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Abstract. We prove a unique common fixed point theorem and some unique coupled
coincidence point results satisfying generalized (ψ, θ, ϕ)-contraction on partially ordered
metric spaces. We investigate the solution for periodic boundary value problems as an
application. Our results improve, generalize and sharpen various well known results in
the literature.
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1. Introduction

Shaddad et al. [35] studied the existence and uniqueness of fixed points on com-
plete partially ordered metric spaces, which extends the results of Harjani and
Sadarangani [18], Nieto and Rodriguez-Lopez [26] and Ran and Reurings [28]. They
also established some coupled fixed point theorems, which eectionxtend and gener-
alized the results of Harjani et al. [17], Gnana-Bhaskar and Lakshmikantham [6]
and Luong and Thuan [23]. In the last s, they gave unique coupled coincidence point
theorems without using compatibility, which extend and generalized the results of
Alotaibi and Alsulami [3], Alsulami [4], Lakshmikantham and Ciric [22] and Razani
and Parvaneh [32]. For more details one can consult ([1], [2], [5], [9]-[12], [14], [16],
[19], [24], [25], [27], [29]-[35]).
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The main objective of this manuscript is to derive more general fixed point
results. This manuscript is split into three sections. In the first section of our main
results, we obtain the fixed point for β−non-decreasing mappings under generalized
(ψ, θ, ϕ)-contraction on partially ordered metric spaces and also given an example
to show the usability of the obtained results. Secondly, we establish some unique
coupled coincidence point results with the help of the results established in the
previous section and also given an example where our results are applied, but the
other existing results cannot. In the end, we investigate the solution of periodic
boundary value problems to show the fruitfulness of our results. We improve and
generalize the results of Alsulami [4], Ding et al. [13], Harjani et al. [17], Harjani and
Sadarangani [18], Hussain et al. [19], Luong and Thuan [23], Nieto and Rodriguez-
Lopez [26], Razani and Parvaneh [32], Shaddad et al. [35] and many other famous
results in the literature.

2. Preliminaries

Definition 2.1. [15]. Let F : X2 → X be a given mapping. An element (x,
y) ∈ X2 is called a coupled fixed point of F if

F (x, y) = x and F (y, x) = y.

Definition 2.2. [6]. Let (X, �) be a partially ordered set. Suppose F : X2 → X
be a given mapping. We say that F has the mixed monotone property if for all x,
y ∈ X, we have

x1, x2 ∈ X, x1 � x2 =⇒ F (x1, y) � F (x2, y),

y1, y2 ∈ X, y1 � y2 =⇒ F (x, y1) � F (x, y2).

Definition 2.3. [22]. Let F : X2 → X and g : X → X be given mappings. An
element (x, y) ∈ X2 is called a coupled coincidence point of the mappings F and g
if

F (x, y) = gx and F (y, x) = gy.

Definition 2.4. [22]. Let F : X2 → X and g : X → X be given mappings. An
element (x, y) ∈ X2 is called a common coupled fixed point of the mappings F and
g if

x = F (x, y) = gx and y = F (y, x) = gy.

Definition 2.5. [22]. The mappings F : X2 → X and g : X → X are said to be
commutative if

gF (x, y) = F (gx, gy), for all (x, y) ∈ X2.

Definition 2.6. [22]. Let (X, �) be a partially ordered set. Suppose F : X2 → X
and g : X → X are given mappings. We say that F has the mixed g−monotone
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property if for all x, y ∈ X, we have

x1, x2 ∈ X, gx1 � gx2 =⇒ F (x1, y) � F (x2, y),

y1, y2 ∈ X, gy1 � gy2 =⇒ F (x, y1) � F (x, y2).

If g is the identity mapping on X, then F satisfies the mixed monotone property.

Definition 2.7. [7]. The mappings F : X2 → X and g : X → X are said to be
compatible if

lim
n→∞

d(gF (xn, yn), F (gxn, gyn)) = 0,

lim
n→∞

d(gF (yn, xn), F (gyn, gxn)) = 0,

whenever {xn} and {yn} are sequences in X such that

lim
n→∞

F (xn, yn) = lim
n→∞

gxn = x ∈ X,

lim
n→∞

F (yn, xn) = lim
n→∞

gyn = y ∈ X.

Definition 2.8. ([6], [14]). A partially ordered metric space (X, d, �) is a metric
space (X, d) provided with a partial order � . A partially ordered metric space
(X, d, �) is said to be non-decreasing-regular (respectively, non-increasing-regular)
if for every sequence (xn) ⊆ X such that (xn) → x and xn � xn+1 (respectively,
xn � xn+1) for all n ≥ 0, we have that xn � x (respectively, xn � x) for all
n ≥ 0. (X, d, �) is said to be regular if it is both non-decreasing-regular and
non-increasing-regular.

Definition 2.9. [14]. Let (X, �) be a partially ordered set and let α, β : X → X
be two mappings. We say that α is (β, �)-non-decreasing if αx � αy for all x,
y ∈ X such that βx � βy. If β is the identity mapping on X, we say that α is
�-non-decreasing. If α is (β, �)-non-decreasing and βx = βy, then αx = αy.

Definition 2.10. [8]. Two self-mappings α and β of a non-empty set X are said
to be commutative if αβx = βαx for all x ∈ X.

Definition 2.11. [20]. Let (X, d, �) be a partially ordered metric space. Two
mappings α, β : X → X are said to be compatible if

lim
n→∞

d(αβxn, βαxn) = 0,

provided that (xn) is a sequence in X such that

lim
n→∞

αxn = lim
n→∞

βxn ∈ X.

Definition 2.12. [21]. Two self-mappings α and β of a non-empty set X are said
to be weakly compatible if they commute at their coincidence points, that is, if
αx = βx for some x ∈ X, then αβx = βαx.
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Definition 2.13. [8]. Let X be a non-empty set. Two mappings g : X → X and
F : X2 → X are said to be weakly compatible if they commute at their coupled
coincidence points, that is, if F (x, y) = gx and F (y, x) = gy for some (x, y) ∈ X2,
then gF (x, y) = F (gx, gy) and gF (y, x) = F (gy, gx).

3. Fixed point Results

In this section, we prove a unique common fixed point theorem for mappings α,
β : X → X in a partially ordered metric space (X, d, �), where X is a non-empty
set. For brevity, we denote β(x) by βx where x ∈ X. Let us start with the following
definition of altering distance.

Definition 3.1. [35]. An altering distance function is a function ψ : [0, +∞)→ [0,
+∞) which satisfied the following conditions:

(iψ) ψ is continuous and non-decreasing,

(iiψ) ψ(x) = 0 if and only if x = 0.

Theorem 3.1. Let (X, d, �) be a partially ordered metric space and let α, β :
X → X be two mappings such that α is (β, �)-non-decreasing, α(X) ⊆ β(X)
and there exists an altering distance function ψ, an upper semi-continuous function
θ : [0, +∞) → [0, +∞) and a lower semi-continuous function ϕ : [0, +∞) → [0,
+∞) such that

(3.1) ψ(d(αx, αy)) ≤ θ(d(βx, βy))− ϕ(d(βx, βy)),

for all x, y ∈ X with βx � βy, where θ(0) = ϕ(0) = 0 and ψ(t) − θ(t) + ϕ(t) > 0
for all t > 0. Suppose that there exists x0 ∈ X such that βx0 � αx0. Also assume
that, at least, one of the following conditions holds.

(a) (X, d) is complete, α and β are continuous and the pair (α, β) is compatible,

(b) (β(X), d) is complete and (X, d, �) is non-decreasing-regular,

(c) (X, d) is complete, β is continuous and monotone non-decreasing, the pair
(α, β) is compatible and (X, d, �) is non-decreasing-regular.

Then α and β have a coincidence point. Moreover, if for every x, y ∈ X there
exists z ∈ X such that αz is comparable to αx and αy and also the pair (α, β) is
weakly compatible. Then α and β have a unique common fixed point.

Proof. Let x0 ∈ X be arbitrary and since α(X) ⊆ β(X), therefore there exists
x1 ∈ X such that αx0 = βx1. Then βx0 � αx0 = βx1. Since α is (β, �)-non-
decreasing, αx0 � αx1. Continuing in this manner, we get a sequence (xn)n≥0 such
that (βxn) is �-non-decreasing, βxn+1 = αxn � αxn+1 = βxn+2 and

(3.2) βxn+1 = αxn for all n ≥ 0.

Let ωn = d(βxn, βxn+1) for all n ≥ 0. Now, by using contractive condition (3.1)
and the monotonicity of ψ, we have

ψ(d(βxn+1, βxn+2)) = ψ(d(αxn, αxn+1))

≤ θ(d(βxn, βxn+1))− ϕ(d(βxn, βxn+1)).
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Thus

(3.3) ψ(ωn+1) ≤ θ(ωn)− ϕ(ωn).

But we have ψ(ωn)− θ(ωn) + ϕ(ωn) > 0. Then

ψ(ωn+1)

ψ(ωn)
≤ θ(ωn)− ϕ(ωn)

ψ(ωn)
< 1.

Thus ψ(ωn+1) < ψ(ωn). It follows, from the monotonicity of ψ, that ωn+1 < ωn.
This shows that the sequence (ωn)n≥0 is a decreasing sequence of positive numbers.
Then there exists ω ≥ 0 such that

(3.4) lim
n→∞

ωn = lim
n→∞

d(βxn, βxn+1) = ω.

Suppose ω > 0. Taking n→∞ in (3.3), by using the property of ψ, θ, ϕ and (3.4),
we obtain

ψ(ω) ≤ θ(ω)− ϕ(ω), that is, ψ(ω)− θ(ω) + ϕ(ω) ≤ 0,

which disagree the fact that ψ(t)− θ(t) + ϕ(t) > 0 for all t > 0. Thus, by (3.4), we
get

(3.5) lim
n→∞

ωn = lim
n→∞

d(βxn, βxn+1) = 0.

We now demonstrate that (βxn)n≥0 is a Cauchy sequence in X. Suppose, to the
contrary, that (βxn) is not a Cauchy sequence. Then there exists an ε > 0 for which
we can find two sequences of positive integers (m(k)) and (n(k)) such that for all
positive integers k, and

d(βxn(k), βxm(k)) ≥ ε, for n(k) > m(k) > k.

Assuming that n(k) is the smallest such positive integer, we get

d(βxn(k)−1, βxm(k)) < ε.

Now, by triangle inequality, we have

ε ≤ d(βxn(k), βxm(k))

≤ d(βxn(k), βxn(k)−1) + d(βxn(k)−1, βxm(k))

≤ d(βxn(k), βxn(k)−1) + ε.

Letting k →∞ in the above inequality, by using (3.5), we have

(3.6) lim
k→∞

d(βxn(k), βxm(k)) = ε.

By using triangle inequality, we have

d(βxn(k)+1, βxm(k)+1)

≤ d(βxn(k)+1, βxn(k)) + d(βxn(k), βxm(k)) + d(βxm(k), βxm(k)+1).
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Letting k →∞ in the above inequalities, using (3.5) and (3.6), we have

(3.7) lim
k→∞

d(βxn(k)+1, βxm(k)+1) = ε.

As n(k) > m(k), βxn(k) � βxm(k) and so by using contractive condition (3.1), we
have

ψ(d(βxn(k)+1, βxm(k)+1)) = ψ(d(αxn(k), αxm(k)))

≤ θ(d(βxn(k), βxm(k)))− ϕ(d(βxn(k), βxm(k))).

Letting k →∞ in the above inequality, by using the property of ψ, θ, ϕ and (3.6),
(3.7), we have

ψ(ε) ≤ θ(ε)− ϕ(ε),

which is a contradiction due to the fact that ε > 0. This claims that (βxn)n≥0 is
a Cauchy sequence in X. Now, we claim that α and β have a coincidence point
between cases (a)− (c).

First suppose that (a) holds, that is, (X, d) is complete, α and β are continuous
and the pair (α, β) is compatible. Since (X, d) is complete, therefore there exists x ∈
X such that (βxn)→ x and (3.2) follows that (αxn)→ x. As α and β are continuous
and so (αβxn) → αx and (ββxn) → βx. Since the pair (α, β) is compatible,
therefore we conclude that

d(αx, βx) = lim
n→∞

d(αβxn, ββxn+1) = lim
n→∞

d(αβxn, βαxn) = 0,

that is, x is a coincidence point of α and β.

Secondly suppose that (b) holds, that is, (β(X), d) is complete and (X, d, �)
is non-decreasing-regular. As (βxn) is a Cauchy sequence in the complete space
(β(X), d), so there exists y ∈ β(X) such that (βxn) → y. Let x ∈ X be any point
such that y = βx and so (βxn) → βx. Since (X, d, �) is non-decreasing-regular
and (βxn) is �-non-decreasing and converging to βx, therefore we have βxn � βx
for all n ≥ 0. Applying the contractive condition (3.1), we have

ψ(d(βxn+1, αx)) = ψ(d(αxn, αx)) ≤ θ(d(βxn, βx))− ϕ(d(βxn, βx)).

Taking n→∞ in the above inequality, using the properties of ψ, θ, ϕ and the fact
(βxn)→ βx, we get d(βx, αx) = 0, that is, x is a coincidence point of α and β.

Finally suppose that (c) holds, that is, (X, d) is complete, β is continuous
and monotone non-decreasing, the pair (α, β) is compatible and (X, d, �) is non-
decreasing-regular. As (X, d) is complete and so there exists x ∈ X such that
(βxn)→ x and (3.2) follows that (αxn)→ x. As β is continuous and so (ββxn)→
βx. Moreover, the pair (α, β) is compatible, that is, limn→∞ d(ββxn+1, αβxn) =
limn→∞ d(βαxn, αβxn) = 0 and (ββxn)→ βx implies that (αβxn)→ βx.

Since (X, d, �) is non-decreasing-regular and (βxn) is �-non-decreasing and
converging to x, therefore βxn � x which, by the monotonicity of β, implies ββxn �
βx. Using the contractive condition (3.1), we get

ψ(d(αβxn, αx)) ≤ θ(d(ββxn, βx))− ϕ(d(ββxn, βx)).



Generalized (ψ, θ, ϕ)−Contraction With Application 175

Taking n→∞ in the above inequality, using the properties of ψ, θ, ϕ and the fact
that (ββxn)→ βx, (αβxn)→ βx, we get d(βx, αx) = 0, that is, x is a coincidence
point of α and β.

Since the set of coincidence points of α and β is non-empty. Suppose x and y are
coincidence points of α and β, that is, αx = βx and αy = βy. Now, we shall show
that βx = βy. By the assumption, there exists z ∈ X such that αz is comparable
with αx and αy. Put z0 = z and choose z1 ∈ X so that βz1 = αz0. Then, we
can inductively define sequences (βzn) where βzn+1 = αzn for all n ≥ 0. Hence
αx = βx and αz = αz0 = βz1 are comparable, that is, βz1 � βx. We will show
that βzn � βx for each n ∈ N. In fact, we will use mathematical induction. Since
βz1 � βx, our claim is true for n = 1. Suppose that βzn � βx holds for some n > 1.
Since α is β−non-decreasing with respect to �, we get βzn+1 = αzn � αx = βx,
and this proves our claim.

Let δn = d(βzn, βx) for all n ≥ 0. Since βzn � βx, therefore by using the
contractive condition (3.1), we have

ψ(d(βzn+1, βx)) = ψ(d(αzn, αx)) ≤ θ(d(βzn, βx))− ϕ(d(βzn, βx)).

Thus

(3.8) ψ(δn+1) ≤ θ(δn)− ϕ(δn).

As ψ(δn)− θ(δn) + ϕ(δn) > 0 and so

ψ(δn+1)

ψ(δn)
≤ θ(δn)− ϕ(δn)

ψ(δn)
< 1.

Thus ψ(δn+1) < ψ(δn), which, by the monotonicity of ψ, implies δn+1 < δn. This
shows that the sequence (δn)n≥0 is a decreasing sequence of positive numbers. Then
there exists δ ≥ 0 such that

(3.9) lim
n→∞

δn = lim
n→∞

d(βzn, βx) = δ.

Now, we shall show that δ = 0. Suppose, to the contrary, that δ > 0. Taking n→∞
in (3.8) and by using the property of ψ, θ, ϕ and (3.9), we obtain

ψ(δ) ≤ θ(δ)− ϕ(δ), that is, ψ(δ)− θ(δ) + ϕ(δ) ≤ 0,

which contradicts the fact that ψ(t)− θ(t) + ϕ(t) > 0 for all t > 0. Thus, by (3.9),
we get

(3.10) lim
n→∞

δn = lim
n→∞

d(βzn, βx) = 0.

Similarly, we show that

(3.11) lim
n→∞

d(βzn, βy) = 0.
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Hence, by (3.10) and (3.11), we get

(3.12) βx = βy.

Since αx = βx, therefore by weak compatibility of α and β, we have

αβx = βαx = ββx.

Let u = βx, then αu = βu, that is, u is a coincidence point of α and β. Then from
(3.12) with y = u, it follows that βx = βu, that is, u = βu = αu, that is, u is a
common fixed point of α and β. To prove the uniqueness, assume that v is another
common fixed point of α and β. Then by (3.12) we have v = βv = βu = u.

Hence the common fixed point of α and β is unique.

Put ψ(t) = t and ϕ(t) = 0 for all t ≥ 0 in Theorem 3.1, we obtain the following
corollary.

Corollary 3.1. Let (X, d, �) be a partially ordered metric space and let α, β :
X → X be two mappings such that α is (β, �)-non-decreasing, α(X) ⊆ β(X) and
there exists an upper semi-continuous function θ : [0, +∞)→ [0, +∞) such that

d(αx, αy) ≤ θ(d(βx, βy)),

for all x, y ∈ X such that βx � βy, where θ(0) = 0 and t − θ(t) > 0 for all
t > 0. Suppose that there exists x0 ∈ X such that βx0 � αx0. Also assume that, at
least, one of the conditions (a) − (c) of Theorem 3.1 holds. Then α and β have a
coincidence point. Moreover, if for every x, y ∈ X there exists z ∈ X such that αz
is comparable to αx and αy and also the pair (α, β) is weakly compatible. Then α
and β have a unique common fixed point.

Put θ(t) = kψ(t) with 0 ≤ k < 1 and ϕ(t) = 0, for all t ≥ 0 in Theorem 3.1, we
have the following corollary.

Corollary 3.2. Let (X, d, �) be a partially ordered metric space and let α, β :
X → X be two mappings such that α is (β, �)-non-decreasing, α(X) ⊆ β(X) and
there exists an altering distance function ψ such that

ψ(d(αx, αy)) ≤ kψ(d(βx, βy)),

for all x, y ∈ X such that βx � βy where k < 1. Suppose that there exists x0 ∈ X
such that βx0 � αx0. Also assume that, at least, one of the conditions (a)− (c) of
Theorem 3.1 holds. Then α and β have a coincidence point. Moreover, if for every
x, y ∈ X there exists z ∈ X such that αz is comparable to αx and αy and also the
pair (α, β) is weakly compatible. Then α and β have a unique common fixed point.

Put ψ(t) = θ(t) for all t ≥ 0 in Theorem 3.1, we get the following corollary.
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Corollary 3.3. Let (X, d, �) be a partially ordered metric space and let α, β :
X → X be two mappings such that α is (β, �)-non-decreasing, α(X) ⊆ β(X) and
there exists an altering distance function ψ and a lower semi-continuous function
ϕ : [0, +∞)→ [0, +∞) such that

ψ(d(αx, αy)) ≤ ψ(d(βx, βy))− ϕ(d(βx, βy)),

for all x, y ∈ X such that βx � βy, where ϕ(0) = 0. Suppose that there exists
x0 ∈ X such that βx0 � αx0. Also assume that, at least, one of the conditions
(a)− (c) of Theorem 3.1 holds. Then α and β have a coincidence point. Moreover,
if for every x, y ∈ X there exists z ∈ X such that αz is comparable to αx and αy
and also the pair (α, β) is weakly compatible. Then α and β have a unique common
fixed point.

Put ψ(t) = θ(t) = t for all t ≥ 0 in Theorem 3.1, we get the following corollary.

Corollary 3.4. Let (X, d, �) be a partially ordered metric space and let α, β :
X → X be two mappings such that α is (β, �)-non-decreasing, α(X) ⊆ β(X) and
there exists a lower semi-continuous function ϕ : [0, +∞)→ [0, +∞) such that

d(αx, αy) ≤ d(βx, βy)− ϕ(d(βx, βy)),

for all x, y ∈ X such that βx � βy, where ϕ(0) = 0. Suppose that there exists
x0 ∈ X such that βx0 � αx0. Also assume that, at least, one of the conditions
(a)− (c) of Theorem 3.1 holds. Then α and β have a coincidence point. Moreover,
if for every x, y ∈ X there exists z ∈ X such that αz is comparable to αx and αy
and also the pair (α, β) is weakly compatible. Then α and β have a unique common
fixed point.

If we take ψ(t) = θ(t) = t and ϕ(t) = (1 − k)t with 0 ≤ k < 1 for all t ≥ 0 in
Theorem 3.1, we get the following corollary.

Corollary 3.5. Let (X, d, �) be a partially ordered metric space and let α, β :
X → X be two mappings such that α is (β, �)-non-decreasing, α(X) ⊆ β(X) and

d(αx, αy) ≤ kd(βx, βy),

for all x, y ∈ X such that βx � βy, where k < 1. Suppose that there exists x0 ∈ X
such that βx0 � αx0. Also assume that, at least, one of the conditions (a)− (c) of
Theorem 3.1 holds. Then α and β have a coincidence point. Moreover, if for every
x, y ∈ X there exists z ∈ X such that αz is comparable to αx and αy and also the
pair (α, β) is weakly compatible. Then α and β have a unique common fixed point.

Put β = I (the identity mapping) in Theorem 3.1, we get the following corollary.
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Corollary 3.6. Let (X, d, �) be a complete partially ordered metric space and let
α : X → X be a non-decreasing mapping for which there exists an altering distance
function ψ, an upper semi-continuous function θ : [0, +∞)→ [0, +∞) and a lower
semi-continuous function ϕ : [0, +∞)→ [0, +∞) such that

ψ(d(αx, αy)) ≤ θ(d(x, y))− ϕ(d(x, y)),

for all x, y ∈ X with x � y, where θ(0) = ϕ(0) = 0 and ψ(t) − θ(t) + ϕ(t) > 0 for
all t > 0. Suppose that there exists x0 ∈ X such that x0 � αx0. Also suppose that
α is continuous or (X, d, �) is regular. Then α has a fixed point. Moreover, if for
each x, y ∈ X there exists z ∈ X which is comparable to x and y, then the fixed
point is unique.

Put β = I (the identity mapping) in Corollary 3.1, we get the following corollary.

Corollary 3.7. Let (X, d, �) be a complete partially ordered metric space and
let α : X → X be a non-decreasing mapping for which there exists an upper semi-
continuous function θ : [0, +∞)→ [0, +∞) such that

d(αx, αy) ≤ θ(d(x, y)),

for all x, y ∈ X such that x � y, where θ(0) = 0 and t − θ(t) > 0 for all t > 0.
Suppose that there exists x0 ∈ X such that x0 � αx0. Also suppose that α is
continuous or (X, d, �) is regular. Then α has a fixed point. Moreover, if for each
x, y ∈ X there exists z ∈ X which is comparable to x and y, then the fixed point is
unique.

Put β = I (the identity mapping) in Corollary 3.2, we get the following corollary.

Corollary 3.8. Let (X, d, �) be a complete partially ordered metric space and let
α : X → X be a non-decreasing mapping for which there exists an altering distance
function ψ such that

ψ(d(αx, αy)) ≤ kψ(d(x, y)),

for all x, y ∈ X such that x � y where k < 1. Suppose that there exists x0 ∈ X such
that x0 � αx0. Also suppose that α is continuous or (X, d, �) is regular. Then
α has a fixed point. Moreover, if for each x, y ∈ X there exists z ∈ X which is
comparable to x and y, then the fixed point is unique.

Put β = I (the identity mapping) in Corollary 3.3, we get the following corollary.

Corollary 3.9. Let (X, d, �) be a complete partially ordered metric space and let
α : X → X be a non-decreasing mapping for which there exists an altering distance
function ψ and a lower semi-continuous function ϕ : [0, +∞)→ [0, +∞) such that

ψ(d(αx, αy)) ≤ ψ(d(x, y))− ϕ(d(x, y)),
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for all x, y ∈ X such that x � y, where ϕ(0) = 0. Suppose that there exists x0 ∈ X
such that x0 � αx0. Also suppose that α is continuous or (X, d, �) is regular. Then
α has a fixed point. Moreover, if for each x, y ∈ X there exists z ∈ X which is
comparable to x and y, then the fixed point is unique.

Put β = I (the identity mapping) in Corollary 3.4, we get the following corollary.

Corollary 3.10. Let (X, d, �) be a complete partially ordered metric space and let
α : X → X be a non-decreasing mapping and there exists a lower semi-continuous
function ϕ : [0, +∞)→ [0, +∞) such that

d(αx, αy) ≤ d(x, y)− ϕ(d(x, y)),

for all x, y ∈ X such that x � y, where ϕ(0) = 0. Suppose that there exists x0 ∈ X
such that x0 � αx0. Also suppose that α is continuous or (X, d, �) is regular. Then
α has a fixed point. Moreover, if for each x, y ∈ X there exists z ∈ X which is
comparable to x and y, then the fixed point is unique.

Put β = I (the identity mapping) in Corollary 3.5, we get the following corollary.

Corollary 3.11. Let (X, d, �) be a complete partially ordered metric space and
let α : X → X be a non-decreasing mapping satisfying

d(αx, αy) ≤ kd(x, y),

for all x, y ∈ X such that x � y, where k < 1. Suppose that there exists x0 ∈ X
such that x0 � αx0. Also suppose that α is continuous or (X, d, �) is regular. Then
α has a fixed point. Moreover, if for each x, y ∈ X there exists z ∈ X which is
comparable to x and y, then the fixed point is unique.

Example 3.1. Let X = R be a metric space with the usual metric d : X×X → [0, +∞)
equipped with the natural ordering of real numbers ≤ . Let α, β : X → X be defined as

αx =
x2

3
and βx = x2 for all x ∈ X.

Clearly, α and β satisfied the contractive condition of Theorem 3.1 with ψ(t) = θ(t) = t
and ϕ(t) = 2t/3 for t ≥ 0. Moreover, all the other conditions of Theorem 3.1 are satisfied
and u = 0 is a unique common fixed point of α and β.

4. Coupled coincidence point results

In this section, we derive some unique coupled coincidence point results with the
help of the results established in the previous section. Given n ∈ N where n ≥ 2,
let Xn be the nth Cartesian product X × X × ... × X (n times). Let (X, �) be
a partially ordered set and endow the product space X2 with the following partial
order.

W v V ⇔ x � u and y � v, for all W = (u, v), V = (x, y) ∈ X2.
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Definition 4.1. ([14], [34]). Let (X, d) be a metric space. Define δ : X2 ×X2 →
[0, +∞) by

δ(V, W ) = max{d(x, u), d(y, v)}, for all V = (x, y), W = (u, v) ∈ X2.

Then δ is metric on X2 and (X, d) is complete and regular if and only if (X2, δ) is
complete and regular.

Definition 4.2. [2]. Let (X, d) be a metric space. Define ∆n : Xn × Xn → [0,
+∞), for A = (a1, a2, ..., an), B = (b1, b2, ..., bn) ∈ Xn, by

∆n(A, B) =
1

n

n∑
i=1

d(ai, bi).

Then ∆n is metric on Xn and (X, d) is complete and regular if and only if (Xn,
∆n) is complete and regular.

Theorem 4.1. Let (X, d, �) be a partially ordered metric space. Suppose F :
X2 → X and g : X → X are two mappings such that F has the mixed g−monotone
property with respect to � on X for which there exists an altering distance function
ψ, an upper semi-continuous function θ : [0, +∞) → [0, +∞) and a lower semi-
continuous function ϕ : [0, +∞)→ [0, +∞) such that

ψ(d(F (x, y), F (u, v)))(4.1)

≤ θ(max{d(gx, gu), d(gy, gv)})− ϕ(max{d(gx, gu), d(gy, gv)}),

for all x, y, u, v ∈ X with gx � gu and gy � gv, where θ(0) = ϕ(0) = 0 and
ψ(t)− θ(t) +ϕ(t) > 0 for all t > 0. Suppose that F (X2) ⊆ g(X), g(X) is complete,
g is continuous and monotone non-decreasing. Also suppose that either

(a) F is continuous or

(b) (X, d, �) is regular.

If there exists two elements x0, y0 ∈ X with

gx0 � F (x0, y0) and gy0 � F (y0, x0).

Then F and g have a coupled coincidence point. Furthermore, suppose that for every
(x, y), (u, v) ∈ X2, there exists a point (z, w) ∈ X2 such that (z, w) is comparable
to (x, y) and (u, v). Then F and g have a unique coupled coincidence point.

Proof. Define S : g(X)× g(X)→ g(X) by

(4.2) S(V ) = (F (x, y), F (y, x)),

for all V = (gx, gy) ∈ g(X) × g(X). Clearly S is well defined as g is monotone
non-decreasing. It is noticeable that (g(X), d, �) is a complete regular partially
ordered metric space. Also S is continuous since F is continuous.
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Let V = (gx, gy) and W = (gu, gv) ∈ g(X)× g(X) be such that V v W. Then
gx � gu and gy � gv. As F has the mixed g−monotone property with respect to
� and so F (x, y) � F (u, v) and F (y, x) � F (v, u). Thus S(V ) v S(W ). Thus S is
v-non-decreasing.

Now, there exist two elements x0, y0 ∈ X such that gx0 � F (x0, y0) and
gy0 � F (y0, x0). It follows that, there exists V0 = (gx0, gy0) ∈ g(X) × g(X) such
that V0 v S(V0).

Again, suppose that V = (gx, gy) and W = (gu, gv) ∈ g(X) × g(X) such that
V vW. Then gx � gu and gy � gv, by using (4.1) and (4.2), we have

ψ(d(F (x, y), F (u, v)))

≤ θ(max{d(gx, gu), d(gy, gv)})− ϕ(max{d(gx, gu), d(gy, gv)}).

Furthermore gy � gv and gx � gu, the contractive condition (4.1) and (4.2) gives

ψ(d(F (y, x), F (v, u)))

≤ θ(max{d(gx, gu), d(gy, gv)})− ϕ(max{d(gx, gu), d(gy, gv)}).

Combining them, we get

max{ψ(d(F (x, y), F (u, v))), ψ(d(F (y, x), F (v, u)))}
≤ θ(max{d(gx, gu), d(gy, gv)})− ϕ(max{d(gx, gu), d(gy, gv)}).

Since ψ is non-decreasing, therefore

ψ(max{d(F (x, y), F (u, v)), d(F (y, x), F (v, u))})(4.3)

≤ θ(max{d(gx, gu), d(gy, gv)})− ϕ(max{d(gx, gu), d(gy, gv)}).

Thus, by using (4.3), we get

ψ(δ(S(V ), S(W )))

= ψ(max{d(F (x, y), F (u, v)), d(F (y, x), F (v, u))})
≤ θ(max{d(gx, gu), d(gy, gv)})− ϕ(max{d(gx, gu), d(gy, gv)})
≤ θ(δ(V, W )− ϕ(δ(V, W )).

Thus
ψ(δ(S(V ), S(W ))) ≤ θ(δ(V, W )− ϕ(δ(V, W )),

for all V, W ∈ g(X)×g(X) with V vW. Consequently, S satisfies all the conditions
of Corollary 3.6 in the complete partially ordered metric space (g(X)×g(X), δ, v).
Thus S has a fixed point, which leads that F and g have a coupled coincidence
point.

Let us now show the uniqueness of coupled coincidence point. We suppose that
(x, y) ∈ X2 is a coupled coincidence point of F and g. Now, we take (u, v) ∈ X2 is
another coupled coincidence point of F and g, then there exists (z, w) ∈ X2 such
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that (z, w) is comparable to (x, y) and (u, v). Therefore, (gx, gy) and (gu, gv)
are fixed points of S with (gx, gy) v (gz, gw) and (gu, gv) v (gz, gw). Hence by
Corollary 3.6, we find that S has a unique fixed point, which leads to the uniqueness
of the coupled coincidence point of F and g.

Put g = I (the identity mapping) in Theorem 4.1, we get the following Corollary:

Corollary 4.1. Let (X, d, �) be a complete partially ordered metric space. Sup-
pose F : X2 → X has mixed monotone property with respect to � and there exists an
altering distance function ψ, an upper semi-continuous function θ : [0, +∞) → [0,
+∞) and a lower semi-continuous function ϕ : [0, +∞)→ [0, +∞) satisfying

ψ(d(F (x, y), F (u, v)))

≤ θ(max{d(x, u), d(y, v)})− ϕ(max{d(x, u), d(y, v)}),

for all x, y, u, v ∈ X, with x � u and y � v. Also suppose that either

(a) F is continuous or

(b) (X, d, �) is regular.

If there exist two elements x0, y0 ∈ X with

x0 � F (x0, y0) and y0 � F (y0, x0).

Then F has a coupled fixed point. Furthermore, suppose that for every (x, y), (u,
v) ∈ X2, there exists a point (z, w) ∈ X2 such that (z, w) is comparable to (x, y)
and (u, v). Then F has a unique coupled fixed point.

Theorem 4.2. Let (X, �) be a partially ordered set such that there exists a com-
plete metric d on X. Suppose F : X2 → X and g : X → X are two mappings such
that F has the mixed g−monotone property with respect to � on X for which there
exists an altering distance function ψ, an upper semi-continuous function θ : [0,
+∞) → [0, +∞) and a lower semi-continuous function ϕ : [0, +∞) → [0, +∞)
such that

ψ(d(F (x, y), F (u, v)))(4.4)

≤ θ

(
d(gx, gu) + d(gy, gv)

2

)
− ϕ

(
d(gx, gu) + d(gy, gv)

2

)
,

for all x, y, u, v ∈ X with gx � gu and gy � gv, where θ(0) = ϕ(0) = 0 and

ψ(t) − θ(t) + ϕ(t) > 0 for all t > 0. Moreover ψ(
a+ b

2
) ≤ ψ(a) + ψ(b)

2
, for all a,

b ∈ (0, ∞). Suppose that F (X2) ⊆ g(X), g(X) is complete, g is continuous and
monotone non-decreasing. Also suppose that either

(a) F is continuous or

(b) (X, d, �) is regular.
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If there exist two elements x0, y0 ∈ X with

gx0 � F (x0, y0) and gy0 � F (y0, x0).

Then F and g have a coupled coincidence point. Furthermore, suppose that for every
(x, y), (u, v) ∈ X2, there exists a point (z, w) ∈ X2 such that (z, w) is comparable
to (x, y) and (u, v). Then F and g have a unique coupled coincidence point.

Proof. Let S : g(X)×g(X)→ g(X) be a mapping defined by (4.2). From condition
(4.4), we have

ψ(d(F (x, y), F (u, v))) ≤ θ
(
d(gx, gu) + d(gy, gv)

2

)
−ϕ

(
d(gx, gu) + d(gy, gv)

2

)
,

and

ψ(d(F (y, x), F (v, u))) ≤ θ
(
d(gx, gu) + d(gy, gv)

2

)
−ϕ

(
d(gx, gu) + d(gy, gv)

2

)
.

By summing the above inequalities, we get

ψ(d(F (x, y), F (u, v))) + ψ(d(F (y, x), F (v, u)))

≤ 2θ

(
d(gx, gu) + d(gy, gv)

2

)
− 2ϕ

(
d(gx, gu) + d(gy, gv)

2

)

Utilizing the condition ψ(
a+ b

2
) ≤ ψ(a) + ψ(b)

2
, for all a, b ∈ (0, ∞), we obtain

ψ(
d(F (x, y), F (u, v))) + d(F (y, x), F (v, u))

2
)

≤ θ

(
d(gx, gu) + d(gy, gv)

2

)
− ϕ

(
d(gx, gu) + d(gy, gv)

2

)
It means that

ψ(∆2(S(V ), S(W ))) ≤ θ(∆2(V, W ))− ϕ(∆2(V, W )),

V = (gx, gy) and W = (gu, gv) ∈ g(X)× g(X) such that V vW. Consequently, S
satisfies all the conditions of Corollary 3.6 in the complete partially ordered metric
space (g(X) × g(X), ∆2, v). Thus S has a fixed point, which leads that F and g
have a coupled coincidence point. The rest of the proof is similar to the proof of
Theorem 4.1.

Put g = I (the identity mapping) in Theorem 4.2, we get the following Corollary:

Corollary 4.2. Let (X, d, �) be a complete partially ordered metric space. Sup-
pose F : X2 → X has mixed monotone property with respect to � and there exists an
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altering distance function ψ, an upper semi-continuous function θ : [0, +∞) → [0,
+∞) and a lower semi-continuous function ϕ : [0, +∞)→ [0, +∞) satisfying

ψ(d(F (x, y), F (u, v))) ≤ θ
(
d(x, u) + d(y, v)

2

)
− ϕ

(
d(x, u) + d(y, v)

2

)
,

for all x, y, u, v ∈ X, with x � u and y � v. Moreover ψ(
a+ b

2
) ≤ ψ(a) + ψ(b)

2
,

for all a, b ∈ (0, ∞). Also suppose that either

(a) F is continuous or

(b) (X, d, �) is regular.

If there exist two elements x0, y0 ∈ X with

x0 � F (x0, y0) and y0 � F (y0, x0).

Then F has a coupled fixed point. Furthermore, suppose that for every (x, y), (u,
v) ∈ X2, there exists a point (z, w) ∈ X2 such that (z, w) is comparable to (x, y)
and (u, v). Then F has a unique coupled fixed point.

In a similar way, we may state the results analog of Corollary 3.1, Corollary
3.2, Corollary 3.3, Corollary 3.4 and Corollary 3.5 for Theorem 4.1, Corollary 4.1,
Theorem 4.2 and Corollary 4.2.

Example 4.1. Let X = [0, 1] be a metric space with the metric d : X2 → [0, +∞)
defined by d(x, y) = |x− y| , for all x, y ∈ X, with the natural ordering of real numbers
≤ . Let F : X2 → X be defined by

F (x, y) =
1

8

(
x− y +

3

2

)
, for all x, y ∈ X,

and g : X → X be defined as

gx =
x

2
, for all x ∈ X.

Thus, F has the mixed g−monotone property. First we shall show that F and g are not
compatible. Let {xn} and {yn} be two sequences in X such that

lim
n→∞

F (xn, yn) = lim
n→∞

gxn = a and lim
n→∞

F (yn, xn) = lim
n→∞

gyn = b.

Thus a = b = 3/32 and then

lim
n→∞

xn = lim
n→∞

yn =
3

16
.

Also

lim
n→∞

d(gF (xn, yn), F (gxn, gyn))

= lim
n→∞

∣∣∣∣ 1

16

(
xn − yn +

3

2

)
− 1

8

(
xn
2
− yn

2
+

3

2

)∣∣∣∣ =
3

32
6= 0.
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Now, we shall show that the contractive condition of Theorem 4.1 should satisfy by the

mappings F and g. Let ψ(t) = θ(t) = t and ϕ(t) =
t

2
for t ≥ 0. Now, for all x, y, u, v ∈ X

such that gx � gu and gy � gv, we have

ψ(d(F (x, y), F (u, v)))

= d(F (x, y), F (u, v))

=

∣∣∣∣18
(
x− y +

3

2

)
− 1

8

(
u− v +

3

2

)∣∣∣∣
≤ 1

4

(∣∣∣x
2
− u

2

∣∣∣ +
∣∣∣y
2
− v

2

∣∣∣)
≤ 1

4
(d(gx, gu) + d(gy, gv))

≤ 1

2
max{d(gx, gu), d(gy, gv)}

≤ θ(max{d(gx, gu), d(gy, gv)})− ϕ(max{d(gx, gu), d(gy, gv)}).

Thus the contractive condition of Theorem 4.1 is satisfied for all x, y, u, v ∈ X. Hence all
the other conditions of Theorem 4.1 are satisfied and z = (3/16, 3/16) is a unique coupled
coincidence point of F and g.

5. Application to ordinary differential equations

In this section, first we investigate the solution of the following first-order periodic
problem:

(5.1)

{
u′(t) = f(t, u(t)), t ∈ [0, T ],

u(0) = u(T ),

where T > 0 and f : I × R → R is a continuous function. Taking into account of
the space X = C(I, R) (I = [0, T ]) of all continuous functions from I to R, which
is a regular complete metric space with respect to the sup metric

d(x, y) = sup
t∈I
|x(t)− y(t)| , for all x, y ∈ X,

with a partial order, for all x, y ∈ X, given by

x � y ⇐⇒ x(t) ≤ y(t), for all t ∈ I.

Definition 5.1. A lower solution of (5.1) is a function ζ ∈ C1(I, R) such that

ζ ′(t) ≤ f(t, ζ(t)) for t ∈ I,
ζ(0) = ζ(T ) = 0.

Theorem 5.1. Consider the problem (5.1) with continuous function f : I×R→ R
and suppose there exists λ > 0 such that for x, y ∈ R with x ≥ y,

0 ≤ f(t, x) + λx− f(t, y)− λy ≤ λ ln

[
1

2
(x− y) + 1

]
.

Then the existence of a lower solution of (5.1) deliver us the existence of a solution
of (5.1).
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Proof. It is noticeable that, problem (5.1) is equivalent to the following integral
equation

u(t) =

∫ T

0

G(t, s)[f(s, u(s)) + λu(s)]ds,

where G(t, s) is the Green function given by

G(t, s) =


eλ(T+s−t)

eλT − 1
, 0 ≤ s < t ≤ T,

eλ(s−t)

eλT − 1
, 0 ≤ t < s ≤ T.

Define ψ, ϕ : [0, +∞)→ [0, +∞) by

ψ(t) = θ(t) = t and ϕ(t) = t− ln(
t

2
+ 1).

Obviously ψ and θ is continuous, increasing, positive in (0, ∞) and ψ(0) = 0. Also,
ϕ is continuous, positive in (0, ∞) and ϕ(0) = 0. Thus ψ, θ and ϕ satisfy all the
mentioned properties.

Now define the mapping α : X → X as follows:

α(x)(t) =

∫ T

0

G(t, s)[f(s, x(s)) + λx(s)]ds.

If x1 ≥ x2, then by using our assumption, we have f(t, x1(t)) + λx1(t) ≥ f(t,
x2(t)) + λx2(t) for all t ∈ I. Since G(t, s) > 0, for t ∈ I, therefore one can obtain

α(x1)(t) =

∫ T

0

G(t, s)[f(s, x1(s)) + λx1(s)]ds

≥
∫ T

0

G(t, s)[f(s, x2(s)) + λx2(s)]ds

= α(x2)(t).
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Consequently α is a non-decreasing mapping. Now, for x ≥ y, we have

ψ(d(αx, αy))

= d(αx, αy)

= sup
t∈I
|α(x)(t)− α(y)(t)|

= sup
t∈I

∣∣∣∣∣
∫ T

0

G(t, s)[f(s, x(s)) + λx(s)− f(s, y(s))− λy(s)]ds

∣∣∣∣∣
≤ sup

t∈I

∣∣∣∣∣
∫ T

0

G(t, s) · λ ln

[
1

2
(x(s)− y(s)) + 1

]
ds

∣∣∣∣∣
≤ λ ln

[
1

2
d(x, y) + 1

]
sup
t∈I

∣∣∣∣∣
∫ T

0

G(t, s)ds

∣∣∣∣∣
≤ λ ln

[
1

2
d(x, y) + 1

]
sup
t∈I

∣∣∣∣∣
∫ t

0

eλ(T+s−t)

eλT − 1
ds+

∫ T

t

eλ(s−t)

eλT − 1
ds

∣∣∣∣∣
≤ ln

[
1

2
d(x, y) + 1

]
≤ d(x, y)−

{
d(x, y)− ln

[
1

2
d(x, y) + 1

]}
≤ θ(d(x, y))− ϕ(d(x, y)).

Hence
ψ(d(αx, αy)) ≤ θ(d(x, y))− ϕ(d(x, y)).

Thus the contractive condition of Corollary 3.6 is satisfied. Finally, suppose that
ζ ∈ X is a lower solution of (5.1), then

ζ ′(s) + λζ(s) ≤ f(s, ζ(s)) + λζ(s), for t ∈ I.

Multiplying by G(t, s) and then integrating, we get∫ T

0

ζ ′(s)G(t, s)ds+ λ

∫ T

0

ζ(s)G(t, s)ds ≤ α(ζ)(t), for t ∈ I.

Then, for all t ∈ I, we have∫ t

0

ζ ′(s)
eλ(T+s−t)

eλT − 1
ds+

∫ T

t

ζ ′(s)
eλ(s−t)

eλT − 1
ds+ λ

∫ T

0

ζ(s)G(t, s)ds ≤ α(ζ)(t).

Using integration by parts and ζ(0) = ζ(T ) = 0, we get

ζ(t) ≤ α(ζ)(t) for all t ∈ I.

This proves that ζ � α(ζ). Thus all the hypothesis of Corollary 3.6 are satisfied.
Consequently, α has a fixed point x ∈ X which is the solution of (5.1) in X = C(I,
R).
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Now, we investigate the solution of the following two-point boundary value prob-
lem.

(5.2)

{
−x′′(t) = h(t, x(t), x(t)), x ∈ (0, +∞), t ∈ [0, 1],

x(0) = x(1) = 0.

Theorem 5.2. Under the following assumptions

(i) h : [0, 1]× R× R→ R is continuous.

(ii) Suppose that there exists 0 ≤ γ ≤ 8 such that for all t ∈ I, x ≥ u and y ≤ v,

0 ≤ h(t, x, y)− h(t, u, v) ≤ γ

4
((x− u) + (y − v)).

(iii) There exists (a, b) ∈ C2(I, R)× C2(I, R) such that −a
′′(t) ≤ h(t, a(t), b(t)), t ∈ [0, 1],

−b′′(t) ≥ h(t, b(t), a(t)), t ∈ [0, 1],
a(0) = a(1) = b(0) = b(1) = 0.

Then (5.2) has unique solution in C2(I, R).

Proof. Notice that (5.2) is equivalent to the following Hammerstein integral equa-
tion:

x(t) =

∫ 1

0

G(t, s)h(s, x(s), x(s))ds for t ∈ [0, 1],

where G(t, s) is the Green function of differential operator − d2

dt2
with Dirichlet

boundary condition x(0) = x(1) = 0, that is,

G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1,
s(1− t), 0 ≤ s ≤ t ≤ 1.

Define now the mapping F : X2 → X by

F (x, y)(t) =

∫ 1

0

G(t, s)h(s, x(s), y(s))ds, t ∈ [0, 1] and x, y ∈ X.

From (ii), it is clear that F has the mixed monotone property with respect to the
partial order � in X. Let x, y, u, v ∈ X such that x ≥ u and y ≤ v, then by (ii),
we have

d(F (x, y), F (u, v))

= sup
t∈I
|F (x, y)(t)− F (u, v)(t)|

= sup
t∈I

∫ 1

0

G(t, s)[h(s, x(s), y(s))− h(s, u(s), v(s))]ds

≤ sup
t∈I

∫ 1

0

G(t, s) · γ
4

((x(s)− u(s)) + (y(s)− v(s)))ds

≤ γ

2

(
d(x, u) + d(y, v)

2

)
sup
t∈I

∫ 1

0

G(t, s)ds.



Generalized (ψ, θ, ϕ)−Contraction With Application 189

Thus

(5.3) d(F (x, y), F (u, v)) ≤ γ

2

(
d(x, u) + d(y, v)

2

)
sup
t∈I

∫ 1

0

G(t, s)ds.

It is noticeable that∫ 1

0

G(t, s)ds = − t
2

2
+
t

2
and sup

t∈[0, 1]

∫ 1

0

G(t, s)ds =
1

8
.

These facts, the inequality (5.3) and the hypothesis 0 < γ ≤ 8 give us

d(F (x, y), F (u, v)) ≤ γ

16

(
d(x, u) + d(y, v)

2

)
≤ 1

2

(
d(x, u) + d(y, v)

2

)
.

Thus

d(F (x, y), F (u, v)) ≤ 1

2

(
d(x, u) + d(y, v)

2

)
.

Thus, the contractive condition of Corollary 4.2 is satisfied with ψ(t) = θ(t) = t
and ϕ(t) = t/2 for t ≥ 0. By (iii), there exists (a, b) ∈ C2(I, R) × C2(I, R) such
that

−a′′(s) ≤ h(s, a(s), b(s)), s ∈ [0, 1].

Multiplying by G(t, s), we get∫ 1

0

−a′′(s)G(t, s)ds ≤ F (a, b)(t), t ∈ [0, 1].

Then, for all t ∈ [0, 1], we have

−(1− t)
∫ t

0

sa′′(s)ds− t
∫ 1

t

(1− s)a′′(s)ds ≤ F (a, b)(t).

Using integration by parts and a(0) = a(1) = 0, for all t ∈ [0, 1], we get

−(1− t)(ta′(t)− a(t))− t(−(1− t)a′(t)− a(t)) ≤ F (a, b)(t).

Thus, we have

a(t) ≤ F (a, b)(t), for t ∈ [0, 1].

This implies that a ≤ F (a, b). Similarly, one can show that b ≥ F (b, a). Thus all
the hypothesis of Corollary 4.2 are satisfied. Consequently, F has a coupled fixed
point (x, y) ∈ X2 which is the solution of (5.2) in X = C(I, R).
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Conclusion 5.1. (1) Using the same technique, one can easily obtain tripled,
quadruple and in general, multidimensional version of our results.

(2) Theorem 3.1 generalized the results of Harjani and Sadarangani [18].

(3) Corollary 3.11 generalized the results of Ran and Reurings [28] and Nieto
and Rodŕıguez-López [26].

(4) The results of Harjani et al. [17] and Luong and Thuan [23] are extended
and generalized by Corollary 4.1 and Corollary 4.2, respectively.

(5) Corollary 4.1 and Corollary 4.2 generalized the results of Gnana-Bhaskar
and Lakshmikantham [6] and Ding et al. [13].

(6) Theorem 4.2 is an extension of the main result of Alotaibi and Alsulami [3].

(7) Theorem 4.1 and Theorem 4.2 is generalize the results of Razani and Par-
vaneh [32] and Alsulami [4].
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