
FACTA UNIVERSITATIS (NIŠ)
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1. Introduction and Preliminaries

The Banach fixed point theorem in metric space has generalized by many re-
searchers in various branches such as cone metric space, b−metric space, Generalized
metric space, Fuzzy metric space etc. Many researchers such as Tiwary et al.[12],
Sarkar et al.([10], [11]), S. Czerwik[3], H. Huang et al.[7], Ding et.al[5], Ozturk[9] and
others have worked on Cone Banach Space, b−metric space, rectangular b−metric
space. George et al.[6] have proved some results in rectangular b−metric space
and have left two open problems for further investigations. Z. D. Mitrović and S.
Radenović [8] has given a partial solutions of Reich and Kannan Type contraction
in rectangular b−metric space. In this paper we have given partial solution of Cirić
Type, Cirić almost contraction Type, Hardy Rogers Type contraction condition in
rectangular b−metric space with some corollaries.

The following definitions are required to prove the main results.
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Definition 1.1. [1] Let X be a non-empty set s ≥ 1 a real number. A function
d : X ×X → R is a said to be a b− metric if for a distinct point u ∈ X, different
from x and y, the following conditions holds:

(i) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x);

(iii) d(x, y) ≤ s[d(x, u) + d(u, y)].

The pair (X, d) is called a b−metric space ( in short bMS) with coefficient s ≥ 1.

Definition 1.2. [6] Let X be a non-empty set s ≥ 1 a real number. A function
d : X × X → R is a said to be a rectangular b− metric if for all distinct points
u1, u2 ∈ X, all are different from x and y, the following conditions holds:

(i) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x);

(iii) d(x, y) ≤ s[d(x, u1) + d(u1, u2) + d(u2, y)].

The pair (X, d) is called a rectangular b−metric space ( in short RbMS) with coef-
ficient s ≥ 1.

If s = 1 then (X, d) is called a rectangular metric space ( in short RMS).

Definition 1.3. [6] Let (X, d) be a rectangular b−metric space, {xn} be a se-
quence in X and x ∈ X.
Then

i) the sequence {xn} is said to be convergent in (X, d) and converges to x if for
every ε > 0 there exists n0 ∈ N such that d(xn, x) < ε for all n ≥ n0 and this fact
is represented by limn→∞ xn = x or xn → x as n→∞;

ii) The sequence {xn} is said to be Cauchy sequence in (X, d) if for every ε > 0
there exists n0 ∈ N such that d(xn, xn+p) < ε for all n ≥ n0; p > 0 or equivalently,
if limn→∞ d(xn, xn+p) = 0 for all p > 0;

iii) (X, d) is said to be a complete rectangular b−metric space if every Cauchy
sequence in X converges to some x ∈ X.

R. George et al. [6] has proved the result.

Theorem 1.1. ( [6], Theorem 2.1) Let (X, d) be a complete rectangular b−metric
space with coefficient s > 1 and T : X → X be a mapping satisfying

d(Tx, Ty) < λd(x, y)

for all x, y ∈ X with x 6= y, where λ ∈ [0, 1s ]. Then T has a unique fixed point.



Some fixed point results on Rectangular b−metric space 1035

2. Main Results

Our main resuts are as follows:

Theorem 2.1. Let (X, d) be a complete rectangular b−metric space with coeffi-
cient s > 1 and {T i} be a sequence of self-maps satisfying the condition

d(T ix, T jy) ≤ αmax{d(x, y), d(x, T ix), d(y, T jy), d(x, T jy), d(y, T ix)}+Ld(y, T ix),
where the constants α,L ≥ 0 and α + L < 1. Then the sequence {T i} have unique
common fixed point in X.

Proof. Let x0 ∈ X be an arbitrary. We construct a sequence for a fixed i ∈ N such
that xn = T ixn−1 where n ∈ N.

Let, dn = d(xn, xn+1) and d∗n = d(xn, xn+2).
Then

d(xn, xn+1) = d(T ixn−1, T
jxn)

≤ αmax{d(xn−1, xn), d(xn−1, T
ixn1

), d(xn, T
jxn), d(xn−1, T

jxn), d(xn, T
ixn−1)}+

Ld(xn, T
ixn−1)

≤ αmax{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), d(xn−1, xn+1), d(xn, xn)}+Ld(xn, xn).

(2.1) ≤ αmax{dn−1, dn, d∗n−1}.

Suppose, {dn} is monotone increasing sequence. Then from equation (2.1) we get,

dn ≤ αmax{dn, d∗n−1}.

If dn > d∗n−1, then from (2.1) we get, dn ≤ αdn which implies, 1 ≤ α, a contradic-
tion.
Therefore,

dn ≤ d∗n−1.

Then from (2.1), we get

dn ≤ αd∗n−1 ≤ α2d∗n−2 ≤ . . . ≤ αnd∗0

implies, dn = 0 as n → ∞. Suppose, {dn} is monotone decreasing sequence. then
from (2.1), we get

(2.2) dn ≤ αmax{dn−1, d∗n−1}.

If dn−1 ≤ d∗n−1, then from (2.2), we get

dn = αd∗n−1 ≤ α2d∗n−2 ≤ . . . ≤ αnd∗0

implies,
lim
n→∞

dn = 0.

Again suppose d∗n−1 ≤ dn−1, then from (2.2) we have,
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dn = αdn−1 ≤ α2dn−2 ≤ . . . ≤ αnd0

implies, limn→∞ dn = 0.

Thus for all cases limn→∞ dn = 0.

Now we show

(2.3) lim
n→∞

d(xn, xn+p) = 0

holds good by Mathematical Induction on p ∈ N.
Clearly, (2.3) hold for p = 1.

Suppose it holds for p i.e., limn→∞ d(xn, xn+p) = 0. So limn→∞ d(xn+1, xn+p+1) =
0.
We have to show

limn→∞ d(xn, xn+p+1) = 0.
Since

d(xn, xn+p+1) ≤ s[d(xn, xn+1) + d(xn+1, xn+p) + d(xn+p, xn+p+1)].

Therefore,

(2.4) lim
n→∞

d(xn, xn+p+1) ≤ s lim
n→∞

d(xn+1, xn+p).

Case I: If p = 2m,m ∈ N. Then from (2.4) we get,

lim
n→∞

d(xn, xn+p+1) ≤ s lim
n→∞

d(xn+1, xn+2m)

≤ s2 lim
n→∞

d(xn+1+1, xn+2m−1)

≤ s3 lim
n→∞

d(xn+1+2, xn+2m−2)

...

≤ sm+1 lim
n→∞

d(xn+m, xn+m+1)

= 0.

Case II: If p = 2m+ 1,m ∈ N, then from (2.4) we get,

lim
n→∞

d(xn, xn+2m+1+1) ≤ s lim
n→∞

d(xn+1, xn+2m+1)

≤ s2 lim
n→∞

d(xn+1+1, xn+2m−1)

≤ s3 lim
n→∞

d(xn+1+2, xn+2m−2)
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...

≤ sm lim
n→∞

d(xn+m, xn+m+1)

= 0.

Thus
lim

n→∞
d(xn, xn+p+1) = 0.

Therefore, by Mathematical Induction limn→∞ d(xn, xn+p) = 0 for all p ∈ N.
So {xn} is a Cauchy sequence. Since X is complete, there exists an x ∈ X such that
limn→∞ xn = x. So limn→∞ T ixn = limn→∞ xn+1 = x i.e., limn→∞ d(T ixn, x) = 0.

Now

lim
n→∞

d(T ixn, x) ≤ lim
n→∞

s[d(T ixn, xn+1) + d(xn+1, xn) + d(xn, x)]

(2.5) = s lim
n→∞

d(T ixn, xn+1).

Again,
lim
n→∞

d(T ix, xn+1)

= lim
n→∞

d(T ix, T jxn)

≤ lim
n→∞

αmax{d(x, xn), d(x, T ix), d(xn, T
jxn), d(x, T jxn), d(xn, T

ix)}

+Ld(xn, T
ix),

(2.6) = αmax{0, lim
n→∞

d(x, T ix), 0, 0, lim
n→∞

d(xn, T
ix)}+ Ld(xn, T

ix).

If
lim
n→∞

d(x, T ix) ≤ lim
n→∞

d(xn, T
ix)},

then from above (2.6) we get,

lim
n→∞

d(T ix, xn+1) ≤ lim
n→∞

(α+ L)d(xn, T
ix)}

≤ lim
n→∞

(α+ L)2d(xn−1, T
ix)}

...

≤ lim
n→∞

(α+ L)n+1d(x0, T
ix)}

implies,
lim
n→∞

d(T ix, xn+1) = 0[ since α+ L < 1].
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Again form (2.5) we get,

lim
n→∞

d(T ix, x) ≤ lim
n→∞

sd(T ix, xn+1) = 0.

Therefore, d(T ix, x) = 0 implies, T ix = x.
If limn→∞ d(T ix, xn) ≤ limn→∞ d(T ix, x), then from (2.6) we get,

lim
n→∞

d(T ix, xn+1) ≤ lim
n→∞

(α+ L)d(T ix, x)}.

Therefore from (2.5) we get,

d(T ix, x) ≤ lim
n→∞

(α+ L)d(T ix, x)} < d(T ix, x),

a contradiction.
Thus x is a common fixed point of {T i}.

Let, y be another common fixed point.
Then

d(x, y) = d(T ix, T jy)
≤ αmax{d(x, y), d(x, T ix), d(y, T jy), d(x, T jy), d(y, T ix)}+ Ld(y, T ix)
= αmax{d(x, y), d(x, x), d(y, y), d(x, y), d(y, x)}+ Ld(y, x)
= (α+ L)d(x, y)
< d(x, y),
which is a contradiction.

Therefore, d(x, y) = 0 implies, x = y.
Hence {T i} have unique common fixed point in X.

Note: The theorem is a partial solution of Open Problem 2 of George et al.[6]
another Cirić type [c.f [2]].

Corollary 2.1. Let (X, d) be a complete rectangular b−metric space with coeffi-
cient s > 1 and T1 and T2 be two self-maps satisfying the condition

d(T1x, T2y) ≤ αmax{d(x, y), d(x, T1x), d(y, T2y), d(x, T2y), d(y, T1x)}+ Ld(y, T1x),

where the constants α,L ≥ 0 and α + L < 1. Then the sequence T1 and T2 have
unique common fixed point in X.

Proof. Putting T i = T1 and T j = T2 in the above Theorem 2.1 we get the re-
sult.

Corollary 2.2. Let (X, d) be a complete rectangular b−metric space with coeffi-
cient s > 1 and T be a self-map satisfying the condition

d(Tx, Ty) ≤ αmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}+ Ld(y, Tx),

where the constants α,L ≥ 0 and α + L < 1. Then the sequence T have a unique
fixed point in X.
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Proof. Putting T i = T j = T in the above Theorem 2.1 we get the desired re-
sult.

Theorem 2.2. Let (X, d) be a complete rectangular b-metric space with coefficient
s > 1. Let T : X → X satisfying

d(Tx, Ty) ≤ kmax{d(x, y), d(x, Tx), d(y, Ty),
1

2
[d(x, Tx) + d(y, Ty)]}

where k ∈ (0, 1). Then T has a unique fixed point.

Proof. Let us consider x0 in X as an initial point. Let {xn} be a sequence given by
xn = Txn−1 for all n ∈ N. If xn = Txn i.e., xn = xn+1, then for all n ∈ N, xn is a
fixed point of T. So we assume that xn 6= xn+1.
Now

d(xn, xn+1) = d(Txn−1, Txn)

≤ kmax{d(xn−1, xn), d(xn−1, Txn−1), d(xn, Txn),

1

2
[d(xn−1, Txn−1) + d(xn, Txn)]}

≤ kmax{d(xn−1, xn), d(xn−1, Txn−1), d(xn, Txn)}

≤ kmax{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1).}

Suppose d(xn−1, xn) ≤ d(xn, xn+1). Then from above we get

d(xn, xn+1) ≤ kd(xn, xn+1),

which is a contradiction.
Therefore, d(xn, xn+1) ≤ d(xn−1, xn). Thus {d(xn, xn+1)} is a monotone decreasing
sequence of non-negative real numbers. So it converges to a (say).
Then

a = lim
n→∞

d(xn, xn+1) = lim
n→∞

d(Txn−1, Txn)

≤ k lim
n→∞

max{d(xn−1, xn), d(xn−1, Txn−1), d(xn, Txn),

1

2
[d(xn−1, Txn−1) + d(xn, Txn)]}

= k lim
n→∞

max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1)}

= k lim
n→∞

d(xn−1, xn) = k a

implies, a = 0 i.e., limn→∞ d(xn−1, xn) = 0.
Next, we show that {xn} is a Cauchy sequence i.e., limn→∞ d(xn, xn+p) = 0.
First we suppose that p = odd i.e., p = 2m+ 1,m ∈ N.
Then

d(xn, xn+2m+1) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m+1)]
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≤ 2sd(xn, xn+1) + s2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2m+1)]

≤ 2sd(xn, xn+1) + 2s2d(xn+2, xn+3) + . . .+ 2sm d(xn+2m, xn+2m+1)

≤ 2s[1 + s+ s2 + . . .+ sm−1]d(xn, xn+1)

= 2s(
sm−1 − 1

s− 1
)d(xn, xn+1).

Therefore,

limn→∞ d(xn, xn+p) = 0 as limn→∞ d(xn, xn+1) = 0.

Again suppose p = even = 2m,m ∈ N.
Then

d(xn, xn+2m) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m)]

≤ 2sd(xn, xn+1) + 2s2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2m)

≤ 2sd(xn, xn+1) + 2s2d(xn+2, xn+3) + . . .+ 2sm d(xn+2m−1, xn+2m)

≤ 2s[1 + s+ s2 + . . .+ sm−1]d(xn, xn+1)

= 2s(
sm−1 − 1

s− 1
)d(xn, xn+1).

Therefore again we get,
lim
n→∞

d(xn, xn+p) = 0.

Thus {xn} is a Cauchy sequence. Since X is a complete space, there exists an x ∈ X
such that

lim
n→∞

d(xn, x) = 0.

Now we show that x is a fixed point of T.
Since

lim
n→∞

d(xn+1, Tx) = lim
n→∞

d(Txn, Tx)

≤ k lim
n→∞

max{d(xn, x), d(xn, Txn), d(x, Tx),
1

2
[d(xn, Txn) + d(x, Tx)]}

≤ k lim
n→∞

max{d(xn, x), d(xn, xn+1), d(x, Tx)}

≤ k lim
n→∞

d(x, Tx)

which implies, d(x, Tx) = 0 i.e., x is a fixed point of T.
To show the uniqueness, let x′ be another fixed point of T.
Then

d(x, x′) = d(Tx, Tx′)
≤ kmax{d(x, x′), d(x, Tx), d(x′, Tx′), 12 [d(x, Tx) + d(x′, Tx′)]}
≤ kmax{d(x, x′), d(x, x), d(x′, x′), 12 [d(x, x) + d(x′, x′)]}
= kd(x, x′)
which implies, d(x, x′) = 0 i.e., x is unique.

Hence the result.
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Note: This theorem is a partial solution of the Open Problem 2 of George et
al.[6] of Cirić type.

The next theorem is also a partial solution of Open Problem 2 of George et
al.[6] of Hardy-Rogers Type contraction.

Theorem 2.3. Let (X, d) be a complete rectangular b−metric space with coeffi-
cient s > 1. Let T : X → X be a self-map satisfying the relation

(2.7) d(Tx, Ty) ≤ α1d(x, y) + α2d(x, Tx) + α3d(y, Ty) + α4d(x, Ty) + α5d(y, Tx)

where αi ≥ 0,∀i = 1, 2, 3, 4, 5 and α1 +α2 +α3 +α4 +α5 <
1
s . Then T has a unique

fixed point.

Proof. Let x0 ∈ X be an initial approximation. We construct a sequence {xn} in X
such that xn = Txn−1 for all n ∈ N. Suppose dn(xn, xn+1) and d∗n(xn, xn+2). Then
byn the given condition (2.7) we get

dn = d(xn, xn+1) = d(Txn−1, Txn)

≤ α1d(xn−1, xn) + α2d(xn−1, Txn−1) + α3d(xn, Txn) + α4d(xn−1, Txn)

+α5d(xn, Txn−1)

= α1d(xn−1, xn) + α2d(xn−1, xn) + α3d(xn, xn+1) + α4d(xn−1, xn+1)

+α5d(xn, xn)

= (α1 + α2)dn−1 + α3dn + α4d
∗
n−1

(2.8) implies, (1− α3)dn ≤ (α1 + α2)dn−1 + α4d
∗
n−1.

If dn−1 ≤ d∗n−1, then from (2.8) we get,

(1− α3)dn ≤ (α1 + α2 + α4)d∗n−1
implies,

dn ≤ (
α1 + α2 + α4

1− α3
)d∗n−1 = kd∗n−1 ≤ k2d∗n−2 ≤ . . . ≤ knd∗0 [k =

α1 + α2 + α4

1− α3
< 1 ]

implies, dn → 0 as n→∞.
If dn−1∗ ≤ dn−1, then from (2.8) ,we get

(1− α3)dn ≤ (α1 + α2 + α4)dn−1

implies,

dn ≤ (
α1 + α2 + α4

1− α3
)dn−1

from which we get as above dn → 0 as n→∞.
Now we show that {xn} isa a Cauchy sequence. We show this by Marthematical
Induction on p ∈ N to established

(2.9) lim
n→∞

d(xn, xn+p) = 0.
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Clearly (2.9) holds for p = 1. Suppose it holds for p i.e., limn→∞ d(xn, xn+p) = 0.
So limn→∞ d(xn+1, xn+p+1) = 0.
Thus

lim
n→∞

d(xn, xn+p+1) = lim
n→∞

d(Txn−1, Txn+p)

≤ lim
n→∞

[α1d(xn−1, xn+p) + α2d(xn−1, Txn−1) + α3d(xn+p, Txn+p)

+α4d(xn−1, Txn+p) + α5d(xn+p, Txn−1)]

≤ lim
n→∞

[α1d(xn−1, xn+p) + α2d(xn−1, xn) + α3d(xn+p, xn+p+1)

+α4d(xn−1, xn+p+1) + α5d(xn+p, xn)]

= lim
n→∞

α1d(xn−1, xn+p) + lim
n→∞

α4d(xn−1, xn+p+1)

≤ lim
n→∞

α1s[d(xn−1, xn+1) + d(xn+1, xn) + d(xn, xn+p)]

+ lim
n→∞

α4s[d(xn−1, xn)+d(xn, xn+1)+d(xn+1, xn+p+1)]

= lim
n→∞

α1sd
∗
n−1 + lim

n→∞
α4s.0

(2.10) = lim
n→∞

sα1d
∗
n−1.

Again,
lim

n→∞
d∗n−1 = lim

n→∞
d(xn−1, xn+1) = lim

n→∞
d(Txn−2, Txn)

≤ lim
n→∞

[α1d(xn−2, xn) + α2d(xn−2, Txn−2) + α3d(xn, Txn)

+α4d(xn−2, Txn) + α5d(xn, Txn−2)]

= lim
n→∞

[α1d(xn−2, xn)+α2d(xn−2, xn−1)+α3d(xn, xn+1)

+α4d(xn−2, xn+1) + α5d(xn, xn−1)]

= lim
n→∞

α1d(xn−2, xn)+ lim
n→∞

α4s[d(xn−2, xn−1)+d(xn−1, xn)+d(xn, xn+1)]

= lim
n→∞

α1d
∗
n−2

≤ lim
n→∞

α2
1d
∗
n−3

...

≤ lim
n→∞

αn−1
1 d∗0

= 0.

Thus from (2.10) we get, limn→∞ d(xn, xn+p+1) = 0.

Therefore, limn→∞ d(xn, xn+p) = 0 for all p ∈ N.
Thus {xn} is a Cauchy sequence in X. Since X is a complete RbMS, there exists
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an x ∈ x such that limn→∞ xn = x.
Now

d(Tx, x) ≤ s[d(Tx, xn+1) + d(xn+1, xn) + d(xn, x)]

= s[d(Tx, Txn) + d(xn+1, xn) + d(xn, x)]

≤ s[α1d(x, xn) + α2d(x, Tx) + α3d(xn, Txn)

+α4d(x, Txn) + α5d(xn, Tx) + d(xn+1, xn) + d(xn, x)]

(2.11) = s[α1d(x, xn) + α2d(x, Tx) + α3d(xn, xn+1) + α4d(x, xn+1)

+α5d(xn, Tx) + d(xn+1, xn) + d(xn, x)].

Again,

d(xn, Tx) = d(Txn−1, Tx)

≤ α1d(xn−1, x)+α2d(xn−1, Txn−1)+α3d(x, Tx)+α4d(xn−1, Tx)+α5d(x, Txn−1)

(2.12)
= α1d(xn−1, x) + α2d(xn−1, xn) + α3d(x, Tx) + α4d(xn−1, Tx) + α5d(x, xn).

Suppose, d(x, Tx) ≤ d(xn−1, Tx). Then from (2.12) we get,

d(xn, Tx) ≤ α1d(xn−1, x) + α2d(xn−1, xn) + (α3 + α4)d(xn−1, Tx) + α5d(x, xn)

implies,

lim
n→∞

d(xn, Tx) ≤ lim
n→∞

(α3 + α4)d(xn−1, Tx)

≤ lim
n→∞

(α3 + α4)2d(xn−2, Tx)

...

≤ lim
n→∞

(α3 + α4)nd(x0, Tx) = 0.

Thus from (2.11) we get,

lim
n→∞

d(Tx, x) ≤ sα2 lim
n→∞

d(Tx, x)

implies, d(Tx, x) = 0

implies, Tx = x.

Again suppose, d(xn−1, Tx) ≤ d(x, Tx). Then from (2.12) we get,

d(xn, Tx) ≤ α1d(xn−1, x) + α2d(xn−1, xn) + (α3 + α4)d(x, Tx) + α5d(x, xn).

Therefore,
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limn→∞ d(xn, Tx) ≤ limn→∞(α3 + α4)d(x, Tx).
From (2.11) we get,

d(Tx, x) ≤ s[α2d(x, Tx) + lim
n→∞

α5d(xn, Tx)]

≤ sα5(α3 + α5)(α3 + α4)d(x, Tx)

≤ sα5d(Tx, x)

implies, d(Tx, x) = 0.

Therefore, x a fixed point of T.

Suppose, y be another fixed point of T.
Then

d(x, y) = d(Tx, Ty) ≤ α1d(x, y)+α2d(x, Tx)+α3d(y, Ty)+α4d(x, Ty)+α5d(y, Tx)

= α1d(x, y) + α2d(x, x) + α3d(y, y) + α4d(x, y) + α5d(y, x)

= (α1 + α4 + α5)d(x, y),

implies, [1− (α1 + α4 + α5)]d(x, y) = 0 i.e., x = y.

Thus x is a unique fixed point of T.
Hence the theorem.
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