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Abstract. This paper aims to investigate a class for nonlocal fractional boundary
value problem on an infinite interval due to its importance in provide a powerful tool
for mathematical modeling of complex phenomena in science. New existence results
are acquired for the given problem by using the Krasnosel’skii’s fixed point theorem.
Moreover, sufficient conditions are obtained as well as a modified compactness crite-
rion that guarantees the existence of at least one solution. In addition, an illustrative
example is given in the final part of the paper.
Keywords: Boundary value problem, infinite interval, fractional differential equation,
nonlocal condition, fixed point theorem.

1. Introduction

Fractional calculus is a generalization of classical integer-order calculus and has
been studied for more than for several years ago. Unlike integer-order derivatives,
the fractional differential equations provide a powerful tool for mathematical mod-
eling of complex phenomena in science, engineering practice and processes in the
fields of physics, chemistry, electrical circuits, biology, and so on.

This is the main advantage of fractional differential equations in comparison with
classical integer-order models. Further, the concept of nonlocal boundary conditions
has been introduced to extend the study of classical boundary value problems. This
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notion is more precise for describing natural phenomena than the classical notion
because additional information is taken into account.

Recently, several papers have studied questions of existence of solutions for some
classes of bvps for fractional differential equations on finite intervals, see, e g.,
[2, 3, 4, 5, 8, 9, 11, 18, 19] and references therein. Different methods have been
employed. However, research works on the existence of multiple solutions for frac-
tional differential equations with nonlocal boundary condition on infinite intervals
are few, we refer to [6, 7, 12, 15, 16, 17] and references therein.

In this paper, we will consider the boundary value problem (bvp for short){
Dα

0+u(t) = f(t, u(t), Dα−1
0+ u(t), Dα−2

0+ u(t)), t ∈ (0,+∞),
u(0) = 0 = Dα−2

0+ u(0) = 0, lim
t→+∞

Dα−1
0+ u(t) = N(u),(1.1)

where 2 < α ≤ 3 and f : [0,+∞)×R×R×R → R, N : Y → R are given functions
such that Y is a suitable Banach space. Dα

0+ refers to the standard Riemann-
Liouville fractional derivative and Iα0+ is the standard Riemann-Liouville fractional
integral.

By using the famous Leray-Schauder Nonlinear Alternative theorem, Y. Gholami
[6] obtained an unbounded solution for the following multi-point bvp in unbounded
interval  Dα

0+u(t) + a(t)f(t, u(t), u′(t)) = 0, t ∈ (0,+∞),

u(0) = u′(0) = 0, lim
t→+∞

Dα−1
0+ u(t) =

m∑
i=1

βiD
α−1
0+ u(ξi),

where 2 < α < 3, f ∈ C([0,+∞) × R × R,R), a ∈ C([0,+∞), [0,+∞)), 0 < ξ1 <

ξ2 < . . . < ξm < +∞, βi ∈ R with
m∑
i=1

βi < 1.

In [15], Shen, Zhou and Yang established the existence of positive solutions for the
bvp 

Dα
0+u(t) + f(t, u(t), Dα−1

0+ u(t)) = 0, t ∈ (0,+∞),

u(0) = 0, u′(0) = 0, Dα−1
0+ u(+∞) =

m−2∑
i=1

βiu(ξi),

where 2 < α ≤ 3, f ∈ C([0,+∞) × R × R,R) and Γ(α) −
m−2∑
i=1

βiξ
α−1
i ̸= 0. with a

suitable growth condition imposed on the nonlinear term. By using Schauder fixed
point theorem, they proved the existence of at least one solution.
Ghanbari, Gholami [7] discussed the existence and multiplicity of positive solutions
for a m-point nonlinear fractional bvp on an infinite interval

Dα
0+u(t) + λa(t)f(t, u(t)) = 0, t ∈ (0,+∞),

u(0) + u′(0) = 0, lim
t→+∞

Dα−1
0+ u(t) =

m−2∑
i=1

βiu
′(ξi),
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where 2 < α < 3, f ∈ C([0,+∞) × [0,+∞), [0,+∞)), a ∈ C([0,+∞), [0,+∞)), λ
is a positive parameter and 0 < ξ1 < ξ2 < . . . < ξm−2 < +∞, βi ∈ [0,+∞) with

0 <
m−2∑
i=1

(α− 1)βiξ
α−1
i < Γ(α).

Motivated by the above works and by recent studies of nonlocal boundary value
problems of fractional order, we consider a more general problem of fractional dif-
ferential equations of arbitrary order with nonlocal boundary conditions. Precisely,
we investigate the problem (1.1).

The advantage of using nonlocal conditions is that measurements at more places
can be incorporated to get better models, in which N is a mapping defined on a
proposed space consisting of certain functions which represent the solutions to the
problem proposed in this paper. Then we give a model of the function g in the form
of a linear combination of the solution at some points in the example proposed in
this paper to confirm our results.

The work presented in this paper is a continuation of previous works and is
concerned with a bvp of fractional order set on the half-axis. The main difficulty
in treating this class of the fractional differential equations is the possible lack of
compactness due to the infinite interval. In order to overcome these difficulties,
we use a special Banach space in which similar inequalities as finite interval can
be established. The main tool used in this paper is Krasnosel’skii’ s fixed point
theorem (nonlinear alternative). Under a compactness criterion, the existence of
solutions is established.

The plan of the paper is as follows. In Section 2, we outline some basic concepts
of fractional calculus. We prove some technical lemmas which are needed later in
Section 3. Section 4 is devoted to our main existence results. In Section 5, an
example of applications is supplied to illustrate our theoretical results.

2. Preliminaries

We start with some definitions and lemmas on the fractional calculus (see [10],
[13]).
One of the basic tools of the fractional calculus is the Gamma function which extends
the factorial to positive real numbers (and even complex numbers with positive real
parts).

Definition 2.1. For α > 0, the Euler Gamma function is defined by

Γ(α) =

∫ +∞

0

tα−1e−tdt.

Proposition 2.1. Let α > 0, p > 0, q > 0 and n a positive integer. Then

Γ(α+ 1) = αΓ(α), Γ

(
n+

1

2

)
=

√
πΓ(2n+ 1)

22nΓ(n+ 1)
, B(p, q) =

Γ(p)Γ(q)

Γ(p+ q)
.
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Hence
Γ(α+ n) = α(α+ 1)(α+ 2) . . . (α+ n− 1)Γ(α).

In particular

Γ(1) =

∫ +∞

0

e−tdt = 1, Γ

(
1

2

)
=

√
π,

Γ(n+ 1) = n!, Γ

(
n+

1

2

)
=

√
π(2n)!

22nn!
.

Definition 2.2. The fractional integral of order α > 0 for function h is defined by

Iα0+h(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds,

provided the right hand side is point-wise defined on (0,+∞).

Definition 2.3. For a given function h defined on the interval [0,+∞), the Riemann-
Liouville fractional derivative of order α > 0 is defined by

Dα
0+h(t) =

(
d

dt

)n

In−α
0+ h(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0

h(s)

(t− s)α−n+1
ds,

where n = [α] + 1.

Lemma 2.1. ([10]) Let α > 0, then

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + ...+ cnt

α−n,

for some ci ∈ R, i = 1, 2, ..., n, n = [α] + 1.

Proposition 2.2. [13] The following composition relations hold:
(a) Dα

0+I
α
0+h(t) = h(t), α > 0, h ∈ L1[0,+∞).

(b) Dα
0+I

γ
0+h(t) = Iγ−α

0+ h(t), γ > α > 0, h ∈ L1[0,+∞).

(c) Iα0+I
γ
0+h(t) = Iα+γ

0+ h(t), α > 0, γ > 0, h ∈ L1[0,+∞).

(d) Dα
0+t

λ = Γ(λ+1)
Γ(λ−α+1) t

λ−α, for λ > −1, in particular for Dα
0+t

α−m = 0,

m = 1, 2, . . . , N, where N is the smallest integer greater than or equal to α.

(e) Iα0+t
λ = Γ(λ+1)

Γ(α+λ+1) t
α+λ, α > 0, λ > −1.

The following result is needed to prove our main existence result. This is a nonlinear
alternative for Krasnosel’skii’ s fixed point theorem [1].

Theorem 2.1. ([1]) Let U be an open set in a closed, convex set C of a Banach
space E. Assume 0 ∈ U , T (U) bounded and T : U → C is given by T = T1 + T2,
where
T1 : U → E is continuous and completely continuous and T2 : U → E is contraction
(i.e., there exists a constant 0 < l < 1, such that ∥T2(x) − T2(y)∥ ⩽ l∥x − y∥, for
all x, y ∈ U). Then either,
(a) T has a fixed point in U , or
(b) There is a point u ∈ ∂U and λ ∈ (0, 1) with u = λT (u).
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3. Related Lemmas

Consider the Banach spaces X, Y defined by

X =

{
u ∈ C([0, +∞),R), sup

t≥0

|u(t)|
1 + tα−1

< +∞
}

with the norm

∥u∥X = sup
t≥0

|u(t)|
1 + tα−1

and

Y =

{
u ∈ X, Dα−2

0+ u, Dα−1
0+ u ∈ C([0, +∞),R),

sup
t≥0

|Dα−2
0+ u(t)|
1 + t

< +∞, sup
t≥0

|Dα−1
0+ u(t)| < +∞

}
with the norm

∥u∥Y = max

{
sup
t≥0

|u(t)|
1 + tα−1

, sup
t≥0

|Dα−2
0+ u(t)|
1 + t

, sup
t≥0

|Dα−1
0+ u(t)|

}
.

Now, we list some conditions in this paper for convenience:
(H1) The function f : [0,+∞)×R×R×R → R is Carathéodory, i.e., f(t, u, v, w) is
Lebesgue measurable in t for all (u, v, w) ∈ R3, and continuous in (u, v, w) for a.e.
t ∈ [0,+∞).
(H2) There exist nonnegative functions (1 + tα−1)φ(t), ψ(t), (1 + t)µ(t), ϕ(t) ∈
L1[0, +∞) such that
|f(t, x, y, z)| ⩽ φ(t)|x|+ψ(t)|y|+µ(t)|z|+ ϕ(t) for all x, y, z ∈ R and t ∈ [0,+∞).
(H3) There exists a positive constant l such that 0 < l < Γ(α) and

|N(u)−N(v)| ⩽ l

Γ(α)
∥u− v∥Y for all u, v ∈ Y.

(H4) N(0) = 0.
(H5) There exists ρ > 0 such that

ρ > 2

∫ +∞

0

(
ρ((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s)

)
ds+

lρ

Γ(α)
.

Lemma 3.1. Let h ∈ L1[0,+∞), then the bvp{
Dα

0+u(t) = h(t), t ∈ (0,+∞),
u(0) = Dα−2

0+ u(0) = 0, lim
t→+∞

Dα−1
0+ u(t) = N(u),(3.1)

has a unique solution given by

u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds− tα−1

Γ(α)

∫ +∞

0

h(s)ds+
tα−1

Γ(α)
g(u).
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Proof. By Lemma 2.1 and from Dα
0+u(t) = h(t), we have

u(t) = Iα0+h(t) + c1t
α−1 + c2t

α−2 + c3t
α−3, for some constants c1, c2, c3 ∈ R.

So the solution of (3.1) can be written as

u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds+ c1t
α−1 + c2t

α−2 + c3t
α−3.

From u(0) = 0 we get

tα−3
(
c1t

2 + c2t+ c3
)
= 0,

we known that c3 = 0.
On the other hand, we have

Dα−2
0+ u(t) = Dα−2

0+ Iα0+h(t) + c1Γ(α)t+ c2Γ(α− 1)

= I20+h(t) + c1Γ(α)t+ c2Γ(α− 1)

=

∫ t

0

(t− s)h(s)ds+ c1Γ(α)t+ c2Γ(α− 1).

From Dα−2
0+ u(0) = 0 we known that c2 = 0.

Moreover

Dα−1
0+ u(t) = Dα−1

0+ Iα0+h(t) + c1Γ(α)

= I10+h(t) + c1Γ(α)

=

∫ t

0

h(s)ds+ c1Γ(α).

From lim
t→+∞

Dα−1
0+ u(t) = N(u), we get c1 = 1

Γ(α)N(u)− 1
Γ(α)

∫ +∞
0

h(s)ds.

Therefore, the unique solution of fractional bvp (3.1) is

u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds− tα−1

Γ(α)

∫ +∞

0

h(s)ds+
tα−1

Γ(α)
N(u).

Now, define the following operators T1, T2, T on Y by

(T1u)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds− tα−1

Γ(α)

∫ +∞

0

h(s)ds,

(T2u)(t) =
tα−1

Γ(α)
N(u),

(Tu)(t) = (T1u)(t) + (T2u)(t).

Bvp (1.1) has a solution u if and only if u solves the operator equation u = Tu.
We will prove the existence of a fixed point of T . For this we verify that the operator
T satisfies all conditions of Theorem 2.1.
Since the Arzela-Ascoli theorem fails to work in the space Y , we need a modified
compactness criterion to prove T1 is compact.
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Lemma 3.2. ([14]) Let Z = {u ∈ Y, ∥u∥Y < l} such that l > 0, Z1 = { u(t)
1+tα−1 , u ∈

Z},

Z2 = {Dα−1
0+ u(t), u ∈ Z} and Z3 =

{
Dα−2

0+
u(t)

1+t , u ∈ Z

}
. Then Z is relatively com-

pact on Y if Z1, Z2 and Z3 are equicontinuous on any compact intervals of [0,+∞)
and are equiconvergent at infinity.

Definition 3.1. Z1, Z2 and Z3 are called equiconvergent at infinity if and only if
for all ε > 0, there exists δ = δ(ε) > 0 such that∣∣∣∣ u(t1)

1 + tα−1
1

− u(t2)

1 + tα−1
2

∣∣∣∣ < ε,
∣∣Dα−1

0+ u(t1)−Dα−1
0+ u(t2)

∣∣ < ε and∣∣∣∣∣Dα−2
0+ u(t1)

1 + t1
−
Dα−2

0+ u(t2)

1 + t2

∣∣∣∣∣ < ε,

for any t1, t2 > δ and u ∈ Z.

Let Ωr = {u ∈ Y, ∥u∥Y < r}, (r > 0) be the open ball of radius r in Y .

Lemma 3.3. If (H1)− (H4) hold, then T (Ωr) is a bounded set.

Proof. We have

sup
t≥0

∣∣∣∣ (Tu)(t)1 + tα−1

∣∣∣∣
⩽

1

Γ(α)

(∫ t

0

(t− s)α−1

1 + tα−1
|f(s, u(s), Dα−1

0+ u(s), Dα−2
0+ u(s))|ds

+
tα−1

1 + tα−1

∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds

+
tα−1

1 + tα−1
|N(u)|

)
⩽

1

Γ(α)

(
2

∫ +∞

0

(r((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s))ds+
lr

Γ(α)

)
.

In addition

sup
t≥0

∣∣Dα−1
0+ Tu(t)

∣∣
⩽ 2

∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds+ |N(u)|

⩽ 2

∫ +∞

0

(r((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s))ds+
lr

Γ(α)
.
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Also

sup
t≥0

∣∣∣∣∣Dα−2
0+ Tu(t)

1 + t

∣∣∣∣∣
⩽ 2

∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds+ |N(u)|

⩽ 2

∫ +∞

0

(r((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s))ds+
lr

Γ(α)
.

So

∥Tu∥Y < +∞, for u ∈ Ωr.

Lemma 3.4. If (H1), (H2) hold, then T1 : Ωr → Y is completely continuous.

Proof. We firstly verify that the set T1(Ωr) is bounded.
By definition of the operator T1 we have that, for any u ∈ Ωr,∣∣∣∣ (T1u)(t)1 + tα−1

∣∣∣∣ ⩽
1

Γ(α)

(∫ t

0

(t− s)α−1

1 + tα−1
|f(s, u(s), Dα−1

0+ u(s), Dα−2
0+ u(s))|ds

+
tα−1

1 + tα−1

∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds
)

⩽
2

Γ(α)

∫ +∞

0

(r((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s))ds.

In addition∣∣Dα−1
0+ T1u(t)

∣∣ ⩽ 2

∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds

⩽ 2

∫ +∞

0

(r((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s))ds.

Also∣∣∣∣∣Dα−2
0+ T1u(t)

1 + t

∣∣∣∣∣ ⩽ 2

∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds

⩽ 2

∫ +∞

0

(r((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s))ds.

Hence

∥T1u∥Y ⩽ 2

∫ +∞

0

(r((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s))ds, for u ∈ Ωr.
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Now, we divide the proof into three steps.
- Step 1: We show that T1 is continuous.
Let un → u as n→ +∞ in Ωr, we have∣∣∣∣ (T1un)(t)1 + tα−1

− (T1u)(t)

1 + tα−1

∣∣∣∣
⩽

2

Γ(α)

∫ +∞

0

|f(s, un(s), Dα−1
0+ un(s), D

α−2
0+ un(s))

−f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds

⩽
2

Γ(α)

∫ +∞

0

|f(s, un(s), Dα−1
0+ un(s), D

α−2
0+ un(s))|ds

+
2

Γ(α)

∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds

⩽
2

Γ(α)

∫ +∞

0

(∥un∥Y ((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s))ds

+
2

Γ(α)

∫ +∞

0

(∥u∥Y ((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s))ds.

So ∣∣∣∣ (T1un)(t)1 + tα−1
− (T1u)(t)

1 + tα−1

∣∣∣∣
⩽

4

Γ(α)

(∫ +∞

0

(r((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s))ds

)
.

Using the continuity of f , we obtain that

|f(s, un(s), Dα−1
0+ un(s), D

α−2
0+ un(s))− f(s, u(s), Dα−1

0+ u(s), Dα−2
0+ u(s))| → 0, as n→ +∞,

which implies

∥T1un − T1u∥X = sup
t≥0

∣∣∣∣ (T1un)(t)1 + tα−1
− (T1u)(t)

1 + tα−1

∣∣∣∣→ 0,

uniformly as n→ +∞.
Moreover ∣∣Dα−1

0+ T1un(t)−Dα−1
0+ T1u(t)

∣∣
⩽ 2

∫ +∞

0

|f(s, un(s), Dα−1
0+ un(s), D

α−2
0+ un(s))

−f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds

⩽ 4

(∫ +∞

0

(r((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s))ds

)
.
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Also ∣∣∣∣∣Dα−2
0+ T1un(t)

1 + t
−
Dα−2

0+ T1u(t)

1 + t

∣∣∣∣∣
⩽ 2

∫ +∞

0

|f(s, un(s), Dα−1
0+ un(s), D

α−2
0+ un(s))

−f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds

⩽ 4

(∫ +∞

0

(r((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s))ds

)
.

Using again the continuity of f , we get

sup
t≥0

∣∣Dα−1
0+ T1un(t)−Dα−1

0+ T1u(t)
∣∣→ 0, sup

t≥0

∣∣∣∣∣Dα−2
0+ T1un(t)

1 + t
−
Dα−2

0+ T1u(t)

1 + t

∣∣∣∣∣→ 0,

uniformly as n→ +∞.
We conclude

∥T1un − T1u∥Y → 0, uniformly as n→ +∞, as claimed.

- Step 2: We show that T1 : Ωr → X is relatively compact.
According to the above T1(Ωr) is uniformly bounded. We show that functions from{

T1Ωr

1+tα

}
and functions from {Dα−1

0+ T1Ωr} and from

{
Dα−2

0+
T1Ωr

1+t

}
are equicontinuous

on any compact intervals of [0,+∞).
Let I ⊂ [0,+∞) be a compact interval, then for any t1, t2 ∈ I such that t1 < t2,
and for u ∈ Ωr, we have∣∣∣∣ (T1u)(t1)1 + tα−1

1

− (T1u)(t2)

1 + tα−1
2

∣∣∣∣
=

1

Γ(α)

∣∣∣∣∫ t1

0

(t1 − s)α−1

1 + tα−1
1

f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))ds

−
∫ +∞

0

tα−1
1

1 + tα−1
1

f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))ds

−
∫ t2

0

(t2 − s)α−1

1 + tα−1
2

f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))ds

+

∫ +∞

0

tα−1
2

1 + tα−1
2

f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))ds

∣∣∣∣
⩽

1

Γ(α)

(∣∣∣∣∫ t1

0

(t1 − s)α−1

1 + tα−1
1

f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))ds

−
∫ t2

0

(t1 − s)α−1

1 + tα−1
1

f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))ds

∣∣∣∣



Nonlocal BVP of Fractional Differential Equation 11

+

∣∣∣∣∫ t2

0

(t1 − s)α−1

1 + tα−1
1

f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))ds

−
∫ t2

0

(t2 − s)α−1

1 + tα−1
2

f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))ds

∣∣∣∣
+

∫ +∞

0

|tα−1
2 − tα−1

1 |
(1 + tα−1

2 )(1 + tα−1
1 )

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds
)

⩽
1

Γ(α)

(∫ t2

t1

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds

+

∫ t2

0

∣∣∣∣ (t1 − s)α−1

1 + tα−1
1

− (t2 − s)α−1

1 + tα−1
2

∣∣∣∣ |f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds

+

∫ +∞

0

∣∣tα−1
1 − tα−1

2

∣∣
(1 + tα−1

2 )(1 + tα−1
1 )

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds

)

⩽
1

Γ(α)

(∫ t2

t1

(r((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s))ds

+

∫ t2

0

∣∣∣∣ (t1 − s)α−1

1 + tα−1
1

− (t2 − s)α−1

1 + tα−1
2

∣∣∣∣ (r((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s))ds

+

∫ +∞

0

∣∣tα−1
1 − tα−1

2

∣∣
(1 + tα−1

2 )(1 + tα−1
1 )

(r((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s))ds

)
.

The last term converges to 0 uniformly as |t1 − t2| → 0.
Moreover ∣∣Dα−1

0+ T1u(t1)−Dα−1
0+ T1u(t2)

∣∣
=

∣∣∣∣∫ t1

0

f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))ds

−
∫ t2

0

f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds
∣∣∣∣

⩽
∫ t2

t1

(r((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s))ds,

which converges to 0 uniformly as |t1 − t2| → 0. Also∣∣∣∣∣Dα−2
0+ T1u(t1)

1 + t1
−
Dα−2

0+ T1u(t2)

1 + t2

∣∣∣∣∣
=

∣∣∣∣∫ t1

0

t1 − s

1 + t1
f(s, u(s), Dα−1

0+ u(s), Dα−2
0+ u(s))ds

−
∫ t2

0

t2 − s

1 + t2
f(s, u(s), Dα−1

0+ u(s), Dα−2
0+ u(s))ds

+
t2 − t1

(1 + t1)(1 + t2)

∫ +∞

0

f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))ds

∣∣∣∣
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⩽

∣∣∣∣∫ t1

0

t1 − s

1 + t1
f(s, u(s), Dα−1

0+ u(s), Dα−2
0+ u(s))ds

−
∫ t2

0

t1 − s

1 + t1
f(s, u(s), Dα−1

0+ u(s), Dα−2
0+ u(s))ds

∣∣∣∣
+

∣∣∣∣∫ t2

0

t1 − s

1 + t1
f(s, u(s), Dα−1

0+ u(s), Dα−2
0+ u(s))ds

−
∫ t2

0

t2 − s

1 + t2
f(s, u(s), Dα−1

0+ u(s), Dα−2
0+ u(s))ds

∣∣∣∣
+

|t2 − t1|
(1 + t1)(1 + t2)

∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds.

⩽
∫ t2

t1

(r((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s))ds

+
2|t1 − t2|

(1 + t1)(1 + t2)

∫ +∞

0

(r((1 + sα−1)φ(s) + ψ(s)

+(1 + s)µ(s)) + ϕ(s))ds,

which converges to 0 uniformly as |t1 − t2| → 0.
Then, for any ε > 0 there exists a δ > 0 such that∣∣∣∣ (T1u)(t1)1 + tα−1

1

− (T1u)(t2)

1 + tα−1
2

∣∣∣∣ < ε,
∣∣Dα−1

0+ T1u(t1)−Dα−1
0+ T1u(t2)

∣∣ < ε

and ∣∣∣∣∣Dα−2
0+ T1u(t1)

1 + t1
−
Dα−2

0+ T1u(t2)

1 + t2

∣∣∣∣∣ < ε,

for all u ∈ Ωr, if |t1 − t2| < δ, t1, t2 ∈ I.

Showing that, the functions belonging to { T1Ωr

1+tα−1 } and the functions belonging to

{Dα−1
0+ T1Ωr} and to

{
Dα−2

0+
T1Ωr

1+t

}
are locally equicontinuous on [0,+∞).

- Step 3: We show that the functions from { T1Ωr

1+tα−1 }, {Dα−1
0+ T1Ωr} and from{

Dα−2

0+
T1Ωr

1+t

}
are equiconvergent at infinity.

For any u ∈ Ωr, we have∫ +∞

0

∣∣f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))
∣∣ ds < +∞.

Considering condition (H2), for given ε > 0, there exists a constant L > 0 such
that ∫ +∞

L

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds < ε.
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On the other hand, since lim
t→+∞

(t−L)α−1

1+tα−1 = 1 and lim
t→+∞

t−L
1+t = 1, there exists a

constant δ > L > 0 such that for any t1, t2 ≥ δ and 0 ≤ s ≤ L, we have∣∣∣∣∣ (t1 − s)
α−1

1 + tα−1
1

− (t2 − s)
α−1

1 + tα−1
2

∣∣∣∣∣ =

∣∣∣∣∣ (t1 − s)
α−1

1 + tα−1
1

− 1 + 1− (t2 − s)
α−1

1 + tα−1
2

∣∣∣∣∣
⩽

∣∣∣∣∣1− (t1 − L)
α−1

1 + tα−1
1

∣∣∣∣∣+
∣∣∣∣∣1− (t2 − L)

α−1

1 + tα−1
2

∣∣∣∣∣ < ε

and ∣∣∣∣ t1 − s

1 + t1
− t2 − s

1 + t2

∣∣∣∣ =

∣∣∣∣ t1 − s

1 + t1
− 1 + 1− t2 − s

1 + t2

∣∣∣∣
⩽

∣∣∣∣1− t1 − L

1 + t1

∣∣∣∣+ ∣∣∣∣1− t2 − L

1 + t2

∣∣∣∣ < ε.

Thus, for any t1, t2 ≥ δ > L > 0, we get∣∣∣∣ (T1u)(t1)1 + tα−1
1

− (T1u)(t2)

1 + tα−1
2

∣∣∣∣
=

1

Γ(α)

∣∣∣∣∫ t1

0

(t1 − s)α−1

1 + tα−1
1

f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))ds

−
∫ +∞

0

tα−1
1

1 + tα−1
1

f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))ds

−
∫ t2

0

(t2 − s)α−1

1 + tα−1
2

f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))ds

+

∫ +∞

0

tα−1
2

1 + tα−1
2

f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))ds

∣∣∣∣ .
So ∣∣∣∣ (T1u)(t1)1 + tα−1

1

− (T1u)(t2)

1 + tα−1
2

∣∣∣∣
⩽

1

Γ(α)

(∫ L

0

∣∣∣∣ (t1 − s)α−1

1 + tα−1
1

− (t2 − s)α−1

1 + tα−1
2

∣∣∣∣ |f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds

+

∫ t1

L

(t1 − s)α−1

1 + tα−1
1

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds

+

∫ t2

L

(t2 − s)α−1

1 + tα−1
2

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds

+2

∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds
)

⩽
1

Γ(α)

(∫ L

0

∣∣∣∣ (t1 − s)α−1

1 + tα−1
1

− (t2 − s)α−1

1 + tα−1
2

∣∣∣∣ |f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds
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+2

∫ L

0

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds

+4

∫ +∞

L

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds
)

⩽
1

Γ(α)

(
sup

s∈[0,L], u∈Ωr

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|Lε

+2 sup
s∈[0,L], u∈Ωr

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|L+ 4ε

)
.

Moreover ∣∣Dα−1
0+ T1u(t1)−Dα−1

0+ T1u(t2)
∣∣

=

∣∣∣∣∫ t2

t1

f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))ds

∣∣∣∣
⩽

∫ +∞

L

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds < ε

and ∣∣∣∣∣Dα−2
0+ T1u(t1)

1 + t1
−
Dα−2

0+ T1u(t2)

1 + t2

∣∣∣∣∣
=

∣∣∣∣∫ t1

0

t1 − s

1 + t1
f(s, u(s), Dα−1

0+ u(s), Dα−2
0+ u(s))ds

−
∫ t2

0

t2 − s

1 + t2
f(s, u(s), Dα−1

0+ u(s), Dα−2
0+ u(s))ds

− t1
1 + t1

∫ +∞

0

f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))ds

+
t2

1 + t2

∫ +∞

0

f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))ds

∣∣∣∣ .
So ∣∣∣∣∣Dα−2

0+ T1u(t1)

1 + t1
−
Dα−2

0+ T1u(t2)

1 + t2

∣∣∣∣∣
⩽

∫ L

0

∣∣∣∣ t1 − s

1 + t1
− t2 − s

1 + t2

∣∣∣∣ |f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds

+

∫ t1

L

t1 − s

1 + t1
|f(s, u(s), Dα−1

0+ u(s), Dα−2
0+ u(s))|ds

+

∫ t2

L

t2 − s

1 + t2
|f(s, u(s), Dα−1

0+ u(s), Dα−2
0+ u(s))|ds
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+2

∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds

⩽
∫ L

0

∣∣∣∣ t1 − s

1 + t1
− t2 − s

1 + t2

∣∣∣∣ |f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds

+2

∫ L

0

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds

+4

∫ +∞

L

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds

⩽ sup
s∈[0,L], u∈Ωr

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|Lε

+2 sup
s∈[0,L], u∈Ωr

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|L+ 4ε.

Which yield that the functions from { T1Ωr

1+tα−1 }, {Dα−1
0+ T1Ωr} and from

{
Dα−2

0+
T1Ωr

1+t

}
are equiconvergent at infinity. According to Lemma 3.2, it follows that T1(Ωr) is
relatively compact, ending the proof of the Lemma.

Lemma 3.5. If (H3) holds. Then T2 : Ωr → Y is a contraction mapping.

Proof. We have∣∣∣∣ T2u(t)1 + tα−1
− T2v(t)

1 + tα−1

∣∣∣∣ ⩽
1

Γ(α)

∣∣∣∣ tα−1

1 + tα−1

∣∣∣∣ |N(u)−N(v)|

⩽
1

Γ(α)
|N(u)−N(v)|

⩽
l

(Γ(α))2
∥u− v∥Y .

Moreover ∣∣Dα−1
0+ T2u(t)−Dα−1

0+ T2v(t)
∣∣ = |N(u)−N(v)|

⩽
l

Γ(α)
∥u− v∥Y .

Also ∣∣∣∣∣Dα−2
0+ T2u(t)

1 + t
−
Dα−2

0+ T2v(t)

1 + t

∣∣∣∣∣ =

∣∣∣∣ t

1 + t
(N(u)−N(v))

∣∣∣∣
⩽

l

Γ(α)
∥u− v∥Y .

We conclude

∥T2u− T2v∥Y ⩽
l

Γ(α)
∥u− v∥Y .

From (H3), we infer that T2 is a contraction mapping.
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4. Main results

Theorem 4.1. If assumptions (H1) − (H5) hold, then the problem (1.1) has at
least one solution.

Proof. Consider the parameterized bvp{
Dα

0+u(t) = λf(t, u(t), Dα−1
0+ u(t), Dα−2

0+ u(t)), t ∈ (0,+∞),
u(0) = Dα−2

0+ u(0) = 0, lim
t→+∞

Dα−1
0+ u(t) = λN(u),(4.1)

for λ ∈ (0 , 1).
Solving problem (4.1) is equivalent to solving the fixed point of equation u = λTu.
Let

Ωρ = {u ∈ Y, ∥u∥Y < ρ}.

From Lemma 3.3, the set T (Ωρ) is bounded and by Lemma 3.4, the operator T1 :
Ωρ → Y is completely continuous, while Lemma 3.5 implies that the operator
T2 : Ωρ → Y is contractive. So it remains to prove that u ̸= λTu for u ∈ ∂Ωρ and
λ ∈ (0 , 1).
Arguing by contradiction, if there exists u ∈ ∂Ωρ with u = λTu, then for λ ∈ (0 , 1)
we have

sup
t≥0

∣∣∣∣ u(t)

1 + tα−1

∣∣∣∣
⩽ sup

t≥0

∣∣∣∣ (Tu)(t)1 + tα−1

∣∣∣∣
⩽

1

Γ(α)

(∫ t

0

(t− s)α−1

1 + tα−1
|f(s, u(s), Dα−1

0+ u(s), Dα−2
0+ u(s))|ds

+
tα−1

1 + tα−1

∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds+ tα−1

1 + tα−1
|N(u)|

)
.

⩽
1

Γ(α)

(
2

∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds+ |N(u)−N(0)|+ |N(0)|
)
.

So

sup
t≥0

∣∣∣∣ u(t)

1 + tα−1

∣∣∣∣
⩽

1

Γ(α)

(
2

∫ +∞

0

(
ρ((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s)

)
ds+

lρ

Γ(α)

)
.

In addition

sup
t≥0

∣∣Dα−1
0+ u(t)

∣∣
= sup

t≥0

∣∣λDα−1
0+ Tu(t)

∣∣
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⩽ sup
t≥0

∣∣Dα−1
0+ Tu(t)

∣∣
⩽ 2

∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds+ |N(u)|

⩽ 2

∫ +∞

0

(
ρ((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s)

)
ds+

lρ

Γ(α)

and

sup
t≥0

∣∣∣∣∣Dα−2
0+ u(t)

1 + t

∣∣∣∣∣
= sup

t≥0

∣∣∣∣∣λDα−2
0+ Tu(t)

1 + t

∣∣∣∣∣
⩽ sup

t≥0

∣∣∣∣∣Dα−2
0+ Tu(t)

1 + t

∣∣∣∣∣
⩽

∫ t

0

t− s

1 + t
|f(s, u(s), Dα−1

0+ u(s), Dα−2
0+ u(s))|ds

+
t

1 + t

∫ +∞

0

|f(s, u(s), Dα−1
0+ u(s), Dα−2

0+ u(s))|ds+ tα−1

1 + tα−1
|g(u)|

⩽ 2

∫ +∞

0

(
ρ((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s)

)
ds+

lρ

Γ(α)
.

So

∥u∥Y ⩽ 2

∫ +∞

0

(
ρ((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s)

)
ds+

lρ

Γ(α)

and thus

ρ ⩽ 2

∫ +∞

0

(
ρ((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s)

)
ds+

lρ

Γ(α)
.

This implies that

ρ

2
∫ +∞
0

(ρ((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s)) ds+ lρ
Γ(α)

⩽ 1,

contradicting condition (H5). With theorem 2.1 we conclude that bvp (1.1) has at
least one solution.
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5. Example

Example 5.1. Consider the bvp on infinite interval D
5
2

0+
u(t) = e−30t

1+
√
t3
u(t) +

D
3
2
0+

u(t)

(50+t)2
+

D
1
2
0+

u(t)

50(1+t)3
+ e−t, t ∈ (0,+∞),

u(0) = D
1
2

0+
u(0) = 0, lim

t→+∞
D

3
2

0+
u(t) = 1

10
u(1) + 1

20
u(4).

(5.1)

In this case, α = 5
2
, Γ( 5

2
) ≈ 1.329340388, N(u) = 1

10
u(1) + 1

20
u(4), it’s mean

c1 = 1
10
, c2 = 1

20
, ξ1 = 1, ξ2 = 4.

We will apply Theorem 4.1 to show that problem (5.1) has at least a solution.
Let

f(t, x, y, z) =
e−30t

1 +
√
t3
x+

y

(50 + t)2
+

z

50(1 + t)3
+ e−t.

Choose

ρ >
600Γ( 5

2
)

266Γ( 5
2
)− 195

.

Then
(H1) f : [0,+∞)× R× R× R → ×R is Carathéodory.

(H2) |f(t, x, y, z)| ⩽ e−30t

1+
√

t3
|x|+ 1

(50+t)2
|y|+ 1

50(1+t)3
|z|+ e−t. So we may take

φ(t) =
e−30t

1 +
√
t3
, ψ(t) =

1

(50 + t)2
, µ(t) =

1

50(1 + t)3
, ϕ(t) = e−t

and note that (1 +
√
t3)φ(t), ψ(t), (1 + t)µ(t), ϕ(t) ∈ L1[0,+∞) such that∫ +∞

0

(
1 + s

3
2

)
φ(s)ds =

1

30
,

∫ +∞

0

ψ(s)ds =
1

50
,∫ +∞

0

(1 + s)µ(s)ds =
1

50
,

∫ +∞

0

ϕ(s)ds = 1.

(H3) Choose l = c1(1+
√
ξ31)+c2(1+

√
ξ32) =

9
10

verify 0 < l < Γ( 5
2
) with |N(u)−N(v)| ⩽

l

Γ( 5
2
)
∥u− v∥Y for all u, v ∈ Y.

(H4) N(0) = 0.
(H5)

ρ

2
∫ +∞
0

(ρ((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s)) ds+ lρ
Γ(α)

=
ρ

34Γ( 5
2
)+195

300Γ( 5
2
)
ρ+ 2

=
300Γ( 5

2
)

34Γ( 5
2
) + 195 +

600Γ( 5
2
)

ρ

> 1.

Which implies

ρ > 2

∫ +∞

0

(
ρ((1 + sα−1)φ(s) + ψ(s) + (1 + s)µ(s)) + ϕ(s)

)
ds+

lρ

Γ(α)
.

Hence, all conditions of Theorem 4.1 are satisfied, we deduce that the bvp (5.1) has at
least one solution.
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6. Conclusion

In this work, we considered a class of fractional differential equation with nonlo-
cal boundary conditions on an infinite interval. With the aid of the Krasnosel’skii’s
fixed point theorem, we have obtained existence results for the proposed problem in
this paper. An example was presented to illustrate the main results. The boundary
value problem of fractional differential equations on an infinite interval have been
widely discussed in recent years. The examples of this is establishing the existence
of solutions for fractional differential equations with multi-point boundary condi-
tions, as well as the existence of positive solutions for fractional boundary value
problem on an infinite interval.
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