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Abstract. In this paper, we first introduce a new notion of an F -contraction mapping,
also we establish a fixed point theorem for such mappings in partially ordered Banach
spaces. Moreover, two examples are represented to show the compatibility of our results.
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1. Introduction and Preliminaries

F -contractions were introduced initially by Wardowski [24]. Indeed, Wardowski
[24] extended the Banach Contraction Principle and proved some fixed-point results
for F -contraction mappings. Since then, several authors proved many fixed point
results for F -contraction mappings (refer to [1, 4, 5, 8, 11, 12, 13, 15, 19, 21, 22, 25]).

Let F be the family of all functions F : R+ → R satisfying the following condi-
tions:
(F1) F is strictly increasing, i.e., for all α, β ∈ (0,+∞) with α < β we have
F (α) < F (β),
(F2) for each sequence {αn} of positive numbers,

lim
n→+∞

αn = 0 if and only if lim
n→+∞

F (αn) = −∞;
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(F3) there exists k ∈ (0,+∞) such that limα→0+ α
kF (α) = 0.

Let F1(α) = ln(α), F2(α) = − 1√
α

and F3(α) = α+ln(α) for α > 0, then F1, F2, F3 ∈
F . A mapping T : X → X is called an F -contraction if there exists τ > 0 and
F ∈ F shch that

τ + F (d(Tx, Ty)) ≤ F (d(x, y)),(1.1)

holds for all x, y ∈ X with d(Tx, Ty) > 0. From (F1) and (1.1), we can easily see
that any F -contraction is a contractive mapping. Let F : R+ → R be givin by
F (α) = ln α. By (1.1), we obtain

d(Tx, Ty) ≤ e−τd(x, y),

for all x, y ∈ X and d(Tx, Ty) > 0. Let F (α) = α+ ln α for α > 0. From (1.1), we
get

d(Tx, Ty)

d(x, y)
ed(Tx,Ty)−d(x,y) ≤ e−τ ,

for any x, y ∈ X and d(Tx, Ty) > 0. Wardowski [24] proved the following fixed
point theorem.

Theorem 1.1. [24] Let (X, d) be a complete metric space and let T : X → X be
an F -contraction. Then T has a fixed point x∗ and for an arbitrary point x ∈ X,
the sequence {Tnx} is convergent to x∗.

Let X be an ordered normed space, i.e., a vector space over the real equipped
with a partial order 4 and a norm ||.||. For every α ≥ 0 and x, y, z ∈ X with
x 4 y one has that x + z 4 y + z and αx 4 αy. Two elements x, y ∈ X are called
comparable if x 4 y or y 4 x holds. A self-mapping T on X is called non-decreasing
if Tx 4 Ty whenever x 4 y for all x, y ∈ X.

Ran and Reurings [18] initiate the fixed point theory in the metric spaces
equipped with a partial order relation. Thereafter, several authors obtained many
fixed point results in ordered metric space (see [2, 3, 6, 7, 10, 16, 17, 23] and refer-
ences therein).

Definition 1.1. [9] Let E be a Banach space. A subset P of E is called cone if
the following conditions are satisfied:
1) P is nonempty closed set and P 6= {θ}, where θ denotes the zero element in E;
2) if x, y ∈ P and a, b ∈ R, a, b ≥ 0, then ax+ by ∈ P ;
3) if x ∈ P and −x ∈ P , then x = θ.

Let P ⊆ E be a cone. We define a partial ordering 4 with respect to P by x 4 y if
and only if y − x ∈ P . A cone P is called normal if there is a number L > 0 such
that

θ 4 x 4 y implies ||x|| ≤ L||y||,

for all x, y ∈ E. The least positive number L satisfying the above inequality is
called the normal constant of P .
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Definition 1.2. [14, 20] A set P ⊆ E is said to be a lattice under the partial
ordering 4, if sup{x, y} and inf{x, y} exist for all x, y ∈ P .

Lemma 1.1. [9] A cone P in a normed space (E, ||.||) is normal if and only if
there exists a norm ||.||1 on E, equivalent to the given norm ||.||, such that the cone
P is monotone w.r.t. ||.||1.

Lemma 1.2. [9] Let E be a real Banach space, P be a normal cone and {xnk} be
a subsequence converging to p of monotone sequence {xn}. Then {xn} converges to
p. Also if {xn}n∈N is an increasing(decreasing) sequence, then xn 4 p(p 4 xn) for
all n ∈ N.

2. Main results

In this section, we prove a fixed point result in partially ordered Banach spaces.
Let E be a partially ordered Banach space, P be a normal cone and the partial
order 4 on E be induced by the cone P . We denote by F , the set of all functions
F : P − {θ} → R that satisfying the following conditions:
(F ′1) F is strictly increasing, i.e., for all x, y ∈ P such that x ≺ y, F (x) < F (y) or
x 4 y and x 6= y yields F (x) ≤ F (y) and F (x) 6= F (y).
(F ′2) For each sequence {xn} in P ,

lim
n→+∞

xn = θ if and only if lim
n→+∞

F (xn) = −∞.

(F ′3) There exists k ∈ (0,+∞) such that limx→θ ||x||kF (x) = 0.
Our new result is the following:

Theorem 2.1. Let X ⊆ E be a closed set, P ⊆ X and let T : X → X be a
self-mapping on X. Suppose that the following hypotheses hold:
(i) X is a lattice;
(ii) T is a decreasing operator, i.e., x 4 y implies Tx < Ty;
(iii) there exsits τ > 0 and F ∈ F such that

τ + F (Tu− Tv) ≤ F (v − u),(2.1)

for all u, v ∈ X, where u 4 v and Tu 6= Tv. Then, T has a unique fixed point
p ∈ X.

Proof. Let x0 ∈ X be arbitrary. If Tx0 = x0 the proof is finished, that is T has a
fixed point x0. Let Tx0 6= x0 and we consider the following two case.
Case1. Let x0 is comparable with Tx0. Without loss of generality, we suppose that
x0 ≺ Tx0. Since T is decreasing, we get Tx0 < T 2x0. We can easily check that T 2

is increasing. From (2.1), we have

τ + F (Tx0 − T 2x0) ≤ F (Tx0 − x0).
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Then, we get

F (Tx0 − T 2x0) ≤ F (Tx0 − x0).

Since, F is strictly increasing, we get

Tx0 − T 2x0 4 Tx0 − x0.

Then, we have

x0 4 T 2x0.(2.2)

Using (2.1), we obtain

τ + F (T 2v − T 2u) ≤ F (Tu− Tv)

≤ F (v − u)− τ
< F (v − u),(2.3)

for all u, v ∈ X, where u ≺ v or u 4 v and u 6= v. Let Sx = T 2x for all x ∈ X.
Then, from (2.3), we have

τ + F (Sv − Su) ≤ F (v − u),(2.4)

for all u, v ∈ X, where u ≺ v or u 4 v, u 6= v and F ∈ F . Also, from (2.2) we have
x0 4 Sx0. Now, we show that S has a unique fixed point. Consider the iterated
sequence {xn}, where xn+1 = Sxn for n = 0, 1, 2, . . .. Since S is increasing, we have
xn+1 4 xn for all n = 0, 1, 2, . . . . Using (2.4), we have

F (xn+1 − xn) ≤ F (xn − xn−1)− τ ≤ . . . ≤ F (x1 − x0)− nτ.(2.5)

Letting n→ +∞ above inequality, we obtain

lim
n→+∞

F (xn+1 − xn) = −∞.

Using F ′2, we get αn = xn+1 − xn → θ as n→ +∞. This implies that

lim
n→+∞

||αn|| = 0.(2.6)

From (F ′3), there exsits k ∈ (0, 1) such that

lim
n→+∞

||αn||kF (αn) = 0.(2.7)

From, (2.5) we have

(||αn||kF (αn)− ||αn||kF (α0)) ≤ ||αn||k(F (α0)− nτ)− ||αn||kF (α0) = −||αn||knτ ≤ 0.

Using (2.6) and (2.7) and letting n→ +∞ in above inequality, we get

lim
n→+∞

n||αn||k = 0.(2.8)
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It follows from (2.8), there exists N ∈ N, such that

||αn|| ≤
1

n
1
k

,(2.9)

for all n > N . Now, we claim that {xn} is a Cauchy sequence. Suppose m,n ∈ N
and m > n > N .

||xm − xn|| ≤ ||αm−1||+ ||αm−2||+ . . .+ ||αn|| ≤
+∞∑
i=n

||αi|| ≤
+∞∑
i=n

1

i
1
k

.

Then ||xm − xn|| → 0 as m,n → +∞, which implies {xn} is a Cauchy sequence.
Since X is closed, then there exists point p in X such that limn→+∞ xn = p. Using
Lemma 1.2, we get xn 4 p for all n ∈ N. From (2.4), we have

F (Sxn − Sp) ≤ F (xn − p)− τ ≤ F (xn − p).

Since F is strictly increasing, we have

Sxn − Sp ≺ xn − p,(2.10)

for all n ∈ N. From Lemma (1.1) exists a norm ||.||1 such that is equivalent with
||.|| and

||Sxn − Sp||1 ≤ ||xn − p||1,(2.11)

for all n ∈ N. Using (2.11), we obtain

||p− Sp||1 ≤ ||p− xn+1||1 + ||xn+1 − Sp||1
≤ ||p− xn+1||1 + ||xn − p||1,

for all n ∈ N. Letting n → +∞ in above inequality, we get ||p − Sp||1 = 0, which
implies Sp = p. To see the uniqueness of the fixed point, let us consider p and q be
two distinct fixed points of S, that is, Sp = p 6= q = Sq. If q comparable with p,
without loss of generality, we suppose that q 4 p. Then, by (2.4), we obtain

τ ≤ F (p− q)− F (Sp− Sq) = 0,(2.12)

which is a contradiction. Now, suppose p is not comparable to q. Since X is a
lattice, there exists r ∈ X such that r = inf{p, q}, which implies r 4 p and r 4 q.
Since S is increasing, we have Snr 4 Snp and Snr 4 Snq. Using (2.4) we obtain,

F (p− Snr) = F (Snp− Snr) ≤ F (Sn−1p− Sn−1r)− τ ≤ . . . ≤ F (p− r)− nτ,

for all n ∈ N. Letting n→ +∞ in above inequality, we have limn→+∞ F (p−Snr) =
−∞ that together with (F ′2) gives limn→+∞(p − Snr) = θ. This implies that
limn→+∞ Snr = p. Similarly, limn→+∞ Snr = q. So, p = q that is S has a unique
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fixed point p. Now, we show that the unique fixed point of S is also the unique
fixed point of T . Since S has a fixed point p, we have

S(Tp) = T 2(Tp) = T (T 2p) = T (Sp) = Tp.(2.13)

From the uniqueness of the fixed point of S, we know Tp = p.
Case2. Suppose x0 is not comparable to Tx0. Since X is a lattice, there exists
y ∈ X such that y = inf{x0, Tx0}, which implies y 4 x0 and y 4 Tx0. Since T
is decreasing, we have Tx0 4 Ty, which implies y 4 Ty. Similarly to the proof of
case 1, we can show T has a unique fixed point.

Example 2.1. Let E = R × R endowed with the norm ||.||1 which is defined as follows
||(x1, x2)||1 = |x1|+ |x2|, x1, x2 ∈ R. Also, we define a partial order on R2 as follows

(a, b) 4 (c, d) if and only if a ≤ c, b ≤ d.

Then (X, ||.||,4) is a partially ordered Banach space. Suppose X = [0,+∞)×[0,+∞), P =
{(α, 0) : α ≥ 0} and F : P − {θ} → R by Fα = lnα. Define T = (T1, T2) where
Ti : [0,+∞)→ R, i = 1, 2 and T1(a) = e−τ −a

1+a
, T2(b) = e−τ 2

1+b
,

T (a, b) = (T1(a), T2(b)) = (e−τ
−a

1 + a
, e−τ

2

1 + b
),

for all a, b ∈ [0,+∞) where τ > 0. It is clear that both Ti, i = 1, 2 are strictly decreasing, so,
T is decreasing. We show that T is F -contraction. Indeed, let u = (x1, y1) 4 v = (x2, y2),
we have

Tu− Tv = e−τ (
−x1

2 + x1
,

2

1 + y1
)− e−τ (

−x2
2 + x2

,
2

1 + y2
)

= e−τ (
−2x1 − x1x2 + 2x2 + x1x2

4 + 2x1 + 2x2 + x1x2
,

2 + 2y2 − 2− 2y1
1 + y2 + y1 + y1y2

)

≤ e−τ (x2 − x1, y2 − y1)

= e−τ (v − u).

Which implies that

τ + ln(Tu− Tv) ≤ ln(v − u).

Then, all the conditions of Theorem 2.1 are satisfied and so T has a unique fixed point

(0,
−1+
√

1+8e−τ

2
), where τ is given.

Example 2.2. Let E = R, X = [0,+∞), P = [0,+∞) and F : P\ {0} → R with F (r) =
− 1
r
. Define the mapping T : X → X by Tx = 1

1+x
. . It is clear that the all conditions of

Theorem 2.1 are satisfied. The condition (2.1) is true i.e. exists τ > 0 such that

τ + F (Tu− Tv) ≤ F (v − u) .
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Indeed, for v > u, we obtain

F (v − u)− F (Tu− Tv) = − 1

v − u +
1

1
1+u
− 1

1+v

= − 1

v − u +
(1 + v) (1 + u)

v − u

= − 1

v − u +
1 + u+ v + vu

v − u

=
u+ v + vu

v − u

≥ u+ v

v − u

≥ v − u
v − u = 1.

Hence, for any τ ∈ (0, 1], we have

τ + F (Tu− Tv) ≤ F (v − u) .

Thus, T has a unique fixed point u0 =
√
5−1
2

.
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