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Abstract. In this paper we provide several bounds for the modulus of the complex
Cebysev functional

bia/abf(t)g(t)dtfﬁ/abf(t)dt/abg(t)dt

under various assumptions for the integrable functions f, ¢ : [a,b] — C. We show
amongst others that, if f and g are absolutely continuous on [a,b] with f’ € Ly [a,b],
g € Lqla,b], p, g > 1 and %—l—%zl,then

C(f.9):=

max {|C (f,9)[,|C (If], 9)I,1C (£ gDl [C (| f], 19D}

< [0 Fpe)]Y7 [O (6 Fgio)]

where Flp : [a,b] — [0,00) is defined by Fjp| (t) := f:.|h(t)|dt and ¢ : [a,b] — [a,b],
£(t) =t is the identity function on the interval [a,b]. Applications for the trapezoid
inequality are also provided.
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1. Introduction

For Lebesgue integrable functions f, g : [a,b] — C we consider the complexr Cebysev
functional

b b b
Clhg) =5 [ fOa@dt— = [ f@d— [ g0

For two integrable real-valued functions f, g : [a,b] — R, in order to compare
the integral mean of the product with the product of the integral means, in 1934,
G. Griiss [14] showed that

1
(1) Cfg) < 7 (M —m) (N =),
provided m, M, n, N are real numbers with the property that

(1.2) —co<m< f<M<oo, —co<n<g<N<oo ae on [ab.

The constant % is best possible in (1.1) in the sense that it cannot be replaced
by a smaller one. For other results, see [4], [3], [16], [6] and [7].

In order to extend this inequality for complex-valued functions we need the
following preparations.

For ¢, ® € C and [a,b] an interval of real numbers, define the sets of complex-
valued functions (see [6], [8] and [13])

Ula,p) (¢, @) = {g : [a,0] = C| Re [(q) —g(t) (M—aﬂ >0 for ae. te [a,b]}
and

Afay) (¢, @) := {g: [a,b] = C| ’g(t) - ¢+2(I)‘ < % |® — ¢| for ae. t € [a,b]}.

For any ¢, ® € C, ¢ # ¥, we have that U'[a,b] (¢, ®) and A[mb] (¢, ®) are
nonempty, convex and closed sets and

(1.3) Upa,0) (6, ®) = Apap) (¢, ).
We observe that for any z € C we have the equivalence

’ o+
.

1
< —-|P -
LR

if and only if B
Re[(®—2) (z—¢)] > 0.
This follows by the equality

o2 p
oo 5 i)
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that holds for any z € C.
The equality (1.3) is thus a simple consequence of this fact.
For any ¢, ® € C, ¢ # ®,we also have that

(1.4) Ul (¢, ®) ={g: [a,8] > C | (Re® —Reg (t)) (Reg (t) — Re ¢)
+(Im®—-Img(t)) Img(t) —Ime) >0 for ae. t € [a,b]}.

Now, if we assume that Re (®) > Re(¢) and Im (®) > Im(¢), then we can
define the following set of functions as well:

(15) 5 (6,®) = {g:[a,b] = C| Re(®) > Reg(t) > Re (4)
and Im (®) > Img (¢t) > Im (¢) for a.e. t € [a,b]}.
One can easily observe that Sy, 4 (¢, ®) is closed, convex and
(1.6) O # S (6,0) € Uiy (6,).

This fact provides also numerous example of complex functions belonging to the
class Ay 5 (9, @)

In [6] we obtained the following complex version of Griiss’ inequality:

(17) Ol < 712 ol1w—w

provided f € A[u,b] (¢, ®) and g € A[mb] (v, ¥), where g denotes the complex con-
jugate function of g.

We denote the variance of the complex-valued function f : [a,b] — C by D (f)

and defined as
) , 97 1/2
 — t) dt
= | 1o

b
D(f)=[C ()] = gé;i/ @) dt

where f denotes the complex conjugate function of f.

If we apply the inequality (1.7) for g = f, then we get
1
(19 D)< Lo,

We observe that, if g € A[a,b] (1, ), then ‘g (t) — # < % |¥ — 9| for a.e. t €

[a, b] that is equivalent to ’g (t) — @ < % |@ — m meaning that g € A[mb] (@, @)
and by 1.7, for g instead of g we also have

(19) Cfg)l < 712~ ol 1w~
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provided f € A[%b] (¢,®) and g € A[mb] (¢, W).

We can also consider the following quantity associated with a complex-valued
function f : [a,b] — C,

b
E(f):=|C(f,.HI'* = / F2(t)dt — (bi / f(t)dt>

By using (1.9) we also have

911/2

(1.10) E(f) <5109,

For an integrable function f : [a,b] — C, consider the mean deviation of f

defined by
b b
R(f):zbia/ f()—%a/f(sms it

The following result holds (see [11] or the more extensive preprint version [10]).

Theorem 1.1. Let f : [a,b] — C be of bounded variation on [a,b] and g : [a,b] —
C a Lebesgue integrable function on [a,b]. Then

=3V

(1.11)

l\.’)M—l
l\')\»—l

b
where \/ (f) denotes the total variation of f on the interval [a,b]. The constant 5
is best possible in (1.11).

Corollary 1.1. If f, g : [a,b] = C are of bounded variation on [a,b], then

b b 1 b b

<INV ORIV ODw < VOV,

The constant 1 is best possible in (1.12).

(1.12)

l\D\H
l\’)\r—t

We also have

b

<53V

a

(1.13)

l\')\»—l

and the constant % is best possible in (1.13).
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Utilising the above results we can state, for a function of bounded variation
f:a,b] = C, that

o~ =

(L14) B2 <

N | =

b b
VR < VWD) <

]

a

In the recent paper [12] we obtained the following result that extends to complex
functions the inequalities obtained in [1]

Theorem 1.2. Let f, g: [a,b] — C be measurable on [a,b]. Then

inf lg —1llc R(/) # g € Lucla,b] and f € Lla,b],
i

mvigfcllg—vl\qu(f), g€ Lgla,b], f€Lylab],

1.15) |C'(f,9)| <
( ) 16U 9l < andp,q>1with%+é:1,

5 inf [l =1l R () i 9 € Lla,b] and [ € Lug [a,8].

a ’76
An important corollary of this result is:

Corollary 1.2. Assume that g : [a,b] — C is measurable on [a,b] and g € A[a’b] (1, W)
for some distinct complex numbers 1, W. Then

(1.16) CU9)l < 512~ 9 R(S)

if f € La,b].

In particular, we have
1
(1.17) D (g) < 5 ¥ — 9| R(g).

This generalizes the following result obtained by Cheng and Sun [5] by a more
complicated technique

(1.18) 1C(f.9)] <

provided m < g < M for a.e. © € [a,b]. The constant ; is best in (1.18) as shown
by Cerone and Dragomir in [2] where a general version for Lebesgue integral and
measurable spaces was also given.

Motivated by the above results, in this paper we establish other bounds for
the absolute value of the Cebysev functional when the complex-valued functions
are absolutely continuous. Applications for the trapezoid type inequalities are also
provided.
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2. Main Results
For an absolutely continuous function f : [a,b] — C we define the function Fj :
[a,b] — [0,00), Fiy| (z) := [ |f’ (t)| dt. We observe that F|;| is monotonic nonde-
creasing and absolutely continuous on [a,b] and F{}, () = |f' ()] for a.e. x € [a,0].
We also have the bounds
0 < Fjpry(2) <N f'[ljqp,1 for any @ € [a, ]

where ||-[|, ;.1 is the Lebesgue norm

b
1l 9,1 r=/ |h ()| dt, if h € Ly [a,b)].

We have the following inequality for the complex Cebysev functional that ex-
tends naturally the real case:

Theorem 2.1. Assume that g : [a,b] — C is absolutely continuous on [a,b].
(i) If f : [a,b] — C is absolutely continuous on [a,b], then

21 max{|C(f,9),IC(f1.9).1C(f,1gD]IC (I f]:1gD]} < C (Fipys Figry) s
(i) If f : [a,b] — C is Lipschitzian with the constant L > 0 on [a,b], i.c.
F (&)= F & S Llt—s| foranyt, s € [a,]
then

(22)  max{|C(£,9)l.IC (£, 9)|.1C (£ gD 1C (If],1gD]} < LC (£, Figr)

where £ : [a,b] — [a,b], £(t) =t is the identity function on the interval [a,b];

(i) If f : [a,b] = R is monotonic nondecreasing on [a,b], then
(2.3) max {|C (f,9)|,1C (If[, ). 1C (f,1gDI,1C (1f], 19D} < C (£, Fgr)) -
Proof. As in the real case, we have Korkine’s identity

b b
C(f.9) =2<bi) / / (F(8) = £ () (g (t) — g (5)) dtds,

that can be proved directly by doing the calculations in the right hand side.

By the properties of modulus, we have

[(1F @O =1f ()] (g (&) —g ()],
> @) = f(5) (g )] =g ()]
[(AF@OF =17 ()D (g B =g ()]
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for any t, s € [a,b] .
Using the properties of the integral versus the modulus, we also have

(2.4 o / / ()~ T (5)]] (1) — g (s)| deds

f,f; fg: (f (t) = £ () (9 (£) — g ()| dtds,
o1 fabfab|<\f<t>|—|f<s>|><<> g (s))| dtds,
T20-a | L L 100 = £ ) (g (0] - lo ()] deds
L L2 O =1 D (g (O] = g ()])] deds
JLIL (@0 =7 () (9(6) = g (5)) drds|, -
1 LA @I=1F D @) =g (D tds|, | | (if].9)l.
b—a) | 2L~ F(9))(lg )] — g (s)]) dtds|, {0 E{f||g||;||5|
L LPAFOL=1£ D (g (O] = |g (s)]) deds]

(i) Now, since f, g : [a,b] — C are absolutely continuous on [a, ], then for any

t, s € [a,b]
fe

= |Ejpy () = Eioy ()] [Figr (1) = Flgry (5)]

[f () = £ (s)llg (¢ u) du

/S ¢ ()] du

= (Fiy (8) = Fip (5)) (Flgr) (8) = Flgr ()
since both functions Fjz and F},| are monotonic nondecreasing on [a, b] .
Then

(2.5) / / £ () = £ ()19 8) — g (5)] s

g A / (i ()= i 9)) (i () = Fig () dids = € (Fp, ).
If we use (2.4) and (2.5), then we get (2.1).

(ii) If f : [a,b] — C is Lipschitzian with the constant L > 0 and ¢ : [a,b] — C is
absolutely continuous on [a, b] , then

20 2(b—a /a /a If (&) = f(s)]lg (t) — g (s)| dtds
2([))2L/a /a |t — s |Flg| (t) — Fig| (s)] dids

" ()| du




200 S. S. Dragomir

b b
st [ 9 Fer 0= Ry o) s = 10 ).
If we use (2.4) and (2.6), then we get (2.2).

(iii) If f : [a,b] — R is monotonic nondecreasing on [a,b] and ¢ : [a,b] — C is
absolutely continuous on [a, b], then

(27) O / / ()~ 7 (5)]1 (1) — g (5)| deds

b b
= ﬁ/ / £ (&) = £ (&) [Flgr| (1) = Flgr| (5)] dtds

s [ G016 G 0 - By ) s = (1.5

If we use (2.4) and (2.7), then we get (2.3). O
For an absolutely continuous function [+ [a,b] = C we define the function Fjz/ :
[a,b] = [0,00), p > 1 by By p(x) == [T|f ()] dt, where |f'|" is integrable on
[a,b] . We observe that F|/» is monotonlc nondecreasing and absolutely continuous
on [a,b] and F}» () = | f/ (2)|P for a.e. & € [a,b]. We also have the bounds
0 < Fipp () < £y, for any o € [a,b]

where ||-[|(, 5, is the Lebesgue norm

/p
||h||[a b]p (/ |h |pdt> ’ ithLP [aab]'

We have the following result:

Theorem 2.2. Assume that f, g : [a,b] — C are absolutely continuous on [a,b].
If p, ¢ > 1 with %—&—% =1and f' € L,[a,b], ¢ € Ly[a,b], then

(23) ma {[C (£,9)]1C (11,91 1C (7. 1aD],C (7], 19D}
< [C (€. Fype)] "7 [C (6 )]

In particular, if f', ¢ € Lo [a,b], then

(2.9) max {|C (£, 9)1*,1C (f, ). 1C (£ DI 1€ (1f1, 19 }

<C(0Fpp) C(6Fyp).
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Proof. Since f, g : [a,b] — C are absolutely continuous on [a,b], then for any ¢,
s € [a,b] and by applying Holder’s integral inequality we have for p, ¢ > 1 with

241 =1 that
O -1Ola@) -9 =| [ 7 @] [ g W du

t t 1/q
/ I (WP du / 19’ ()| du

Then by Holder’s integral inequality we have for p, ¢ > 1 with % + % =1 that

1/p

S |t7 5‘1/(1 |t* S|1/P

b b
(2.10) Z(bi) / / £ (8 = £ ()] |9 (&) — g (s)] dds

1 b b o t ) ) . I q
<M’/a / 6= sl / |F ()] du / 19 ()" du
/p
1 borb 1 1/p\ P 1
“20-a? M / (' dtds
borb 1/q\ 4 1/q
' V/ <t_s|1/q /t|9/(u)|qdu ) dtds]
1 b b t / ) 1/p
2(b—a)® [/a /a |t — s /S Lf" (w)]” du dtd3‘|
bob 1/q
. V / [t = ] /t lg" (u)|* du dtds}
1 borb b 1/p
- L(ba)Z/a /a [t = sl /S Lf (u)]” du dtdS]
1 borb to 1/q
" [2(ba)2/a /a [t =l / g (w)|" du dtds] ,

Now, observe that
t
[ 1 @r du
S

M/ab/:|t—s|

b rb
:2(bia)2/G/a|t_s||Ff/|”(t)_F|f"’(S){dtds

1/p 1/q
It — s|M/1 dtds

[ 17 wr

dtds
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b rb
) 2(l)ia)2/a /a (t =) (Fipp (&) = Fipop (s)) dids = O (6, Figrpe)

since Fg» is monotonic nondecreasing on |[a, b] .

[ 1o @an

In a similar way, we have

M/ab/;t—ﬂ

By using (2.10) we deduce
(2.11)

b rb
s | ] OO0 gl < [0 (6 Rp] Y [0 Fyp)]

dtds = C (ﬁ,ﬂg/‘q) .

that is of interest in itself.
By using (2.4) and (2.11) we deduce the desired result (2.8). O

Corollary 2.1. Assume that f, g : [a,b] — C are absolutely continuous on [a,b].
If p, ¢ > 1 with %—&—% =1and f' € L,[a,b], ¢ € Ly[a,b], then

(2.12) max {|C (f,9)|,|1C (If1, 9|, 1C (f;1gD], 1C (111 gD}

1 b A e L
<2(b_a)U (t—a)(0=1)[f @) dt] V t—a)(d—1)]g @) dt] :

In particular, if ', ¢’ € La[a,b], then

213)  max{|C(£,9)f.|CUF1. 91 1C (£ 19D 1C (1£]. gD}

1 b b
<t [ QG-I 0P [ - 0-0l 0

4 (b — a) a a
Proof. If h : [a,b] — C is a function of bounded variation, since the function u (t) :=
(t —a) (b—1t) is continuous, then the Stieltjes integral f: (t—a)(b—1t)dh(t) exists
and integrating by parts, we have

/ab(ta)(bt)dh(t)Q/ab <ta;rb>h(t)dt2(ba)0(€,h)

giving the identity of interest for complex valued functions, see also [3] for the real
case,

b
C(th) = 2(1)1—@/ (t—a) (b—t)dh (1).
By (2.8) we then obtain

max {|C (f,9)[,C (], 9)l.[C (£ 1gD], 1C (1 f] 19D}



Bounds for the Complex Cebysev Functional 203

1 b ’ P v 1 b ’ q e
glw)/ (t—a) (b )| () dt] [m)/ (t—a)(b-1)lg () dt}

1 b 1/p b 1/q
—Q(b_)[/ (ta)(bt)lf’(t)l”dtl U <ta><bt>|g’<t>|th] 7

which proves (2.12). O

Remark 2.1. The inequality
2 1 b , 2 b / 2
IC (f,9)] sm/a (t—a)(b—1)[f (1) dt/a (t—a)(b—1)|g' ()| at

was proved for real-valued functions in [3].

3. Some Examples

If we use Griiss’ inequality (1.1) for the functions Fj;/ and F)y/ |, we have

1
(3.1) |C (Fip, Fig)| < 1 Hf/H[a,b],1 ||9/||[a,b],1

for any f, g : [a,b] — C absolutely continuous functions on [a, b] .

Using the inequality (2.1), we deduce

(3:2) max{IC (£,9)|.1C (£].9)].IC (£, g . |C (] gD]} < 5 15 W00, 19 1.1

for any f, g : [a,b] — C absolutely continuous functions on [a, b] .

If we use the inequality (1.12) for the functions Fjs| and Fj,/| we have

1
(3.3) 1€ (B Figr )] < 5 1 g1 B (Flgr)
1 ! 1 ! /
< ) IIf ||[a,b],1 D (Flg’\) < 1 I ||[a,b]71 g ||[a,b]717
where
1 b 1 b
R(F|g/‘) ZHA F“g/l(t)—m/a F|g/‘(8)d8 dt

and

b b 2
D (Fg) = ﬁ/ﬂ Flg (8)dt - (b_la/a Fig/ (t)dl‘> :

Using the inequality (2.1), we deduce

(3-4) max {|C (f,9)[,C (], 9)l.[C (£ 19Dl 1C (1 f] 19D}
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1 1 1
< 3 ||f/H[a,b],1 R (Flg’l) < ) H-f/”[a,b],l D (Flg’l) < 4 Hf,”[a,b],l ”g/”[a’b],l ’

for any f, g : [a,b] — C absolutely continuous functions on [a, b] .
The inequality (3.4) is a refinement of (3.2).

In 1970, A. M. Ostrowski v[l?] proved amongst others the following result that
is somehow a mixture of the Cebysev and Griiss results

(35) C (gl < 5 (6= a) (M —m) g

provided f is Lebesgue integrable on [a, ] and satisfying (1.2) while g : [a,b] — R
is absolutely continuous and ¢’ € Lo [a, b] . Here the constant % is also sharp.
In [9] we obtained the following refinement of (3.5).

Theorem 3.1. Let f : [a,b] — R be measurable and such that there exist the
constants m, M € R with

(3.6) —co<m< f(x) <M < oo for a.e. z on [a,b].

If g : [a,b] — C is absolutely continuous on [a,b] with ¢' € Lo [a,b] then we have
the inequality

(ﬁfabf(ac)dm—m) (M—ﬁfabf(x)dx)
M—-m

(37) 1070 <519l (v-a)

1
< <= a) (M —m) /|,
The constants % and % are sharp in the above sense.

If we use the inequality (1.12) for the functions Fjs| and Fj,| we have
(3.8)

C(F 1, Fy gfglool——/F/xdac/F/xdx
€ (Fps Flg)| < 5 19l < a1l J. 1@ ) | Fip (@)

1
< 5 6= 1 o 19

for any f, g : [a,b] — C absolutely continuous functions on [a,b] and ¢’ € Lo [a,b].
Using the inequality (2.1), we deduce

(3.9) max {|C (f,9)[,C (1, 9).[C (£ 1gD], 1C (1 f] 19D}

1 1 b b
<59l 1——/F1(J;)daj /F/(a:)dx
2 b=a) [Ny Jo .

< s O=a) [ Nljapa 19l »

ool —
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for any f, g : [a,b] — C absolutely continuous functions on [a,b] and ¢’ € Ly [a,b].

Now, we observe that for f = ¢, where £ is the identity mapping of the interval
[a,b], namely ¢ (t) =t, t € [a,b], we have

1 (" a+bd 1
R() = b—a/a t—— ‘dt4(b—a).
Then we have by (1.18) that
1
(310) 1O (6 Fig)| < 5 (0= 0) g1

If f : [a,b] — C is Lipschitzian with the constant L > 0 on [a,b] and g : [a,b] — C
is absolutely continuous on [a, b], then by (2.2) we have
(3.11)

max {|C (f,9)[,|C (If],9)|,1C (£ 1gD], 1C (1 f]5 1gDI} < % (b—a)Llgllgp).1 -

Assume that f, g : [a,b] — C are absolutely continuous on [a,b]. If p,q > 1 with

% + % =1land f' € L,[a,b], ¢ € Ly[a,b], then by (3.5) we have
(3.12) Ot Fpp)| < 5 0= a) 1

and

(3.13) Ot Fyio)] < § 0 a) ' sy

By using (2.8) we then get

(3.14) max{|C (£.9)].1C (1], 9)|.IC (£. gD IC (1£] g1}

1
<3 O —=a) 1 Nljap).p 19 1a,81.4

provided f, g : [a,b] — C are absolutely continuous on [a, b, p, ¢ > 1 with %+% =1
and f' € L, [a,b], ¢’ € Ly[a,b].

4. Applications for Trapezoid Inequality

Let h: [a,b] — C be an absolutely continuous function on [a,b]. Then we have the
following well known trapezoid equality in terms of the first derivative

b b
(4.1) h(“);h(b)_bia/ h(t)dt:bia/ (t—a;b>(h’(t)—5)dt

for any 6 € C. This is obvious integrating by parts in the right hand side of the
equality.
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3 _ _ a+b
Consider f =h' and g = ¢ — %2, Then

t
Fip (t /lh” (s)| ds and Fly| (t) = /ds:t—a

and if we use the inequality (3.4) we have

(4.2)
[ (5w

1
Therefore, by (4.1) for § = 0 we obtain the inequality

b—a
h(a)+h(b) 1 /bh()dt

1 1
< S I g B(E=a) = 2 (b= a) 1" g4y -

1 1
(4.3) 3 (0 —a) [|P"]{q,4,1 »

2 b—a

provided A’ is absolutely continuous on [a, b] .

If we use the inequality (3.9) for f =h' and g =¥ — ‘%rb we get

/ab (t aé”’) B (t) dt
<3 (l - T [ ([ e o) d"’”)
([ enas) e < E o0 0

By (4.1) for § = 0 and (4.4) we obtain the inequality

a b
h( );h(b) 7bia/a h(t) dt

S;G <b—a>||h~uab / (/ W (s 'dS)‘”)
/(/ 0" (s ds>d$< (—a)||h”||[a,b],1,

which is an improvement of (4.3).
Using the inequality (3.4) for f = ¢ — ‘%"b and g = h' we get

/ab (t—a2+b> R (t)dt

1
b—a

(4.4)

1

(4.6) T
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1 b x 1 b t
< 5/ / |h" (s)|ds — b7/ (/ | (5)ds> dt| dzx,
a a —aJg a
and by (4.1) for 6 =0 we get
h(a)+h(b 1P
(4.7 ()2 ()fb_a/h(t)dt
1 b xT ” 1 b t ”
< 3 |h" (s)] ds — " a [h" (s)| ds | dt|dx,
a a —aJg a

provided that A’ is absolutely continuous on [a, b] .

Now, if we use the inequality (2.12) for f = h' and g = /¢ — “T‘H’ we get

b
a+b
[ (=5

1 b o 1/p b
§2(b—a)Va (t—a)(d—t)[n" (1) dt] V (t—a)(b—t)dt]

1
2.6/a

1
b—a

(4.8)

) B (t)dt

1/q

b 1/p
(b—a)*/e! [/ (t—a)(b—t)lh”(t)lpdt] :

wherep,q>1and%+%:1.
By (4.1) for § = 0 we get

h(a)Jrh(b)_bia/abh(t)dt

(4.9) 5

b 1/p
< s (- a)"! V <t—a>(b—t>|h"<t>|’3dt] ,

provided h” € L, [a,b].

In particular, we have

(4.10)

a b
h( );h(b) _bia/a h(t) dt

— b 1/2
<o\ [/ <t—a><b—t>|h"<t>|2dt] ,

provided A" € Ly [a,b].
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The following identity of trapezoid type in terms of the second derivative is also
well known:

b b
(4.11) h(a);h(b)—bia/ h(t)dt:ﬁ/ (t—a) (b—t) B () dt,

provided the first derivative h’ is absolutely continuous on [a, b] .
Consider f = h” and assume that, for some constants p, P we have p < b (t) <
Pforae t€ab.lfg=23(—a)(b—1{),then g/ = = —¢,

1
[abloe = 5

g’ (b—a),

and by the inequality (3.7) we then have

' " 1 ’ b "
m/ (t—a)(b—t)h (t)dt—w/a (t—a)(b—t)dt/a W' (t) dt

' (b)—h'(a) ' (b)—h'(a)
1 2 ( b—a - p) (P - b—a ) 1 2
< =(b— < —(b- P -
0 o < (b—a)’ (P-p),
which is equivalent to
h(a) + h(b) 1 /b 1 , ,
: b L M 5 6= W (6~ ()]

h’(b)—h'(a) —p) (P _ h’(bl)):Z’(a))

(b—a)Q( = P

<1i6(b—a)2(P—p)-

(¢ —a) (b—{) we have

b
19010 = ( /

and by taking f = h” in (3.14) we get

a+b (b—a)1+1/q

q /4
t— 7 I e A—
) 2(q+1)"/1

h(a)+ h(b) 1

(4.12) 5 e

b
/ h(t)dt — % (b—a) [W (b) — I (a)]

1
S g (b= )"

~16(g+ 1)1 a:blp?
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where the second derivative h’ is absolutely continuous on [a, b] .

Similar bounds may be obtained by utilising the inequality

(b—a)

b 1/p
(13 1CU9I < 5 [ | a-aw-nir <t>|f’dt]

b 1/q
x V (t—a)(b—1) |g'<t>qclt]

for g =% (¢ —a)(b—¢) and f = h"” provided the second derivative h” is absolutely
continuous on [a, b] . The details are omitted.
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10.

11.
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