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Abstract. The aim of this paper is to study the existence and uniqueness of solutions for
nonlinear fractional relaxation integro-differential equations with boundary conditions.
Some results about the existence and uniqueness of solutions have been established by
using the Banach contraction mapping principle and the Schauder fixed point theorem.
An example is provided which illustrates the theoretical results.
Key words: Fractional relaxation integro-differential equations, Riemann-Liouville
fractional derivative, Liouville-Caputo fractional derivative, existence, uniqueness, fixed
point.

1. Introduction

Fractional differential equations have many applications in different problems and
phenomenons in science and engineering, see [1]-[16], [18]-[20].

In [10], Chidouh, Guezane-Lakoud and Bebbouchi studied the existence and
uniqueness of positive solutions of the following nonlinear fractional relaxation dif-
ferential equation{

LCDαx (t) + λx (t) = f (t, x (t)) , 0 < t ≤ 1,
x (0) = x0 > 0,
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where LCDα is the Liouville-Caputo fractional derivative, 0 < α ≤ 1. By using the
method of the upper and lower solutions and the Schauder and Banach fixed point
theorems, the existence and uniqueness of solutions have been established.

In [11], Guezane Lakoud, Khaldi and Kilicman discussed the existence of solu-
tions for the following nonlinear differential equation with boundary conditions{

LCDα
1−D

β
0+x (t) = f (t, x (t)) , t ∈ (0, 1) ,

x (0) = x′ (0) = x (1) = 0,

where LCDα
1− andDβ

0+ are the right Liouville-Caputo and the left Riemann-Liouville
fractional derivatives respectively, 0 < α ≤ 1, 1 < β ≤ 2. By employing the
Krasnoselskii fixed point theorem, the authors obtained existence results.

In [2], Abdo, Wahash and Panchat investigated the existence and uniqueness
of positive solutions of the following nonlinear fractional differential equation with
integral boundary conditions{ LCDαx (t) = f (t, x (t)) , 0 < t ≤ T,

x (0) = a
∫ T
0
x (s) ds+ b,

where 1 < α < 1. By applying the method of the upper and lower solutions and
the Schauder and Banach fixed point theorems, the existence and uniqueness of
solutions have been provided.

Inspired and motivated by the works mentioned above, by using the Banach and
Schauder fixed point theorems, we study the existence and uniqueness of solutions
for the following nonlinear fractional relaxation integro-differential equation

(1.1)

{
Dβ LCDαx (t) + λx (t) = f (t, x (t) , Iγx (t)) , t ∈ (0, T ) , λ ∈ R,
LCDαx (0) = LCDα x (T ) = 0, x (0) = a

∫ T
0
x (s) ds+ b, a, b ∈ R,

where Dβ and LCDα are the Riemann-Liouville fractional derivative and Liouville-
Caputo fractional derivative of orders β and α respectively, 1 < β < 2, 0 < α < 1,
Iγ is the Riemann-Liouville fractional integral of order γ ∈ (0, 1), and f : [0, T ] ×
R× R→ R is a nonlinear continuous function.

The remaining part of the paper is organized in four sections. In Section 2, some
notations, definitions of fractional calculus and fixed point theorems are presented.
In Section 3, some useful results about the existence and uniqueness of nonlinear
fractional relaxation integro-differential equations are obtained. In Section 4, an
example is provided to illustrate the theoretical results.

2. Preliminaries

Some definitions, notations and results of the fractional calculus are introduced
throughout this section which will be utilized in this paper.

Let J = [0, T ]. Denote by C = C (J) the Banach space of all continuous functions
defined on J endowed with the norm

‖x‖ = sup {|x (t)| : t ∈ J} .
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And AC(J) is the space of absolutely continuous valued functions from J into R,
and set

ACm (J) =
{
x : J → R : x, x′, x′′, , xm−1 ∈ C and xm−1 ∈ AC(J)

}
.

Now we’re giving out some fractional calculus results and properties.

Definition 2.1. [14] The fractional integral of order α > 0 of a function h : J → R
is defined by

Iαh (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 h (s) ds,

provided the integral exists.

Definition 2.2. [14] The Liouville-Caputo fractional derivative of order α > 0 of
function h : J → R is defined by

LCDαh(t) = Dα

[
h (t)−

m−1∑
k=0

h(k) (0)

k!
tk

]
,

where

(2.1) m = [α] + 1 for α /∈ N0, m = α for α ∈ N0,

and Dα
0+ is a fractional derivative in Riemann-Liouville sense of order α given by

Dαh (t) = DmIm−αh (t) =
1

Γ (n− α)

dm

dtm

∫ t

0

(t− s)m−α−1 h (s) ds.

The Liouville-Caputo fractional derivative LCDα
0+ exists for x belonging to ACm(J).

In this case, it is defined by

LCDαh(t) = Im−αx(m) (t) =
1

Γ (n− α)

∫ t

0

(t− s)m−α−1 h(m) (s) ds.

Remark that when α = m, we get LCDαh(t) = h(m) (t).

Lemma 2.1. [14] Let α > 0 and m be given by (2.1). If h ∈ ACm(J,R), then

(
IαLCDαh

)
(t) = h(t)−

m−1∑
k=0

h(k) (0)

k!
tk,

where h(k) is the usual derivative of h of order k.
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Lemma 2.2. [14] For α > 0 and m be given by (2.1), then the Liouville-Caputo
fractional differential equation LCDαh(t) = 0 has a general solution

h (t) = a0 + a1t+ a2t
2 + ...+ am−1t

m−1,

where ai ∈ R, i = 0, 1, 2, ...,m − 1. Further, the Riemann-Liouville fractional
differential equation

Dαh (t) = 0,

has a general solution

h (t) = a1t
α−1 + a2t

α−2 + a3t
α−3 + ...+ amt

α−m, ai ∈ R, i = 1, 2, ...,m.

Lemma 2.3. [14] For any α, β ∈ [0,∞) and µ > −1, then

1

Γ (α)

∫ t

0

(t− s)β−1 sα−1ds =
Γ (β)

Γ (α+ β)
tα+β−1.

Lemma 2.4. (Banach fixed point theorem [17]) Let Ω be a nonempty closed con-
vex subset of a Banach space (S, ‖.‖), then any contraction mapping Φ of Ω into
itself has a unique fixed point.

Lemma 2.5. (Schauder fixed point theorem [17]) Let Ω be a nonempty bounded
closed convex subset of a Banach space S and Φ : Ω → Ω be a continuous com-
pact operator. Then has a fixed point in Ω.

To obtain our results, we need the following lemma.

Lemma 2.6. For any h ∈ C (J), then the problem

(2.2)

{
Dβ LCDαx (t) + λx (t) = h (t) , t ∈ (0, T ) , λ ∈ R,
LCDαx (0) = LCDα x (T ) = 0, x (0) = a

∫ T
0
x (s) ds+ b, a, b ∈ R,

is equivalent to the integral equation

x (t) = Iα+βh (t)− λIα+βx (t)− tβ+α−1

T β−1Γ (β + α)

(
Iβh (T )− λIβx (T )

)
+a

∫ T

0

x (s) ds+ b

=
1

Γ (α+ β)

(∫ t

0

(t− s)α+β−1 h (s) ds− λ
∫ t

0

(t− s)α+β−1 x (s) ds

)
− tβ+α−1

T β−1Γ (β + α)

(∫ T

0

(T − s)β−1 h (s) ds− λ
∫ T

0

(T − s)β−1 x (s) ds

)

+a

∫ T

0

x (s) ds+ b.(2.3)
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Proof. Taking the integrator operator Iβ to the first equation of (2.2), and from
Lemma 2.2, we get

(2.4) LCDαx (t) = Iβh (t)− λIβx (t) + a1t
β−1 + a2t

β−2.

According to conditions LCDαx (0) = LCDα x (T ) = 0, it yields

a1 =
1

T β−1
(
λIβx (T )− Iβh (T )

)
, a2 = 0.

Replacing a1 and a2 by their values in (2.4), we get

LCDαx (t) = Iβh (t)− λIβx (t) +
tβ−1

T β−1
(
λIβx (T )− Iβh (T )

)
.

Taking the integrator operator Iα again to the above equation and using Lemmas
2.2 and 2.3 we obtain

(2.5) x (t) = Iα+βh (t)− λIα+βx (t)− Γ (β) tβ+α−1

T β−1Γ (β + α)

(
Iβh (T )− λIβx (T )

)
+ a3.

Using the integral condition, we find

a3 = a

∫ T

0

x (s) ds+ b.

Substituting the value of a3 into (2.5), we obtain the integral equation (2.3). The
reverse is followed by a direct calculation which finishes the proof.

3. Main results

In the following we employ fixed point theorems to prove existence and uniqueness
results for the problem (1.1).

For obtaining our results, we need the following hypotheses

(H1) There exist constants l1, l2 > 0 such that

|f (t, x1, y1)− f (t, x2, y2)| ≤ l1 |x1 − x2|+ l2 |y1 − y2| ,

for any t ∈ J and each xi, yi ∈ R, i = 1, 2.

(H2) There exists a function Ψ ∈ L1 (J,R+) such that

|f (t, x, y)| ≤ Ψ(t), ∀(t, x, y) ∈ J × R× R.

3.1. Existence and uniqueness results via Banach’s fixed point
theorem

Theorem 3.1. Let (H1) holds. If

(3.1)
θ =

(
Tα+β

Γ (α+ β + 1)
+

T 2β+α−1

βT β−1Γ (β + α)

)(
l1 + l2

T η

Γ (η + 1)
+ |λ|

)
+ |a|T < 1,

then (1.1) has at least one solution.
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Proof. We convert the problem (1.1) into a fixed point problem by defining the
operator Φ : C → C as

(Φx) (t) =
1

Γ (α+ β)

(∫ t

0

(t− s)α+β−1 f (s, x (s) , Iγx (s)) ds

−λ
∫ t

0

(t− s)α+β−1 x (s) ds

)
− tβ+α−1

T β−1Γ (β + α)

(∫ T

0

(T − s)β−1 f (s, x (s) , Iγx (s)) ds

−λ
∫ T

0

(T − s)β−1 x (s) ds

)
+ a

∫ T

0

x (s) ds+ b.(3.2)

Obviously, the fixed points of operator Φ are solutions of problem (1.1). By (H1),
for each x, y ∈ C and t ∈ J , we get

|(Φx) (t)− (Φy) (t)|

≤ 1

Γ (α+ β)

∫ t

0

(t− s)α+β−1 |f (s, x (s) , Iηx (s))− f (s, y (s) , Iηy (s))| ds

+
|λ|

Γ (α+ β)

∫ t

0

(t− s)α+β−1 |x (s)− y (s)| ds

+
tβ+α−1

T β−1Γ (β + α)

(∫ T

0

(T − s)β−1 |f (s, x (s) , Iηx (s))

−f (s, y (s) , Iηy (s))| ds+ |λ|
∫ T

0

(T − s)β−1 |x (s)− y (s)| ds

)

+ |a|
∫ T

0

|x (s)− y (s)| ds

≤
((

Tα+β

Γ (α+ β + 1)
+

T 2β+α−1

βT β−1Γ (β + α)

)
×
(
l1 + l2

T η

Γ (η + 1)
+ |λ|

)
+ |a|T

)
‖x− y‖ .

Thus

‖Φx− Φy‖ ≤ θ ‖x− y‖ .

From (3.1), Φ is a contraction. As a result of Banach’s fixed point theorem, Φ has
a unique fixed point which is the unique solution of the problem (1.1) on J . This
finishes the proof.
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3.2. Existence results via Schauder’s fixed point theorem

For the sake convenience, we put

Λ1 =
Ψ∗Tα+β

Γ (α+ β + 1)
+

Ψ∗Tα+2β−1

βT β−1Γ (α+ β)
+ |b| ,

where Ψ∗ = sup {Ψ(t) : t ∈ J}.

Theorem 3.2. Assume that the hypotheses (H1) and (H2) are satisfied. If

ω = |λ|
(

Tα+β

Γ (α+ β + 1)
+

T 2β+α−1

βT β−1Γ (α+ β)

)
+ |a|T < 1,

then (1.1) has at least one solution on J .

Proof. We consider the nonempty closed bounded convex subset

Ω = {x ∈ C : ‖x‖ ≤M}

of C, where M is chosen such

M ≥ Λ1

1− ω
.

Notice that, the continuity of the operator Φ follows from the continuity of the
function f . Now, we need to show that the operator Φ is compact by using the
Arzela-Ascoli theorem. So, we will prove that Φ (Ω) ⊂ Ω and Φ (Ω) is uniformly
bounded and equicontinuous set. For x ∈ Ω, we have

|(Φx) (t)|

≤ 1

Γ (α+ β)

∫ t

0

(t− s)α+β−1 |f (s, x (s) , Iηx (s))| ds

+
|λ|

Γ (α+ β)

∫ t

0

(t− s)α+β−1 |x (s)| ds

+
tβ+α−1

T β−1Γ (β + α)

(∫ T

0

(T − s)β−1 |f (s, x (s) , Iηx (s))| ds

+ |λ|
∫ T

0

(T − s)β−1 |x (s)| ds

)
+ |a|

∫ T

0

|x (s)| ds+ |b|

≤ Ψ∗Tα+β

Γ (α+ β + 1)
+ |λ|M

(
Tα+β

Γ (α+ β + 1)
+

T 2β+α−1

βT β−1Γ (α+ β)

)
+

Ψ∗Tα+2β−1

βT β−1Γ (α+ β)
+ |a|TM + |b|

≤ M.
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Then
‖Φx‖ ≤M,

which means that Φ (Ω) ⊂ Ω and the set Φ (Ω) is uniformly bounded. Next, we
will prove that Φ (Ω) is equicontinuous set. For t1, t2 ∈ J such that t1 < t2 and for
x ∈ Ω, we get

|(Φx) (t2)− (Φx) (t1)|

≤ 1

Γ(α+ β)

∫ t1

0

(
(t2 − s)α+β−1 − (t1 − s)α+β−1

)
|f (s, x (s) , Iηx (s))| ds

+
1

Γ(α+ β)

∫ t2

t1

(t2 − s)α+β−1 |f (s, x (s) , Iηx (s))| ds

+
|λ|

Γ (α+ β)

(∫ t1

0

(
(t2 − s)α+β−1 − (t1 − s)α+β−1

)
|x (s)| ds

+

∫ t2

t1

(t2 − s)α+β−1 |x (s)| ds
)

+
tβ+α−12 − tβ+α−11

T β−1Γ (β + α)

(∫ T

0

(T − s)β−1 |f (s, x (s) , Iηx (s))| ds

+ |λ|
∫ T

0

(T − s)β−1 |x (s)| ds

)

≤ Ψ∗

Γ(α+ β)

(∫ t1

0

(
(t2 − s)α+β−1 − (t1 − s)α+β−1

)
ds+

∫ t2

t1

(t2 − s)α+β−1 ds
)

+
|λ|M

Γ (α+ β)

(∫ t1

0

(
(t2 − s)α+β−1 − (t1 − s)α+β−1

)
ds

+

∫ t2

t1

(t2 − s)α+β−1 ds
)

+
tβ+α−12 − tβ+α−11

T β−1Γ (β + α)

(
Ψ∗T β

β
+
|λ|T βM

β

)

≤ Ψ∗

Γ(α+ β + 1)

(
tα+β2 − tα+β1

)
+

(
tβ+α−12 − tβ+α−11

)
T β−1Γ (β + α)

(
Ψ∗T β

β
+
|λ|T βM

β

)
.

As t1 → t2, we see that the right hand side of the above inequality tends to zero
and the convergence is independent of x in Ω, which means Φ (Ω) is equicontinuous.
The Arzela-Ascoli theorem implies that Φ is compact. Thus, by the Schauder fixed
point theorem, we prove that Φ has at least one fixed point x ∈ Ω which is a solution
of the problem (1.1) on J .

4. Example

We take the following fractional relaxation integro-differential equation

(4.1)

{
D

3
2 LCD

1
2x (t) + 1

4x (t) = f
(
t, x (t) , I

1
3x (t)

)
, t ∈ (0, 1) ,

LCD
1
2x (0) =LC D

1
2x (1) = 0, x (0) = 1

10

∫ 1

0
x (s) ds+ 2.
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Here α = 1
2 , β = 3

2 , η = 1
3 , λ = 1

4 , a = 1
10 and b = 2. Set

f
(
t, x (t) , I

1
3x (t)

)
=

sin (t)

exp (t2) + 7

 |x (t)|
|x (t)|+ 1

+

∣∣∣I 1
3x (t)

∣∣∣
1 +

∣∣∣I 1
3x (t)

∣∣∣
 .

For xi, yi ∈ R, i = 1, 2, we have

|f(t, x1, x2)− f(t, y1, y2)|

=

∣∣∣∣ sin (t)

exp (t2) + 7

((
|x1|
|x1|+ 1

− |y1|
|y1|+ 1

)
+

(
|x2|
|x2|+ 1

− |y2|
|y2|+ 1

))∣∣∣∣
≤ 1

exp (t2) + 7

(
|x1 − y1|

(1 + |x|) (1 + |y|)
+

|x2 − y2|
(1 + |x2|) (1 + |y2|)

)
≤ 1

8
(|x1 − y1|+ |x2 − y2|) ,

thus, the assumption (H1) is satisfied with l1 = l2 = 1
8 . We will check that condition

(3.1) is satisfied. Indeed

θ =

(
Tα+β

Γ (α+ β + 1)
+

T 2β+α−1

βT β−1Γ (β + α)

)(
l1 + l2

T η

Γ (η + 1)
+ |λ|

)
+ |a|T

=

(
1

Γ (3)
+

2

3Γ (2)

)(
1

8
+

1

8

1

Γ
(
1
3 + 1

) +
1

4

)
+

1

10

' 0.7 < 1.

Then by Theorem 3.1, the problem (4.1) has a unique solution on [0, 1]. Also we
have

f (t, x, y) ≤ 2

exp(t2) + 7
, ∀(t, x, y) ∈ J × R× R.

Hence condition (H2) holds with Ψ(t) = 2
exp(t2)+7 , it follows from Theorem 3.2 that

the problem (4.1) has at least one solution on [0, 1].
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