as upper triangular matrix algebras and nest algebras.
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1. Brief Historical Development

Many authors studied Lie type derivations on several rings and algebras [6,7,10,
12,14-17,19,25]. In most of the cases, authors found that any Lie type derivation
has the standard from on that particular ring or algebra under consideration. The
first characterization of Lie derivations was obtained by Martindale [17] in 1964
who proved that every Lie derivation on a primitive ring can be written as a sum of
derivations and an additive mapping of a ring to its center that maps commutators
into zero, i.e, Lie derivation has the standard form.

Moreover, during last few decades, the multiplicative mappings on rings and
algebras have been studied by many authors. Martindale [18] established a condition
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on a ring such that multiplicative bijective mappings on this ring are all additive.
In particular, he proved that every multiplicative bijective mapping from a prime
ring containing a nontrivial idempotent onto an arbitrary ring is additive. Daif [§]
studied the additivity of derivable map on a 2-torsion free prime ring containing a
nontrivial idempotent. In the year 1978, Miers [19] studied Lie triple derivations
of von Neumann algebras and proved that if M is a von Neumann algebra with no
central abelian summands then there exists an operator A € M such that L(X) =
[A, X] + A(X) where A\ : M — Z(M) is a linear map which annihilates brackets of
operators in M. In [7] Cheung initiated the study of Lie derivations of triangular
algebras ¥ and gave a sufficient condition under which every Lie derivation on ¥
is a sum of derivations on ¥ and a mapping from ¥ to its center Z(T). Further,
Lie derivations on triangular algebras were studied in [15,25], whereas the study
of Lie triple derivations on triangular algebras can be found in [14,16]. Yu and
Zhang [25] proved that every nonlinear Lie derivation of triangular algebras is the
sum of an additive derivation and a map from triangular algebra into its center
sending commutators to zero. Ji et al. [14] proved the similar result for nonlinear
Lie triple derivation of triangular algebras.

Benkovi¢ and Eremita [6] discussed multiplicative Lie n-derivations of triangular
rings, which in fact, generalized some results on nonlinear Lie (triple) derivations
of triangular algebras (see [14,25]).

Several authors have made important contributions to the related topics see for
reference [5,11, 13,14, 16, 20, 23-25] where further references can be found. Xiao
and Wei [24] considered the case of nonlinear Lie higher derivation on a triangular
algebra and they proved that if £ = {L,},cy is a nonlinear Lie higher derivation on
a triangular algebra, then £ = {L,},cy is of the standard form, i.e., L, = d,. + 7,
where {d, },cy is an additive higher derivation and {~; },¢n is a functional vanishing
on all commutators of triangular algebra. However, much less attention to the study
of Lie n-higher derivations on operator algebras has been paid. To the best of our
knowledge, there are very few articles dealing with Lie n-higher derivations on
rings and algebras except for [9,11]. The objective of this article is to describe the
structure of multiplicative Lie n-higher derivations on triangular algebras.

2. Basic Definitions & Preliminaries

Let R be a commutative ring with unity and Z(.A) be the center of an R-algebra
A. A map L: A— A (not necessarily linear) is called a multiplicative derivation
(resp. multiplicative Lie derivation) on A if L(ab) = L(a)b+ aL(b) (resp. L([a,b]) =
[L(a),b] + [a,L(b)]) holds for all a,b € A. In addition, if L is linear on A, then L is
said to be a derivation (resp. Lie derivation) on A.
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To explore a more approximate kind of maps. Define a sequence of polynomials:

pi(z1) = @1,
pa(z1,22) = [p1(21), 2] = [21, 73],
Pn(éﬂl,x%"' ,wn) = [pnfl(xlvl'%"' axnfl),fn]'
The polynomial p,(x1,z2, - ,z,) is called (n — 1)-th commutator where n > 2. A

map (not necessarily linear) L : A — A is said to be a multiplicative Lie n-derivation
on A if

n
Lpn(z1, 22, ,20)) = an(xhﬂm,”' s @i—1, L(@i), @i1, o+ @)
i=1

for all x1,z9,- - ,z, € A. The concept of Lie n-derivation was first introduced
by Abdullaev [1] on certain von Neumann algebras. Note that any multiplicative
Lie 2-derivation is known as multiplicative Lie derivation and multiplicative Lie 3-
derivation is said to be multiplicative Lie triple derivation. Thus multiplicative Lie
derivation, multiplicative Lie triple derivation and multiplicative Lie n-derivation
collectively known as multiplicative Lie type derivations on A.

Apart from these, the concept of derivation were extended to higher derivation.
Let us recall the basic facts about higher derivations. Let N be the set of nonnegative
integers and £ = {L, },en be a family of maps L, : A — A (not necessarily linear)
such that Lo = I 4. Then £ is called

1. a multiplicative higher derivation if L, (z122) = . Ly (21)Li, (22),

i1 +i2="r
2. a multiplicative Lie n-higher derivation if
Lr(pn(l'hx?a"' ,Zﬁn)) = Z pn(Li1($1),Li2($2),"' ’L'Ln(‘r"))
i1tio+ o tin=r
for all 1,22, -+ ,2, € A and for each r € N. Note that any multiplicative Lie

2-higher derivation is multiplicative Lie higher derivation and multiplicative Lie 3-
higher derivation is multiplicative Lie triple higher derivation. Thus multiplicative
Lie higher derivation, multiplicative Lie triple higher derivation and multiplicative
Lie n-higher derivation collectively known as multiplicative Lie type higher deriva-
tions on A. It is easy to observe that every higher derivation is a Lie higher derivation
and every Lie higher derivation is a Lie triple higher derivation and so on but the
converse need not be true in general.

Note that if ® = {d,},en is a higher derivation on A and for each r € N,
L, =d, + f, where f, : A — Z(A) is a linear (resp. nonlinear) mapping, then it is
easy to see that {L,},cy is a Lie n-higher derivation (resp. nonlinear Lie n-higher
derivation) if and only if f.(pn(z1, 22, - ,2,)) = 0 for all z1, 29, -+ ,z, € A. Lie
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n-higher derivation (resp. nonlinear Lie n-higher derivation) of the above kind are
called standard. The natural problem that one considers in this context is whether
or not every Lie n-higher derivation (resp. nonlinear Lie n-higher derivation) is
standard.

Throughout this paper, R will always denote a commutative ring with unity
element. Let A and B be unital algebras over R and let M be a unital (A, B)-
bimodule ( i.e., 15 -m =m and m - 1g = m for all m € M.) which is faithful as a
left A-module and also as a right B-module. The R-algebra

T =Tri(A,M,B) = {[ 0 b }

aeA,meM,beB}

under the usual matrix operations is called triangular algebra. The center of ¥ is

-

Define two natural projections ma : ¥ — A and 75 : ¥ — B by

(3 £ ]) o3 5])

Moreover, ma(Z(%)) C Z(A) and 7p(Z(T)) C Z(B) and there exists a unique al-
gebraic isomorphism 7 : mA(Z(%)) — 7(Z(%)) such that am = mr(a) for all
a € ma(Z(%)),m € M.

Let 14 (resp.1p) be the identity of the algebra A (resp. B) and let I be the unity
of triangular algebra €. Throughout, this paper we shall use the following notions:

= 1a 0 ,q=I—p= 00 and A = p%p, M = p%q, B = ¢%q. Thus,
0 0 0 1

T =p3p+pTq+ qTqg = A+ M+ B. Also, ma(Z(%)) and 7p(Z(%)) are isomorphic
to pZ(%)p and ¢Z(T)q respectively. Then there is an algebra isomorphisms 7 :
pZ(%)p — qZ(T)q such that am = m7(a) for all m € pZq.

Let us describe the result which is used subsequently in this article as :

amzmemeM}.

Lemma 2.1. /6, Theorem 5.9] Let ¥ = Tri(A,M,B) be a (n — 1)-torsion free
triangular ring. Suppose that T satisfies the following conditions:

1. 7A(Z(3)) = Z(A) and 7 (4(T)) = Z(B),
2. Z(A)={ac Al|lla,z],y] =0V z,y € A}
or Z(B) ={beB||[b,z],y) =0V z,y € B}.

Then any multiplicative Lie n-derivation L : € — ¥ has the standard form.

3. Multiplicative Lie n-higher derivation

In this section, we will prove the main result by a series of lemmas. It is clear
that every Lie higher derivation is a Lie n-higher derivation for n > 3. Therefore,
without loss of generality we assume n > 3 for convenience and for n = 2 we can
look into [24].
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Theorem 3.1. Let T = Tri(A,M,B) be a (n — 1)-torsion free triangular algebra
consisting of unital algebras A, B and a faithful unital (A, B)-bimodule M. Suppose
that ¥ satisfies the following conditions:

(x) 7a(Z(%)) = Z(A) and m5(Z(%)) = Z(B),

(2) Z(A) ={ac Allla,2],y] =0V 2,y € A}
or Z(B) ={beB|[[b,z],y] =0V z,y € B}.

Then every multiplicative Lie n-higher derivation £ = {L,},en on T has the stan-
dard form. More precisely, there exists an additive higher derivation ® = {d, },en
on ¥ and a sequence of functionals {h,}ren which annihilates all Lie n-product
pn(z1, 22, ,xp) for all x1,29, -+ ,x, €T such that L, (x) = d,.(x) + h,(z) for all
z €% andr € N.

In order to prove our main theorem, we apply an induction method for the com-
ponent index r. For » = 1, L is multiplicative Lie n-derivation on ¥. Hence
by Lemma 2.1 it follows that there exists an additive derivation d; and a func-
tional hy satisfying hi(p, (21,22, - ,zy,)) = 0 for all z1, 9, -+ , 2, € T such that
Li(z) = di(z) + hi(x) for all z € T. Moreover, L; and d; satisfy the following
properties:

L1(0) =0, Li(A) CA+M+7Z(%),
Li(M) € M, Li(B) C B+ M+ Z(%),
Ci:<{ Li(p) e M+Z(T), Li(q) € M+ Z(%),
di(A) CA+M, ()CM+B
di(M) C M, di(p),di(q) € M.

We assume that the result holds for all 1 < s < 7,7 € N. Then there exists an
additive mapping ds and a functional hs satisfying hs(pp(z1, 22, -+ ,2,)) = 0 for
all z1, 29, -+, 2, € T such that Lg(x) = dg(x) + hs(x) for all z € T. Thus the
mapping Lg and dg satisfy the following properties:

L,(0) =0, Ly(A) CA+M + Z(%),

Ls(M)CM Ls(B) CB+ M + Z(%),
C.:{ L.p) EM+Z(T), Lilg) € M+%(3),

ds(A) CA+M,  dy(B )CM+B

d,(M) C M d,(p), ds(q) € M.

Our aim is to show that above conditions also hold for r, it follows from the
series of Lemmas:

Lemma 3.1. Let £ = {L,},en be a multiplicative Lie n-higher derivation on (n—
1)-torsion free triangular algebra T. Then L.(0) = 0, and L.(M) C M for each
reN.
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Proof. For each r € N, L,.(0) = 0 is trivially true. For any m € M using conditions
Cs, we have

Lr(m) = LT(pn(m?Q7"' vq))
= Z pn(Lil (m)> Liz (Q), e 7Lin (Q))
i1Fio+-Fin=r
= pn(Lr(m)u q, - 7(]) + pn(m7Lr(Q)7 e 7(]) +--- 4+ pn(m7 q, - qu(Q))
+ Z pn(Lll (’I“), L’L'2 (Q)7 e 7Lin (Q))

i1 tio+  Fin =T
0<iy iz, ,in<r

= pn(LT(m)aq7 7q)+pn(m7LT(q)7 7q)++pn(m7Q7 vLT(Q))
pLr(m)q + (n — 1)[m, L. (q)].

On multiplying the above equality from left by p and right by ¢, we get (n —
1)[M, L, (q)] = 0 and hence L,.(m) = pL,(m)q. This implies that L,.(M) C M. O

Lemma 3.2. Let £ = {L,}ren be a multiplicative Lie n-higher derivation on (n —
1)-torsion free triangular algebra . Then L, (p),L,(q) € Z(%) + M for each r € N.

Proof. From the proof of Lemma 3.1, we have seen that (n—1)[M, L,(¢)] = 0. Since
% is (n—1)-torsion free, we have [M, L,(¢)] = 0 and hence pL,.(¢)p+qL.(q)q € Z(%).
Therefore, we have L,.(q) € Z(T) + M. Also, for any arbitrary m € M, we obtain
that

LT(m) LT(pn(p7m7Q7"' 7(]))

= Z pn(Li, (), Liy (M), Lig (@), - -+ L, (q))
i1Figtefin=r

= pa(Lr(p)m, ¢, @) + Pulp,Lr(m), g, ,q)
+Hpa(pymeg, - Le(q))
+ Z pn(Li, (p), Ly (m), Liy (@), - -+, Li, ()

i1 tio+ A in =T
0<i1,d2, " ,in<T

= pnfl([LT(p)vm]a(L’" ,(1) +pn71([pa Lr(m)]aqv ,q)
= plL+(p),mlq + plp, Lr(m)]g.

Therefore, we get
L.(m) = p[L,(p), m]q + pL,(m)q for all m € M. (3.1)

Hence, pL,.(m)q = p[L,(p), m|q+ pL,(m)q, which implies that [L,(p), M] = 0. Then
L.(p) € Z(T)+M. O

Lemma 3.3. Let £ = {L,},en be a multiplicative Lie n-higher derivation on (n—
1)-torsion free triangular algebra T. Then for any a € A;b € B and m € M, the
following hold true:
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1. pL,(W)p € Z(A) and qL.(a)q € Z(B),
2. L, (A) CA+M+Z(%) and L. (B) CB+ M + Z(%)

for each r € N.

Proof. Let a € A,b € B,m € M. Using the condition C, and the fact that [a, b] = 0,
we have

0 = Lr(pn(aa bvquv"' 7q))
= Z pn(Lh (a)vLiz (b)7Li3(m)7Li4 (q)’ o L, (9))

i1tigt o tin ="

= pn(LT(a‘)7b7m7qa e 7q) + pn(a,LT(b)7ma q,: - 7Q) + pn(aa b7 LT(m)a e 7q)
+pn(a7 bu m, LT(Q)J q, 7q) + pn(a7b7m>q7 o 7L’r’(q))
+ Z pn(Lil (a)7 Liz (b)’ Lis (m)a Li4 (q)a t 7Lin (Q))

i1tiot o tin=r
0<dy i, ,in<r

= pn—Q([[Lr(a)vb]7m]vQ7"' ,Q) +pn—2([[a7LT(b)]aqua"' 7Q)
= [[Lr(a),b],m] + [[a, L (b)], m].

Hence, [qL,(a)q,b] + [a, pL,.(b)p] € Z(T). Now multiplying from right as well as left
side by p and ¢ respectively and on applying the assumptions (%) and (f), we get

pL.(b)p € Z(A) and gL, (a)q € Z(B).
Then we obtain

L.(a) = (pL(a)p—7 ' (qLr(a)q)) + pLr(a)g + (77 (qLr(a)q) + qL,(a)q)

L.(b) = (pLy(b)p+ 7(pLs(b)p)) + pLy(b)g + (gL (b)g — T(pLy(b)p)

which gives L, (A) CA+M+Z(%) and L,(B) CB+ M+ Z(%). O

Remark 3.1. We define f,, (a) = qL,(a)q and fr,(b) = pL,(b)p for any a € A, b € B. By
Lemma 3.3 follows that f,, : A — ¢Z(%)q is a mapping such that f,, (pn(A,A,---,A)) =0
and fr, : B — pZ(%)p is a mapping such that fr, (pn(B,B, - ,B)) = 0. Define the maps
0r : T —>%Tand f,: T — Z(%) by 6, = L, — f» and

fr(@) = fry (pxp) + 77 (fry (DTD)) + fro(q2q) + T(fry (qzq)) for all z € T.

Obviously, f-(M) = 0. Hence 6,(M) = L.(M). We claim that f(pn(%,%,---,%)) = 0.
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Assume x1,%2, -+ ,&n € T. Since fr(x) = fr(pzp + qzq) for each z € T, we find that

Jr(pn (21, 22, - 733n)) = fr(p(pn(xlvx%"' )P+ q(pn(z1, 22, - - - 73771))‘1)

Since

qLr(p(pn(z1, 22, -, 2n)p)q
+7 7 (gL (p(pn (@1, @2, -+, 20)P)q)
+pLr(q(pn (21,22, -+, 20)q)p
+7(pLr(q(pn(z1, 22, -+, 0)q)P)

= qL;(pn(p21p, 22D, - ,PTNP))q
+7 (L (pn(p21p, PT2D, -+, PTAP)q)
+pLr(pn(qr19, g2, - -, qTnq)P
+7(pLr (pn(qr14, G229, - -+, qTnq)p)-

pLr(pn(q219, q2q, - - -, qT0q)p
= p(pn(Lr(gz19), q24, " -+, qTnq))p
+p(pn (19, Lr(q229), -+, qTnq))p
+p(pn(q219; 9729, - - -, Lr(q2nq)))pP

+p > pa(Liy(g219), Liy (q22q), - -+, L, (q2aq)) | P

i1 tig+Fin=r
0<iy,ig,  ,in <7

Similarlya qu(pn(p$1p7px2p, e ,p:l?np))q = 07 and hence fr(pn(xl,ZCZ, e 7':8”7‘)) = 0 for
all z1,x2,--+ ,z, € T. Consequently,

5T(Pn($175€2’ e ,Zl‘n))

Lr(pn(z'l:x%"' 7xn))
pn(LT(x1)7x27 T ,In) + p'ﬂ(th?“(xQ)f T 7$n) + - +p"($17$27 e 7L'f($n))
+ > pr(Liy (1), Liy (22), -+, Li, (zn))

i1 tig+Fin=r
0<idy,i2,  ,in<T

pr(Lr(@1) = fr(@1), 22, @n) + pu(@1, Le(22) — fr(22), -+ 2n)
+--- —|—pn(l‘1,1‘2, e 7LT(‘T") - fr(l'n))
+ > pr(Liy (w1) = diy (#1), Liy (22) — diy (22), -+, Li,, (#n) — diy, (T0))

i1tinttin=r
0<iy,ig,  in <7

pn((;T(fL'l),flfz, T amn) +pn(l‘1767~({l}2), o 7:E’ﬂ) +pn($1,l‘2," . 757‘(:””1))
+ Z pn(dil(x1)7di2(x2)7"' 7din(xn))

i1tia 4 Fin="
0<iy,ig, ,in<T

for all 1,2, - ,2, € T. Thus {d, }ren is a multiplicative Lie n-higher derivation on ¥.
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Since pn(p,x,q, - ,q) = pn(x,q,q, -+ ,q) for all z € T, we find that

pﬂ(LT(p)7m7q7"' 7q) —HJn(p, LT(x)qu" 7q) +pn(p7517,Q7"' 7Lf‘(q))
+ Z pn(Lil (p)vLiz (x)v%"' ’Lin (q))

iy int o in=r
0<iq ig,  yin<T

= pn(LT(m)v% T 7Q) +pn(x7L7“(Q)7' o 7Q) —HJn(x,q, T 7LT(Q))
+ Z pn(Liy (1), Liy (@), - -+, L, ()

i1 tigttin=r
0<iy,ig,  ,in<r

Considering the induction hypothesis, the above equation becomes

Br(p)al + D0 [di(p),din(@)] = [2,6:(@] + D [di (), dia()].
il%iz:;r O’L<1;§’L,$2:<Tr

Note that d; is additive and d;(I) = 0 for all 0 < ¢ < r. Thus we arrive [0, (p), z] = [z, 6-(q)].
That is 0-(p) + 6-(¢) € Z(T). On the other hand, §,(p) = L.(p) — fr(p) € M by Lemma

3.2 and 6,(q) € M. By the characterization of the centre of ¥, we can calculate that
dr(p) +0r(q) = 0.

Now from Lemma 3.1 and Lemma 3.2, it is clear that

Lemma 3.4. Forr € N, we have the following:

3. 5r(p)a d-(q) € M and 6,(p) + 6-(q) =0,

4. 6,(A) C A+ M and 5,(B) C B+ M.

Lemma 3.5. For anya € A,m €M and b € B, we have

1. §.(am) = 6p(a)m + ad.(m)+ >, diy(a)di,(m),
i1+i2:T
0<iy ip<r

2. 6p(mb) = 6,(m)b+ md.(b) + >  d;, (m)d;,(b)
11 +io=r
0<iy,io<r

forr e N.
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Proof. Using the fact that d5(¢) € M for all 0 < s < r, we get

dr(am) = L([a,m])
= Li(pn(a,m,q, -+ ,q))
= > pal6i(a), 85, (m),0is(q), -+ 65, ()
i1intFin=r
= pu(0:(a),m,q, - ,q) +pn(a,6:(m),q, - ,q)
+pnla,m,0:(q),¢, -+ ,q) + -+ +pala,m,q, -+ ,5:(q))
+ Z pn(di, (), diy (M), dig (@), -+ di, (q))

i1 FigHtin=r
0<iy,i2,,in<r

= pn—l([ér(a)7m]’ q, - ,Q) + pn—l([a” 5T(m)]7Qa T ,Q)
+ Z pnfl([dh (a)7 di2 (m)]7 q, 7‘1)

i1+i2="
0<iy,t2<r
= b(aym+ad.(m)+ Y di(a)di,(m).
11+io="r
0<iy,i2<T

for a € A,m € M. Likewise, §,(mb) = d,.(m)b+md,.(b) + >, d;(m)d,(b) for
11+io=r
0<i1,i2<T

albeB,meM. O

Lemma 3.6. For any ay,as € A and by,by € B, we have

1. 6r(a1a2) = 5r(a1)a2 + alér(ag) + . Z di1 (al)diQ (0,2);

2. ar(blbg) = 57~(b1)b2 + b15r(b2) + Z dil (bl)diz (bQ)
i1+ie=r
0<y,22<r

forr e N.

Proof. For any aj,as € A and m € M.

Or(arazm) = 6,((araz)m)
= dr(araz)m + arazd,.(m) + Z di, (a1a2)d;, (m)
0L haer

= 5T(a1a2)m + alagér (m) + Z di1 (al)di2 (az)di3 (m)
i1+iz+iz=r
0<i1,i2<r
0<iz<r
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On the other way,

5r(a1a2m) = 5r(a1(a2m))
= dr(ar)agm + ardr(aam) + Y di,(a1)ds, (azm)
02 s

= d,(a1)aam + a10,(az)m + ara20,(m)

+ > di(a)din(a)m+ Y di(a1)di, (a2)diy (m).

i1 +’LQ:T’ i1+io+iz="r
0<iy,io<r 0<21,i2<T
0<iz<r

By the condition Cg, the above expression becomes

5,.(a1a2)m = {(57.(a1)a2 + a15,.(a2) + Z di1 (al)diz (ag)}m.

11 +io=r
0<iy,io<r

Since 6,(A) C A+ M and M is faithful as left A-module, the above relation implies
that

Sr(aras)p = {6,(ar)az + ardn(az) + D di,(a1)dy,(a2) }p. (3.2)

i14io=r
0<iy,t2<r

Also, [a1,q] =0 for all a; € A

0 = Lr(pn(alaQ7Qa"' 7q))
= Z pn(511 ((11), 51'2 (q)a 5i3 (Q)’ e a(sin (Q))

i1+io+- i =T
= pn(ér(al)vqa q, - 7Q) + pn(alv 5T(q)7(b T aq)
+pn(CL1, Q76T(q)a q, - aq) +eee pn(ah q,4q, - 75T(q))

+ Z pn(dn (al)adiz (Q)7di3(q)7 T 7din ((]))

t1tio+ Fin =T
0<iy,i2, " ,in<r

= pn1([0r(a1),ql, ¢, @) + pn-1(lar,0-(9)], ¢, -, q)
+ Z pn—l([dil(al)’diz(qna(L'" aq)'

11+io="r
0<i1,i2<T

Since ,(A) C A + M, 6,(q) € M. The above equation implies that
0=10,(a1)g+ a16,(q) + Z d;, (a1)d;, (q) for all a; € A. (3.3)
i1+i2=T
0<i1,i2<T
On substituting a; by as and ajas in (3.3) respectively, we get

0=0,(as)g+asd,(¢) + Y di(az)ds,(q) (3.4)

i1+ie=r
0<i1,i2<r
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and
0 =6-(a1a2)q + a1a26,(q) + Z d;, (a1a2)d;, (q).

i1+i2:T
0<iy,ia<T

Now left multiplying a; in (3.4) and combining it with (3.5) gives
Sp(amaz)g+ > di(a1)di,(a2)di,(q) = a16,(az)q
i1+i2+i3=r

0<i1,i2,i3<r
which implies that
r—1
Or(araz)q+ Y diy(ar) Y diy(a2)dis(q) = ar6,(az)g-

11=1 io+iz="r
0<ig,iz<r

Now using the condition Cg, we find that

r—1
S(araz)q — Y di,(a1)dr—i, (a2)q = a16,(az)q
=1
gives us
r—1
Or(araz)g = ard,(az)q + Y di, (a1)dr—i, (a2)g.
=1
Hence,

5 (ara2)q = {6, (ar)az + a16,(az) + Z d;, (a1)d;, (a2) }q.

i1+ig=r
0<iy,io<r

Now adding the (3.2) and (3.6), we have

dr(ara2) = 0.(ar)az + a10,(az) + Z di, (a1)ds, (az).
11 +io=r

0<iy,io<r

Similarly, we can obtain that

Or(biba) = 6,(b1)ba + 016, (ba) + Y di, (br)diy (ba)
’i1+i2=T

0<iy,i2<r

for all b1,b5 € B. O

Lemma 3.7. For anya € A,m €M and b € B, we have

1. 6,(a+m) —6.(a) — 6,(m) € Z(T);
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2. 8,(b+m) — 6,(b) — 8, (m) € Z(T)

forr e N.

Proof. Let a € A and m, my € M. Since [a, m1] = [a + m, m1], we find

Lr(pn(a7m17q7"' 7q)) = L’F(p’ﬂ(a—"_m7m1aq7“' 7q)) (37)

Using induction hypothesis, Lemma 3.3 and (3.7) reduces to

pn((ST(a)amhqa'“ 7Q) = pn(dr(a+m)7m17Qa' o aQ)

Therefore, [0, (a), m1] = [6,(a+m), m1] and hence [6,(a+m)—4,(a), M] = 0. Hence,
we get that

Or(a4+m) — d.(a) — p(d,(a +m) — d.(a))q
= p(0.(a+m)—d.(a))p+q(d-(a+m)—0d.(a))g € Z(T) (3.8)

for all a € A,;m € M. Applying Lemma 3.2, 3.4 and Remark 3.1, we have

p(0-(a+m) —d,(a))g
= [p,6-(a+m)—d,(a)]
= [p,Lr(a+m)] - [p,L(a)]
= Ly(pn(p,a+m,q, - ,q) = pn(Lr(p);a+m,q, -~ ,q)
—pn(p,a+m,L(q), - ,q) = —palp,a+m,q, - ,L:(q))

=Y (), dilat m)bi(a), - 60, (a)

i1+i2+~~-+in:7‘
0<41,02, - ,in<T

(pn(pva q,-- aq))+pn( ?”( ) a,q,-- aq)
ern(p, a7LT( ) aq) +oeeet p (pa a,q,- 7LT(q))
+ Z pn(éll (p)véiz(a)>6i3( ) 6ln(q))

t1tig 4 Fin =T
0<iq,i2, " ,in<r

= Lr(pn(p;maq7"' 7q))

= L,.(m)=0,(m).

From (3.8), it follows that ¢, (a + m) — 0y (a) —0,.(m) € Z(T) for all a € A,m € M.
Similarly, we can prove d,(b+m) — §,(b) — d.(m) € Z(T) for allbe B,m e M. O

Lemma 3.8. 9§, is additive on A,M and B.
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Proof. Using m1 + mg = p,(p+m1,ma+¢q,q, -+ ,q) and Lemma 3.4, we find that
or(m1+mz) = Lp(pu(p+mi,ma+q,q, - ,q)
= S pal0i(p+ma), 6i,(ma2 +q), 01, (q). -+ 165, (q)
i1tintetin=r
= pa(0r(p+ma),ma+4q,q,- ,q)
+pn(p+mi,0p(Mma+4q), ¢, ,q)
+pn(p+mi,m2 +¢,0:(q), 4, q)
o pa(p+ma,me + ¢4, ,6:(9))

+ Z pn(dil(p+m1)a§i2(m2+q)a§i3(q)ﬂ"' ’(;in(q))

i1+t i =1
0<iy g, yin <7

= pnfl([ér(p"i_ml)va+q},q7"' 7q)
Fn-1(lp +ma, 6r(m2 + q)], ¢, ,q)
= pn—l([(ST(p)+6T(m1)vm2""—q}v"' 7q)

+pn—1([p +m1,6-(m2) +6-(q)), - ,q)
= 4.(p) + 0,(mq1) + 0,(m2) + ,(q)
= §.(m1) + .-(m2)
for all mq, my € M. Now,
0r((a1 +a2)m) = 6.(aym) + §-(azm)
= Se(a)m+aid.(m)+ Y di (ar)di,(m)
04t
+or(ag)m + azde(m)+ Y di(az)di,(m)  (3.9)
0Lt
for all ai,as € A and m € M. On the other hand,
O-((ar +az)m) = d.(a1 +a2)m+ (a1 + az)d.(m)
+ > di (a1 + az)di, (m). (3.10)
0L

Combining (3.9), (3.10) and applying condition C, we have

Or(a1 + az)m = 6,(a1)m + 6, (az)m. (3.11)
Since ,(A) C A +M and M is faithful as left A. Then (3.11) implies that
0r(a1 + az2)p = 6,(a1)p + 6, (az)p. (3.12)
Replace a; for a; + az in (3.3), we get
0=0r(a1 +az)g+ (a1 + a2)d,(q) + > di (a1 + az)ds, (g) (3.13)
11+io="r

0<y,i2<T
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for all a; € A. Combining (3.13) with (3.3) and (3.4), we obtain
Or(ar + a2)q = 6-(a1)q + d-(az)q. (3.14)
Addition of (3.12) and (3.14) implies that 6, (a;4+a2) = §,(a1)+5,(az) for all ay,as €
A.
Similarly, we can deduce that §,.(by +b2) = 6,-(b1) 4+ 6, (b2) for all by,bo € B. O

Lemma 3.9. 6.(a +m +b) —d.(a) — 6.(m) — 6,:(b) € Z(%) for alla € A,m €
M.,b € B.

Proof. Using induction hypothesis and fact 6,(¢) € M. On one hand, we have
Lr(F‘n(a +m+ b)amla q,: - 7Q))
= > pa(i(atm+b),6i,(ma),0i,(q), - i, (q))
d14igtHin=r
= pn((;T‘(a +m+ b)a mi,q,: - aq) + pn(a +m+ b7 5T(m1)a q, " 7q)
+pn(a+m+b7m1a6’r(Q)7qa 7q)++pn(a+m+b7mlaQ7 a(ST(Q))

+ D Paldi(atm )8y (1), 6 (a), - i, ()

i1 ti2+ A+, =T
0<dy,i, ,in<T

pnfl([(sr(a +m+ b), m1]7q7 T ’Q) + pnfl([a +m+ b7 57‘(m1)]7 q, - ,Q)
= [d-(a+m+b),mi]+[a+m+Db,d.(m1)]
[0-(a +m + b),m1] + [a, 0, (m1)] + [b, 6-(m1)] (3.15)
for all a € A, m, m; € M, b € B. On the other hand, using Lemma 3.8, we obtain

Lo (pn(a+m+b,mi,q, - .q))
Ly (la,m1] 4 [b, ma])
= Li(pn(a,m1, 4, @) + Ly(pn(b,m1,q, -+, q))
= Yo pal0i(a), 65 (m), 6 (9), - 164, (9)

i1ttt i =7
+ Z pn(5zl(b)a5@(7”1),515((]), ,5171((]))
i1tio+ o tin=r
= pn(5r(a),m1,q7... ,q)+pn(a,5r(m1)7q,... ’q)

+ Z pn(511 (a>7§i2 (m1)76i3 (q)v' o ﬂ(sin (Q))

i1 Fiot i =T
0<41,22,,in<T

+pn(6r(b)amlaq7 e 7Q) + pn(b; 67‘(m1)a q,- - 7Q)
+ Z pn(571 (b)v 5732 (ml)’ 513 (Q)v e ’6%(‘1))

i1 Fiot - Fin ="
0<id1,i2, ,in<T

= pnfl([(sr(a)vml]v q, - 7Q) + pnfl([av 5r(m1)]7 q, - aQ)
+pn—1([57“(b)7m1]7 q, - ,Q) + pn—l([bv 5T(m1)]a q, - ,Q)
= [6r(a),ma] +[a, 6, (ma)] + [0,(b), ma] + [b, 6 (m1)] (3.16)
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for all @ € A, m,m; € M, b € B. Combining (3.15) and (3.16), we get
[0-(a +m+b) —d,(a) — 6,(b),M] =0,
which in turn implies that
dr(a+m+b) — 6.(a) — 6,(b) — p(d(a +m +b) — 6.(a) — 6,(b))q € Z(T)
for alla € A,m € M,b € B.

p(0r(a+m+b) —d.(a) —5-(b))g
= [p.d;(a+m+0b)—d.-(a) — 5, (b)]
= [p.Li(a+m+0b)] - [p,Lr(a)] — [p, L (b)]
= Li(pnpa+m+bq,-,q)—pau(lr(p),a+m+b,q,--,q)
—pn(p,a+m+b,L.(q), - ,q) = —pa(p,a+m+b,q,--,L(q))
— D a8 (p) 6 (a+m+b),85,(), 65, ()

i1tinttin=r
0<iy,ig, ,in <7

*Lr(]ﬂn(p, a,q,- - 7q)) + pn(Lr(p), a,q, - ,4
+pn(p7a,Lr(q),"' 7q)++pn(p7a'aQ7 5 Hr
+ Z pn((sh (p)v 51'2 (a)v 61'3 (Q), T 76in (Q))

i1 ti2+ i =T
0<id1,i2, ,in<r

_L”‘(pn(p7 b?Qa"' 7(])) +Pn(LT(p),b,q7 ,q)
+pn(P, 0, L(q), - ,q) + -+ Pu(p,byq, -+, Lp(q))

+ Z pn<6l1 (p)7 Oiy (b)7 Oig (q)’ T 04y, (Q))

i1 tiot iy =T
0<i1,i2,,in<r

- L7'(pn(p7m7q"” ’q))

This leads to é,(a +m—+0b) — §,(a) — §-(m) — 6,(b) € Z(T) for alla € A,m € M, b €
B. O

Remark 3.2. Now we establish a mapping g, : € — Z(%) by

gr(z) = 0-(x) — 6-(pxp) — 6r(pxq) — 6r(qxq) for all x € %.
Obviously, g-(A) = g-(M) = ¢g-(B) = 0. Observe that g,(pn(%,%,---,%)) = 0. Define a
mapping dr(x) = 6-(z) — g-(x) for all z € T. It is easy to verify for each r € N, d, satisfies
dr(a+m+0b) =d-(a) + d-(m) + d,(b). From the definition of d, and g, it follows that

Lr =6r+ fr =dr + gr + fr = dr + hy, where hr =g, + fr.
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Proof. [Proof of Theorem 3.1] Suppose x,y € ¥ such that x = a1 +m1 + b; and
Yy = as + ma + ba. Then

de(x+y) = dr((ar+m +b1) (a2 4+ ma + b2))
= dr( a1 + CLQ m1 + m2) (bl + bz))
5T(a1 + (ZQ) + 5 (m1 +m2) + (S (bl + bg)
5,(a1) + 6,(az) + 6,(m1) + 6,(ma) + 6,(by) + 6, (bs)
(
(x

ar +my +b1) + dp(ag + ma + by)
)+ dr(y)-

d,
d

r

By Lemma 3.6 and Lemma 3.7, we have

dy(zy) = dr((al +mq + b1)(az +mao + bg))
= dy(araz + armo + miby + b1b2)
= Si(m)az+aid(a2) + Y di(a1)diy(as)

11 +io="r
0<41,i2<T
+6,(a1)ms + ardp(ma) + Y di, (a1)diy (m2)
i1+ie=r
0<i,t2<r

+6,(m)ba +made(bo) + Y diy (ma)diy (bo)

i1 +io=r
0<i1,i2<T

+0p(b1)by + 016, (ba) + > diy (b)di, (b2). (3.17)

i1+ia=r
0<iy,ia<r
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On the other hand, we have

dp(2)y +xdy () + Y di (2)diy(y)

i1+i2=T
0<iy,ia<r

= (6r(a1) + 0p(m1) + 6,(b1))y + (3, (az) + 0, (ma2) + 6-(b2))
+ Y di(a)dp(a) + Y diy(an)diy (m2)

11 +io="r 11 +io=r

0<i1,i2<T 0<i1,i2<T

+ Y di(a)di,(b2)+ Y di, (ma)di, (a2)
i1+ie=r i1+ie=r

0<iy,t2<r 0<iy,i0<T

+ > di (ma)diy(ma) + D di, (ma)diy (b)
i1 +io=r i1 +io=r

0<iy,i2<T 0<i1,i2<T

+ Y di(b)diy(a2) + Y di, (br)diy (m2)
i1+ie=r i1+ie=r

0<y,i2<T 0<y,i2<T

+ > iy (b)diy (b2). (3.18)
i1+i2=7'

0<11,22<r

By using condition Cg, and from Lemma 3.6, we have

de(v)y +ade(y)+ Y diy(2)di, (y)

i1+ie=r
0<iy,iz<r
= bp(a)az+ard(az) + Y di(a1)di,(az) + 6, (ar)my + a16,(my)
i1+i2=7'
0<i1,22<r
+ > di(a)di, (m2) + 6,(ma)by +made(be) + D> di, (ma)diy (bs)
11 +io=r 11 +io=r
0<i1,i2<T 0<iy,2<r
0 (b1)ba + b1dp(ba) + D dy, (b1)diy (ba). (3.19)
i1+ia=1
0<iy,i2<T
Combining (3.17) and (3.19) ,we get d,-(zy) = dp(x)y+zd,(y)+ > diy(z)diy (y).
i1+ie=r
0<i1,i2<r

This implies that, {d,},en is an additive higher derivation on ¥. Finally, there ex-
ists a map h, : € — Z(%) such that h,.(p,(T,%, - ,%)) = L. (pn(T,%,--- ,%)) —
dr(pn (%, %, -, %)) = 0. This completes the proof. O

As a direct consequence of Theorem 3.1, we have the following result:

Corollary 3.1. [3, Theorem 8.1] Let ¥ = Tri(A, M, B) be a 2-torsion free trian-
gular algebra consisting of unital algebras A, B and a faithful unital (A, B)-bimodule
M. Suppose that ¥ satisfies the following conditions:
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1. mA(Z(%)) =Z(A) and 75(Z(%)) = Z(B),

2. Z(A)={a € A|lla,z],y] =0V z,y € A}
or Z(B) ={be B|[bz],y =0V z,y € B}.

Then every multiplicative Lie triple higher derivation £ = {L,}ren on ¥ has the
standard form. More precisely, there exists an additive higher derivation © =
{d;}ren on ¥ and a sequence of functionals {h,}ren which annihilates all Lie triple
product [[x1,x2], x3] for all z1,22,2z3 € T such that L,(z) = d.(z) + h,(x) for all
r €T andr e N.

4. Applications

In this section, we apply Theorem 3.1 to some triangular and related algebras,
such as upper triangular matrix algebras, block upper triangular matrix algebras,
nest algebras, incidence algebras.

Since an arbitrary derivation on 7 (N) is inner and in view of [23, Proposition
2.6], we know that an arbitrary higher derivation on 7 (A) is inner.

Corollary 4.1. Let X be an infinite dimensional Banach space over the real or
complex field ¥ , N be a nest on X which contains a nontrivial element comple-
mented in X and T (N') be a nest algebra. Then for every multiplicative Lie n-higher
derivation £ = {L, },en, there exists an inner higher derivation {d,},en on T(N)
and a sequence of functionals {h,}reny which annihilates all (n — 1)-th commutators
P(TN), TN), -+, T(N)) such that L, = d, + hy, where d, : T(N) = T(N) and
hy : T(N) = FI forr € N.

Corollary 4.2. Let N be a nest of a Hilbert space H dimension greater than 2
and T(N) be a nontrivial nest algebra. Then for every multiplicative Lie n-higher
derivation £ = {L, },en, there exists an inner higher derivation {d,},en on T(N)
and a sequence of functionals {h,}ren which annihilates all (n— 1)-th commutators
P(TN), TN), -+, T(N)) such that L, = d, + hy, where d, : T(N) = T(N) and
hy : T(N) = FI for each r € N.

If Hilbert space H is finite dimensional, then nest algebras are upper block triangular
matrices algebras [7].

Corollary 4.3. Let R be a (n — 1)-torsion free commutative ring with unity and
Bﬁ(R)(m > 3) i.e. block upper triangular matriz algebra defined over R with
BEH (R) # M, (R). Then for every multiplicative Lie n-higher derivation £ = {L, },en,
there exist an inner higher derivation {d, },en on BE (R) and a sequence of function-
als  {hy}ren  which  annshilates all (n — 1)-th  commutators
p.(BF (R), BE (R),--- , BE (R)) such that L, = d,+h,., where d, : BX (R) — BF (R)
and h, : BE (R) = RI for each r € N.
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Proof. It can be easily seen that conditions of Theorem 3.1 hold for block upper
triangular matrix algebra and since all derivations of B,’jl(Rj are inner. By [23,

Proposition 2.6] we arrive at that any higher derivation of B (R) is inner. Hence
the result follows. [

Note that Tp,(R) C B (R) C M,,(R)(m > 3) is a proper block upper triangular
matrix algebra over a commutative ring R.

Corollary 4.4. FEvery multiplicative Lie n-higher derivation has standard form on
upper triangular matriz algebra T,,(R).

Incidence algebra. Let R be a commutative ring with unity. Let X be a finite
partially ordered set (poset) with the partial order <. We define the incidence
algebra of X over R as I(X,R) = {f : X x X = R| f(z,y) =0 if z £ y} with
algebraic operation given by

L (f+9)(z,y) = f(x,y) + g(z,y),
2. (frg)(z,y) = Z< f(z,2)9(z,9),

z<z<y

3. (Tf)(iE, y) = r.f(x,y)

forall f,g € I(X,R),r € Rand z,y,2z € X. Obviously, f is an R-valued function on
{(z,y) € X x X | x < y}. The product  is usually called convolution in function
theory. If X is a partially ordered set (poset) with n elements, then I(X,R) is
isomorphic to a subalgebra of the algebra M, (R) of square matrices over R with
elements [a;;] € M, (R) satisfying a;; = 0 if ¢ £ j, for some partial order < defined
in the partial order set (poset) {1,...,n}. This shows that I(X,R) is a triangular
algebra.

The incidence algebra of a partially ordered set (poset) X is the algebra of func-
tions from the segments of X into R, which extends the various convolutions in
algebras of arithmetic functions. Incidence algebras, in fact, were first considered
by Ward [22] as generalized algebras of arithmetic functions. Rota and Stanley [21]
developed incidence algebras as the fundamental structures of enumerative com-
binatorial theory and allied areas of arithmetic function theory. The theory of
Mobius functions, including the classical M&bius function of number theory and the
combinatorial inclusion-exclusion formula, is established in the context of incidence
algebras. For the later, we refer the reader to [21, Sections 2.1 and 3.7].

In the theory of operator algebras, incidence algebras of a finite poset X are
referred as bigraph algebras or finite dimensional CSL algebras. If X is connected,
then Z(I(X,R)) = RI. Clearly, any incidence algebra I(X, R) is a triangular algebra
and hence it satisfies the condition (). Then we have

Corollary 4.5. Let R be a (n— 1)-torsion free commutative ring with unity, X be
a connected finite partially ordered set (poset) with the partial order < and I(X,R)
an incidence algebra of X over R. Then every multiplicative Lie n-higher derivation
has the standard form.
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5. For Future Discussions

In this section, we make an attempt to pull out attention of readers towards the
obtainable research problem. Let us observe a more general class of maps. Note
down the sequence of polynomials:

qi(r1) = =z,
q2(w1,22) = qu(21) 0y =1 0 W3,
Qn($1;$27"' 7xn) = qnfl(xlax27"' amnfl)Ox’nn
The polynomial q,(x1, 22, -+ ,x,) is called (n—1)-th anti-commutator where n > 2.

Let R be a commutative ring with unity and A be an R-algebra. A map (not
necessarily linear) J : A — A is said to be a multiplicative Jordan n-derivation on

A if
n
J(Qn($17$27"' 73371)) = Zq’ﬂ(xlaméa”' 7xi71;3($i)7$i+17' o 7xn)
=1

for all xy,x9,--- ,x, € A.

Let N be the set of nonnegative integers and J = {J; }ren be a family of maps J, :
A — A (not necessarily linear) such that Jg = I4. Then J is called a multiplicative
Jordan n-higher derivation if

Ir(@n(@i e, yzn)) = D> 4n(Ta (@), i (@2), -+ i ()

i1+ i =r

for all z1, 22, -+ ,x, € A and for each r € N. It is easy to see that any multiplicative
Jordan 2-higher derivation is a multiplicative Jordan higher derivation and multi-
plicative Jordan 3-higher derivation is multiplicative Jordan triple higher derivation.
Thus multiplicative Jordan higher/Jordan triple higher/- - - /Jordan n-higher deriva-
tion collectively known as multiplicative Jordan type higher derivations on A. At
this point, in view of [2,4], it is reasonable to raise the following open problem as:

Problem 5.1. What is the most general form of multiplicative Jordan type higher
derivations on triangular algebras and which constraints are needed to apply on
triangular algebras?
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