FACTA UNIVERSITATIS (NIŠ)

Ser. Math. Inform. Vol. 36, No 5 (2021), 1089-1097

https://doi.org/10.22190/FUMI210507079F

Original Scientific Paper

A FIXED POINT THEOREM FOR F-CONTRACTION MAPPINGS IN PARTIALLY ORDERED BANACH SPACES

Hamid Faraji¹, Zoran D. Mitrović² and Stojan Radenović³

Department of Mathematics, College of Technical and Engineering, Saveh Branch, Islamic Azad University, Saveh, Iran

²University of Banja Luka, Faculty of Electrical Engineering, patre 5, 78000 Banja Luka, Bosnia and Herzegovina.

³Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Beograd 35, Serbia.

Abstract. In this paper, we first introduce a new notion of an *F*-contraction mapping, also we establish a fixed point theorem for such mappings in partially ordered Banach spaces. Moreover, two examples are represented to show the compatibility of our results. **Keywords:** F-Contraction; Fixed point; Partially ordered.

1. Introduction and Preliminaries

F-contractions were introduced initially by Wardowski [24]. Indeed, Wardowski [24] extended the Banach Contraction Principle and proved some fixed-point results for F-contraction mappings. Since then, several authors proved many fixed point results for F-contraction mappings (refer to [1, 4, 5, 8, 11, 12, 13, 15, 19, 21, 22, 25]).

Let \mathcal{F} be the family of all functions $F:\mathbb{R}^+\to\mathbb{R}$ satisfying the following conditions:

 (F_1) F is strictly increasing, i.e., for all $\alpha, \beta \in (0, +\infty)$ with $\alpha < \beta$ we have $F(\alpha) < F(\beta)$,

 (F_2) for each sequence $\{\alpha_n\}$ of positive numbers,

$$\lim_{n \to +\infty} \alpha_n = 0 \ if \ and \ only \ if \ \lim_{n \to +\infty} F(\alpha_n) = -\infty;$$

Received May 07, 2021. accepted August 30, 2021.

Communicated by Dijana Mosić

Corresponding Author: Hamid Faraji, Department of Mathematics, College of Technical and Engineering, Saveh Branch, Islamic Azad University, Saveh, Iran | E-mail: faraji@iau-saveh.ac.ir 2010 Mathematics Subject Classification. 47H10; 54H25

© 2021 BY UNIVERSITY OF NIŠ, SERBIA | CREATIVE COMMONS LICENSE: CC BY-NC-ND

 (F_3) there exists $k \in (0, +\infty)$ such that $\lim_{\alpha \to 0^+} \alpha^k F(\alpha) = 0$. Let $F_1(\alpha) = \ln(\alpha)$, $F_2(\alpha) = -\frac{1}{\sqrt{\alpha}}$ and $F_3(\alpha) = \alpha + \ln(\alpha)$ for $\alpha > 0$, then $F_1, F_2, F_3 \in \mathcal{F}$. A mapping $T: X \to X$ is called an F-contraction if there exists $\tau > 0$ and $F \in \mathcal{F}$ shch that

(1.1)
$$\tau + F(d(Tx, Ty)) \le F(d(x, y)),$$

holds for all $x, y \in X$ with d(Tx, Ty) > 0. From (F_1) and (1.1), we can easily see that any F-contraction is a contractive mapping. Let $F : \mathbb{R}^+ \to \mathbb{R}$ be givin by $F(\alpha) = \ln \alpha$. By (1.1), we obtain

$$d(Tx, Ty) \le e^{-\tau} d(x, y),$$

for all $x, y \in X$ and d(Tx, Ty) > 0. Let $F(\alpha) = \alpha + \ln \alpha$ for $\alpha > 0$. From (1.1), we get

$$\frac{d(Tx,Ty)}{d(x,y)}e^{d(Tx,Ty)-d(x,y)} \leq e^{-\tau},$$

for any $x, y \in X$ and d(Tx, Ty) > 0. Wardowski [24] proved the following fixed point theorem.

Theorem 1.1. [24] Let (X,d) be a complete metric space and let $T: X \to X$ be an F-contraction. Then T has a fixed point x^* and for an arbitrary point $x \in X$, the sequence $\{T^n x\}$ is convergent to x^* .

Let X be an ordered normed space, i.e., a vector space over the real equipped with a partial order \preccurlyeq and a norm ||.||. For every $\alpha \geq 0$ and $x,y,z \in X$ with $x \preccurlyeq y$ one has that $x+z \preccurlyeq y+z$ and $\alpha x \preccurlyeq \alpha y$. Two elements $x,y \in X$ are called comparable if $x \preccurlyeq y$ or $y \preccurlyeq x$ holds. A self-mapping T on X is called non-decreasing if $Tx \preccurlyeq Ty$ whenever $x \preccurlyeq y$ for all $x,y \in X$.

Ran and Reurings [18] initiate the fixed point theory in the metric spaces equipped with a partial order relation. Thereafter, several authors obtained many fixed point results in ordered metric space (see [2, 3, 6, 7, 10, 16, 17, 23] and references therein).

Definition 1.1. [9] Let E be a Banach space. A subset P of E is called cone if the following conditions are satisfied:

- 1) P is nonempty closed set and $P \neq \{\theta\}$, where θ denotes the zero element in E;
- 2) if $x, y \in P$ and $a, b \in \mathbb{R}, a, b \ge 0$, then $ax + by \in P$;
- 3) if $x \in P$ and $-x \in P$, then $x = \theta$.

Let $P \subseteq E$ be a cone. We define a partial ordering \leq with respect to P by $x \leq y$ if and only if $y - x \in P$. A cone P is called normal if there is a number L > 0 such that

$$\theta \leq x \leq y \text{ implies } ||x|| \leq L||y||,$$

for all $x, y \in E$. The least positive number L satisfying the above inequality is called the normal constant of P.

Definition 1.2. [14, 20] A set $P \subseteq E$ is said to be a lattice under the partial ordering \leq , if $\sup\{x,y\}$ and $\inf\{x,y\}$ exist for all $x,y \in P$.

Lemma 1.1. [9] A cone P in a normed space (E, ||.||) is normal if and only if there exists a norm $||.||_1$ on E, equivalent to the given norm ||.||, such that the cone P is monotone w.r.t. $||.||_1$.

Lemma 1.2. [9] Let E be a real Banach space, P be a normal cone and $\{x_{n_k}\}$ be a subsequence converging to p of monotone sequence $\{x_n\}$. Then $\{x_n\}$ converges to p. Also if $\{x_n\}_{n\in\mathbb{N}}$ is an increasing(decreasing) sequence, then $x_n \leq p(p \leq x_n)$ for all $n \in \mathbb{N}$.

2. Main results

In this section, we prove a fixed point result in partially ordered Banach spaces. Let E be a partially ordered Banach space, P be a normal cone and the partial order \leq on E be induced by the cone P. We denote by \mathcal{F} , the set of all functions $F: P - \{\theta\} \to \mathbb{R}$ that satisfying the following conditions:

 (F_1') F is strictly increasing, i.e., for all $x, y \in P$ such that $x \prec y, F(x) < F(y)$ or $x \preccurlyeq y$ and $x \neq y$ yields $F(x) \leq F(y)$ and $F(x) \neq F(y)$. (F_2') For each sequence $\{x_n\}$ in P,

or each sequence
$$\{x_n\}$$
 in I ,

$$\lim_{n \to +\infty} x_n = \theta \ \ if \ and \ only \ if \ \lim_{n \to +\infty} F(x_n) = -\infty.$$

 (F_3') There exists $k \in (0, +\infty)$ such that $\lim_{x \to \theta} ||x||^k F(x) = 0$. Our new result is the following:

Theorem 2.1. Let $X \subseteq E$ be a closed set, $P \subseteq X$ and let $T : X \to X$ be a self-mapping on X. Suppose that the following hypotheses hold:

- (i) X is a lattice;
- (ii) T is a decreasing operator, i.e., $x \leq y$ implies $Tx \geq Ty$;
- (iii) there exsits $\tau > 0$ and $F \in \mathcal{F}$ such that

for all $u, v \in X$, where $u \leq v$ and $Tu \neq Tv$. Then, T has a unique fixed point $p \in X$.

Proof. Let $x_0 \in X$ be arbitrary. If $Tx_0 = x_0$ the proof is finished, that is T has a fixed point x_0 . Let $Tx_0 \neq x_0$ and we consider the following two case.

Case1. Let x_0 is comparable with Tx_0 . Without loss of generality, we suppose that $x_0 \prec Tx_0$. Since T is decreasing, we get $Tx_0 \succcurlyeq T^2x_0$. We can easily check that T^2 is increasing. From (2.1), we have

$$\tau + F(Tx_0 - T^2x_0) \le F(Tx_0 - x_0).$$

Then, we get

$$F(Tx_0 - T^2x_0) \le F(Tx_0 - x_0).$$

Since, F is strictly increasing, we get

$$Tx_0 - T^2x_0 \leq Tx_0 - x_0.$$

Then, we have

Using (2.1), we obtain

$$\tau + F(T^2v - T^2u) \leq F(Tu - Tv)
\leq F(v - u) - \tau
< F(v - u),$$

for all $u, v \in X$, where $u \prec v$ or $u \leq v$ and $u \neq v$. Let $Sx = T^2x$ for all $x \in X$. Then, from (2.3), we have

for all $u, v \in X$, where $u \prec v$ or $u \preccurlyeq v, u \neq v$ and $F \in \mathcal{F}$. Also, from (2.2) we have $x_0 \preccurlyeq Sx_0$. Now, we show that S has a unique fixed point. Consider the iterated sequence $\{x_n\}$, where $x_{n+1} = Sx_n$ for $n = 0, 1, 2, \ldots$ Since S is increasing, we have $x_{n+1} \preccurlyeq x_n$ for all $n = 0, 1, 2, \ldots$ Using (2.4), we have

$$(2.5) F(x_{n+1} - x_n) \le F(x_n - x_{n-1}) - \tau \le \dots \le F(x_1 - x_0) - n\tau.$$

Letting $n \to +\infty$ above inequality, we obtain

$$\lim_{n \to +\infty} F(x_{n+1} - x_n) = -\infty.$$

Using F_2' , we get $\alpha_n = x_{n+1} - x_n \to \theta$ as $n \to +\infty$. This implies that

$$\lim_{n \to +\infty} ||\alpha_n|| = 0.$$

From (F_3) , there exists $k \in (0,1)$ such that

(2.7)
$$\lim_{n \to +\infty} ||\alpha_n||^k F(\alpha_n) = 0.$$

From, (2.5) we have

$$(||\alpha_n||^k F(\alpha_n) - ||\alpha_n||^k F(\alpha_0)) \le ||\alpha_n||^k (F(\alpha_0) - n\tau) - ||\alpha_n||^k F(\alpha_0) = -||\alpha_n||^k n\tau \le 0.$$

Using (2.6) and (2.7) and letting $n \to +\infty$ in above inequality, we get

$$\lim_{n \to +\infty} n||\alpha_n||^k = 0.$$

It follows from (2.8), there exists $N \in \mathbb{N}$, such that

for all n > N. Now, we claim that $\{x_n\}$ is a Cauchy sequence. Suppose $m, n \in \mathbb{N}$ and m > n > N.

$$||x_m - x_n|| \le ||\alpha_{m-1}|| + ||\alpha_{m-2}|| + \ldots + ||\alpha_n|| \le \sum_{i=n}^{+\infty} ||\alpha_i|| \le \sum_{i=n}^{+\infty} \frac{1}{i^{\frac{1}{k}}}.$$

Then $||x_m - x_n|| \to 0$ as $m, n \to +\infty$, which implies $\{x_n\}$ is a Cauchy sequence. Since X is closed, then there exists point p in X such that $\lim_{n \to +\infty} x_n = p$. Using Lemma 1.2, we get $x_n \leq p$ for all $n \in \mathbb{N}$. From (2.4), we have

$$F(Sx_n - Sp) \le F(x_n - p) - \tau \le F(x_n - p).$$

Since F is strictly increasing, we have

$$(2.10) Sx_n - Sp \prec x_n - p,$$

for all $n \in \mathbb{N}$. From Lemma (1.1) exists a norm $||.||_1$ such that is equivalent with ||.|| and

$$(2.11) ||Sx_n - Sp||_1 \le ||x_n - p||_1,$$

for all $n \in \mathbb{N}$. Using (2.11), we obtain

$$||p - Sp||_1 \le ||p - x_{n+1}||_1 + ||x_{n+1} - Sp||_1$$

 $\le ||p - x_{n+1}||_1 + ||x_n - p||_1,$

for all $n \in \mathbb{N}$. Letting $n \to +\infty$ in above inequality, we get $||p - Sp||_1 = 0$, which implies Sp = p. To see the uniqueness of the fixed point, let us consider p and q be two distinct fixed points of S, that is, $Sp = p \neq q = Sq$. If q comparable with p, without loss of generality, we suppose that $q \preccurlyeq p$. Then, by (2.4), we obtain

(2.12)
$$\tau \le F(p-q) - F(Sp - Sq) = 0,$$

which is a contradiction. Now, suppose p is not comparable to q. Since X is a lattice, there exists $r \in X$ such that $r = \inf\{p, q\}$, which implies $r \leq p$ and $r \leq q$. Since S is increasing, we have $S^n r \leq S^n p$ and $S^n r \leq S^n q$. Using (2.4) we obtain,

$$F(p - S^{n}r) = F(S^{n}p - S^{n}r) \le F(S^{n-1}p - S^{n-1}r) - \tau \le \dots \le F(p - r) - n\tau,$$

for all $n \in \mathbb{N}$. Letting $n \to +\infty$ in above inequality, we have $\lim_{n \to +\infty} F(p - S^n r) = -\infty$ that together with (F_2') gives $\lim_{n \to +\infty} (p - S^n r) = \theta$. This implies that $\lim_{n \to +\infty} S^n r = p$. Similarly, $\lim_{n \to +\infty} S^n r = q$. So, p = q that is S has a unique

fixed point p. Now, we show that the unique fixed point of S is also the unique fixed point of T. Since S has a fixed point p, we have

(2.13)
$$S(Tp) = T^{2}(Tp) = T(T^{2}p) = T(Sp) = Tp.$$

From the uniqueness of the fixed point of S, we know Tp = p.

Case 2. Suppose x_0 is not comparable to Tx_0 . Since X is a lattice, there exists $y \in X$ such that $y = \inf\{x_0, Tx_0\}$, which implies $y \leq x_0$ and $y \leq Tx_0$. Since T is decreasing, we have $Tx_0 \leq Ty$, which implies $y \leq Ty$. Similarly to the proof of case 1, we can show T has a unique fixed point.

Example 2.1. Let $E = R \times R$ endowed with the norm $||.||_1$ which is defined as follows $||(x_1, x_2)||_1 = |x_1| + |x_2|, x_1, x_2 \in \mathbb{R}$. Also, we define a partial order on \mathbb{R}^2 as follows

$$(a,b) \preccurlyeq (c,d) \text{ if and only if } a \leq c,b \leq d.$$

Then $(X, ||.||, \preccurlyeq)$ is a partially ordered Banach space. Suppose $X = [0, +\infty) \times [0, +\infty)$, $P = \{(\alpha, 0) : \alpha \geq 0\}$ and $F : P - \{\theta\} \rightarrow \mathbb{R}$ by $F\alpha = ln\alpha$. Define $T = (T_1, T_2)$ where $T_i : [0, +\infty) \rightarrow \mathbb{R}, i = 1, 2$ and $T_1(a) = e^{-\tau} \frac{-a}{1+a}, T_2(b) = e^{-\tau} \frac{2}{1+b}$,

$$T(a,b) = (T_1(a), T_2(b)) = (e^{-\tau} \frac{-a}{1+a}, e^{-\tau} \frac{2}{1+b}),$$

for all $a, b \in [0, +\infty)$ where $\tau > 0$. It is clear that both $T_i, i = 1, 2$ are strictly decreasing, so, T is decreasing. We show that T is F-contraction. Indeed, let $u = (x_1, y_1) \leq v = (x_2, y_2)$, we have

$$Tu - Tv = e^{-\tau} \left(\frac{-x_1}{2+x_1}, \frac{2}{1+y_1}\right) - e^{-\tau} \left(\frac{-x_2}{2+x_2}, \frac{2}{1+y_2}\right)$$

$$= e^{-\tau} \left(\frac{-2x_1 - x_1x_2 + 2x_2 + x_1x_2}{4 + 2x_1 + 2x_2 + x_1x_2}, \frac{2 + 2y_2 - 2 - 2y_1}{1 + y_2 + y_1 + y_1y_2}\right)$$

$$\leq e^{-\tau} (x_2 - x_1, y_2 - y_1)$$

$$= e^{-\tau} (v - u).$$

Which implies that

$$\tau + ln(Tu - Tv) \le ln(v - u).$$

Then, all the conditions of Theorem 2.1 are satisfied and so T has a unique fixed point $(0, \frac{-1+\sqrt{1+8e^{-\tau}}}{2})$, where τ is given.

Example 2.2. Let $E=\mathbb{R}, X=[0,+\infty), P=[0,+\infty)$ and $F:P\setminus\{0\}\to\mathbb{R}$ with $F(r)=-\frac{1}{r}$. Define the mapping $T:X\to X$ by $Tx=\frac{1}{1+x}$. It is clear that the all conditions of Theorem 2.1 are satisfied. The condition (2.1) is true i.e. exists $\tau>0$ such that

$$\tau + F (Tu - Tv) \le F (v - u).$$

Indeed, for v > u, we obtain

$$F(v-u) - F(Tu - Tv) = -\frac{1}{v-u} + \frac{1}{\frac{1}{1+u} - \frac{1}{1+v}}$$

$$= -\frac{1}{v-u} + \frac{(1+v)(1+u)}{v-u}$$

$$= -\frac{1}{v-u} + \frac{1+u+v+vu}{v-u}$$

$$= \frac{u+v+vu}{v-u}$$

$$\geq \frac{u+v}{v-u}$$

$$\geq \frac{v-u}{v-u} = 1.$$

Hence, for any $\tau \in (0,1]$, we have

$$\tau + F(Tu - Tv) \le F(v - u)$$
.

Thus, T has a unique fixed point $u_0 = \frac{\sqrt{5}-1}{2}$.

REFERENCES

- 1. M. Abbas, T. Nazir, T. L. Aleksić and S. Radenović: Common fixed points of set-valued F-contraction mappings on domain of sets endowed with directed graph. Comput. Appl. Math. 36(4) (2017), 1607-1622.
- 2. M. ABTAHI, Z. KADELBURG and S. RADENOVIĆ: Fixed points and coupled fixed points in partially ordered ν -generalized metric spaces. Appl. Gen. Topol. **19**(2) (2018), 189-201.
- 3. M. Afkhami: The cozero-divisor graph of partially ordered sets. Southeast Asian Bull. Math. 44(2) (2020), 297-306.
- 4. I. Altun, G. Minak and H. Dag: Multivalued F-contractions on complete metric spaces. J. Nonlinear Convex Anal. 16 (2015), 659-666.
- 5. I. Altun, G. Minak and M. Olgun: Fixed points of multivalued nonlinear F-contractions on complete metric spaces. Nonlinear Anal. Model. Control **21**(2) (2016), 201-210.
- A. L. Ansari, V. Gupta and N. Mani: C-class functions on some coupled fixed point theorems in partially ordered S-metric spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 68(2) (2019), 1694-1708.
- 7. K. BOUZKOURA and S. BENKADDOUR: Some Common Fixed Point Theorems in Partially Ordered Sets. J. Appl. Math. (2020), Art. ID 4707962, 5 pp.
- 8. L. CHEN, S. HUANG, C. LI and Y. ZHAO: Several Fixed-Point Theorems for F-Contractions in Complete Branciari b-Metric Spaces and Applications. J. Funct. Spaces (2020), Art. ID 7963242, 10 pp.
- 9. D. Guo, Y. J. Cho and J. Zhu: Partial ordering methods in nonlinear problems. Nova Science Publishers, Inc., Hauppauge, NY, 2004.

- V. Gupta, G. Jungck and N. Mani: Some novel fixed point theorems in partially ordered metric spaces. AIMS Math. 5(5) (2020), 4444-4452.
- 11. A. Hussain, H. Al-Sulami, N. Hussain and H. Farooq: Newly fixed disc results using advanced contractions on F-metric space. J. Appl. Anal. Comput. **10**(6) (2020), 2313-2322.
- N. HUSSAIN, A. LATIF, I. IQBAL and M. A. KUTBI: Fixed point results for multivalued F-contractions with application to integral and matrix equations. J. Nonlinear Convex Anal. 20(11) (2019), 2297-2311.
- 13. Z. Kadelburg and S. Radenović: Notes on some recent papers concerning F-contractions in b-metric spaces. Constr. Math. Anal. 1(2) (2018), 108-112.
- 14. X. Lin and Z. Zhao: Sign-changing solution for a third-order boundary-value problem in ordered Banach space with lattice structure. Bound. Value Probl. **2014** (2014), 132, 10 pp.
- S. K. MOHANTA and S. PATRA: Coincidence points for graph preserving generalized almost F - G-contractions in b-metric spaces. Nonlinear Stud. 27(4) (2020), 897-914.
- J. J. NIETO and R. R. LOPEZ: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22(3) (2005), 223-239.
- 17. J. J. NIETO and R. R. LOPEZ: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin. (Engl. Ser.) 23(12) (2007), 2205-2212.
- 18. A. C. M. RAN and M. C. B. REURINGS: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc. 132(5) (2004), 1435-1443.
- 19. M. Shoaib, M. Sarwar and P. Kumam: Multi-valued fixed point theorem via F-contraction of Nadler type and application to functional and integral equations. Bol. Soc. Parana. Mat. (3), **39**(4) (2021), 83-95.
- J. Sun and X. Liu: Computation of topological degree in ordered Banach spaces with lattice structure and its application to superlinear differential equations. J. Math. Anal. Appl. 348(2) (2008), 927-937.
- 21. A. Taheri and A. P. Farajzadeh: A new generalization of α -type almost-F-contractions and α -type F-Suzuki contractions in metric spaces and their fixed point theorems. Carpathian Math. Publ. **11**(2) (2019), 475-492.
- 22. A. Tomar and R. Sharma: Almost α -Hardy-Rogers-F-contractions and their applications. Armen. J. Math. **11**(11) (2019), 19 pp.
- 23. C. Wang, J. Mao and Z. Zhao: A fixed-point theorem for ordered contractiontype decreasing operators in Banach space with lattice structure. J. Funct. Spaces 2020, Art. ID 3527430, 7 pp.
- D. WARDOWSKI: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012(94) (2012), 6 pp.
- 25. D. Wardowski and N. V. Dung: Fixed points of F-weak contractions on complete metric spaces. Demonstr. Math. 47(1) (2014), 146-155.
- D. Allen: Relations between the local and global structure of fnite semigroups. Ph. D. Thesis, University of California, Berkeley, 1968.

- 27. P. Erdős: On the distribution of the roots of orthogonal polynomials. In: Proceedings of a Conference on Constructive Theory of Functions (G. Alexits, S. B. Steckhin, eds.), Akademiai Kiado, Budapest, 1972, 145–150.
- 28. A. OSTROWSKI: Solution of Equations and Systems of Equations. Academic Press, New York, 1966.
- 29. E. B. SAFF and R. S. VARGA: On incomplete polynomials II. Pacific J. Math. 92 (1981), 161–172.