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ON ZETA AND DIRICHLET BETA FUNCTION FAMILIES AS
GENERATORS OF GENERALIZED MATHIEU SERIES,

PROVIDING APPROXIMATION AND BOUNDS

Pietro Cerone

La Trobe University , Melbourne (Bundoora) Vic 3086, Australia

Abstract. Integral representations for a generalized Mathieu series and its compan-
ions are used to undertake analysis leading to novel insights for Zeta and Dirichlet Beta
function families. The bounds are procured using sharp bounds of Zeta and Dirichlet
family bounds to procure approximating and bounds utilising integral representation
of generalized Mathieu series results using in particular Hardy-type upper bounds.
Keywords: Generalised Mathieu Series Family; Identities and bounds;Hardy-type up-
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relations

1. Introduction

The series, known in the literature as the Mathieu series,

(1.1) S (r) =

∞∑
n=1

2n

(n2 + r2)
2 , r > 0,

has been extensively studied in the past since its introduction by Mathieu [28] in
1890, where it arose in connection with work on elasticity of solid bodies. The reader
is directed to the references and the books [4], [5] and [33] for further illustration of
various representations and bounds. The various applications of areas involve the
solution of the biharmonic equation in a rectangular two dimensional domain using
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the so called superposition method and the interested reader is referred to the work of
Meleshko ([29],[30],[31]) for excellent coverage and further references. A Literature
search in MathScinet with ’Mathieu series’ results in over 800 hits demnostrates
that the area continues to attract many avenues of research and application. See
also some of the recent activity such as in [5, 19, 32, 36].

One of the main questions addressed in relation to the series is obtaining sharp
bounds.

Building on some results from [37], Alzer, Brenner and Ruehr [1] showed that
the best constants a and b in

(1.2)
1

x2 + a
< S (x) <

1

x2 + b
, x 6= 0

are a = 1
2ζ(3) and b = 1

6 where ζ(·) denotes the Riemann zeta function defined by

(1.3) ζ(p) =

∞∑
n=1

1

np
.

An integral representation for S (r) as given in (1.1) was presented in [18] and
[20] as

(1.4) S (r) =
1

r

∫ ∞
0

x

ex − 1
sin (rx) dx.

Guo [22] utilised (1.4) to obtain bounds on S (r) .

Guo in [22] posed the interesting problem as to whether there is an integral
representation of the generalized Mathieu series

(1.5) Sµ (r) =

∞∑
n=1

2n

(n2 + r2)
1+µ , r > 0, µ > 0.

The challenge by Guo [22] to obtain an integral representation for Sµ (r) as
defined in (1.5), was successfully answered by Cerone and Lenard [15] in which the
following two theorems were proved.

Theorem 1.1. The generalized Mathieu series Sµ (r) defined by (1.5) may be rep-
resented in the integral form

(1.6) Sµ (r) = Cµ (r)

∫ ∞
0

xµ+ 1
2

ex − 1
Jµ− 1

2
(rx) dx, µ > 0,

where

(1.7) Cµ (r) =

√
π

(2r)
µ− 1

2 Γ (µ+ 1)

and Jν (z) is the νth order Bessel function of the first kind.
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The emphasis as in [15], became the derivation of bounds for the generalized
Mathieu series Sµ (r) . The first approach utilized sharp bounds for the Bessel func-
tion |Jν (z)| . To this end, in an article by Landau [25], the best possible uniform
bounds were obtained for Bessel function.

The following results were obtained in [15] using a weighted Čebyšev functional
approach. See also [10] where the approach was utilized for a greater variety of
special functions. Further relating reference papers, [7], [12],and books, [14], [23],
[38] that have contributed to the work.

Theorem 1.2. For µ > 0 and r > 0 the generalized Mathieu series Sµ (r) satisfies

(1.8)

∣∣∣∣∣Sµ (r)− π2

12µ
(
r2 + 1

4

)µ
∣∣∣∣∣

≤ κ

 1√
π
·

Γ
(
2µ− 1

2

)
22µ−1Γ2 (µ+ 1)

∫ π
2

0

cos2µ−1 φ[(
1
4

)2
+ r2 cos2 φ

]2µ− 1
2

dφ− 1

2µ2
(
r2 + 1

4

)2µ


1
2

≤ κ

[
Γ
(
2µ− 1

2

)
Γ
(
µ+ 1

2

)
22µΓ3 (µ+ 1)

· 1

r4µ−1
− 1

2µ2
(
r2 + 1

4

)2µ
] 1

2

,

where

(1.9) κ =

[
π2

(
1− π2

72

)
− 7ζ (3)

] 1
2

= 0.3198468959 . . . ..

Corollary 1.1. The Mathieu series S (r) , satisfies the following bounds

(1.10)

∣∣∣∣∣
∞∑
n=1

2n

(n2 + r2)
2 −

π2

12
(
r2 + 1

4

) ∣∣∣∣∣ ≤ 2
√

2 · κ

 2

1 + (4r)
2 −

1[
1 + (2r)

2
]2


1
2

where κ is as given by (1.9).

As explained in Pogany et al.[32], motivated by [15], a family of Mathieu a-series
were introduced by Pogany et al.[35] together with their integral representations,
various approaches and results were used to procure bounds.

The alternating generalized Mathieu series, companion to Sµ (r) ,was introduced
by Pogany et al. [36] and is represented by

(1.11) S̃µ (r) =

∞∑
n=1

(−1)n−1 · 2n
(n2 + r2)

1+µ , r > 0, µ > 0.
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which can be also expressed in the following integral form

(1.12) S̃µ (r) = Cµ (r)

∫ ∞
0

xµ+ 1
2

ex + 1
Jµ− 1

2
(rx) dx, µ > 0,

where Cµ (r) is as given in (1.7).

In paper [16], bounds were obtained for the alternating generalized Mathieu
series S̃µ (r), the odd φµ(r) and even ψµ(r) generalized Mathieu series. This was

accomplished by using their integral representations via Čebyšev Functional bounds
which is presented in Subsection 2.1. The methodology produces both the approxi-
mation and bounds for the companion series of the generalized Mathieu series. It is
further demonstrated that the relationship between the Zeta function, the alternat-
ing Zeta function and the odd Zeta function family is recaptured by allowing r → 0.

In the paper [11] the emphasis was to extend the methodology for the Zeta
family to the Dirichlet Beta L- function family through the generalized Mathieu
series which is presented in section 2. The work in [16] emphasised the extension
to a generalized Mathieu series Sµ (r) by the Zeta function, ζ(·) as generator.The
work is based on the generator as the sum of the reciprocal powers of odd positive

numbers, λ(s) .The Dirichlet Beta function β(s) =
∑∞
n=1

(−1)n−1

(2n−1)s has the honour

as the lead of this family.

The generalized Mathieu series are based on two parameters r and µ, as exem-
plified by (1.5) and (1.6) in addition to various generators.The Dirichlet L-series
have played a great deal of attention in number theory. These are also relevant
to lattice sums which may be represented by lower dimensional lattice sums.The
classic example of this was first given by Lorenz [26] as well in [39] , given by,

(1.13)

∞∑
m,n 6=0,0

1

(m2 + n2)
s = 4ζ (s) · β(s).

The reader is encouraged to refer to [39] , [6] and [17] for interest and further
references.

Section 3 demonstrates a result of Hardy [24] which enables sharp upper bounds
of a well known function which, it is seemed not to have been utilized in the lit-
erature.The upper bounds of Zeta and Beta families and, double bounds for Eta
and Dirichlet Beta functions are also shown. Section 4 demonstrates application
of Hardy-type upper bounds for generalized Mathieu series and compares with re-
sults of Čebyšev Functional bounds. Some further applications of obtaining upper
bounds with Hardy -type results are also shown in section 5.

2. Some Results on Bounding the Generalized Mathieu Series via the
Čebyšev Functional

The current section presents a key methodology to procure approximation and
bounds for the integral representations of the Zeta and Dirichlet Beta function
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companions, as generators of generalized Mathieu series.

The weighted Čebyšev functional defined by

(2.1) T (f, g; p) :=M (fg; p)−M (f ; p)M (g; p) ,

where M is the weighted integral mean

(2.2) M (h; p) :=

∫ b
a
p (x)h (x) dx

P
,

where P is given by,

(2.3) P =

∫ b

a

p (x) dx .

has been extensively investigated in the literature with the view of determining
its bounds. The unweighted Čebyšev functional T (f, g; 1) ,was bounded by Grüss
in [21] by the product of the difference of the functions and their function bounds.

Cerone and Dragomir [13] showed that the best K, in the following lemma, in
the sense of providing the sharpest bound for the Euclidean or 2−norm, results
when K =M (f ; p) .

Lemma 2.1. The sharpest bound for the Čebyšev functional involving the Eu-
clidean norm is given by

(2.4) P · |T (f, g; p)|

≤ inf
K

[∫ b

a

p (t) (f (t)−K)
2
dt

] 1
2
[∫ b

a

p (t) (g (t)−M (g; p))
2
dt

] 1
2

=

[∫ b

a

p (t) f2 (t) dt−M2 (f ; p)

] 1
2
[∫ b

a

p (t) g2 (t) dt−M2 (g; p)

] 1
2

.

The following technical lemma involving the Euler beta function B(x, y) is repre-
sented in terms of the gamma function by

(2.5) B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

The bounds of the Lemma below provides a courser bounds for Čebyšev Func-
tional bounds of the Generalized Mathieu series of Zeta and Beta family results.

Lemma 2.2. The following result holds (see [16] for the proof)

(2.6)
1

2
·

B( 1
2 , µ)

[α2 + r2]
2µ− 1

2

≤
∫ π

2

0

cos2µ−1 φ

[α2 + r2 cos2 φ]
2µ− 1

2

dφ ≤ 1

2
·
B( 1

2 , µ)

α4µ−1
,

It is noted that equality follows in (2.6) when r = 0.
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2.1. Bounds for S̃µ (r),Odd and Even Generalized Mathieu Series via
the Čebyšev Functional

Bounds on the Čebyšev functional (2.1) may be looked upon as estimating the
distance of the weighted mean of the product of two functions from the product of
the weighted means of the two functions. This proves to be quite useful since the
individual means are invariably easier to evaluate.

Theorem 2.1. (see [16] for the proof).For µ > 0 and r > 0, the alternating
generalized Mathieu series S̃µ (r) satisfies the following bounds,

(2.7)

∣∣∣∣∣S̃µ (r)− π2

24µ
(
r2 + 1

4

)µ
∣∣∣∣∣

≤ κ̃

 1√
π
·

Γ
(
2µ− 1

2

)
22µ−1Γ2 (µ+ 1)

∫ π
2

0

cos2µ−1 φ[(
1
4

)2
+ r2 cos2 φ

]2µ− 1
2

dφ− 1

2µ2
(
r2 + 1

4

)2µ


1
2

≤ κ̃

[
1

23µ−1µ2(µ− 1
2 )B(µ, µ− 1

2 )
− 1

2µ2
(
r2 + 1

4

)2µ
] 1

2

,

where κ̃ is as given by

(2.8) κ̃ =

[
π3

4
− 8 ·G− 2 ·

(
π2

24

)2
] 1

2

= 0.29260623049 . . . .

Using the generalized Mathieu series, Sµ (r) as given in (1.1) and (1.6)-(1.7)

together with the alternating generalized Mathieu series S̃µ (r) as given in (1.11)-
(1.12) we introduce the odd generalized Mathieu series, φµ(r) and the even gener-
alized Mathieu series, ψµ(r). These are given by [16]

(2.9) φµ(r) :=
Sµ (r) + S̃µ (r)

2
=

∞∑
n=1

2 · (2n− 1)

((2n− 1)2 + r2)
1+µ

= Cµ (r) · 2
∫ ∞

0

xµ+ 1
2

ex − e−x
Jµ− 1

2
(rx) dx, r, µ > 0,

and

ψµ(r) :=
Sµ (r)− S̃µ (r)

2
=

∞∑
n=1

2 · (2n)

((2n)2 + r2)
1+µ

= Cµ (r) · 2
∫ ∞

0

xµ+ 1
2

e2x − 1
Jµ− 1

2
(rx) dx, r, µ > 0,

where Cµ (r) is positive as defined in (1.7).
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Remark 2.1. It may be noticed that if we have identities for any two of the generalized
Mathieu type series Sµ (r) , S̃µ (r) , φµ(r), ψµ(r) then we may deduce the other two. In

particular Sµ(r) =
φµ(r) + ψµ(r)

2
and S̃µ(r) =

φµ(r) − ψµ(r)

2
.This however, is not the case

with regards to inequalities or bounds since, recourse to the triangle inequality would
result in a coarser bound. We may further notice that their integral representation may
be given by

(2.10) 2Cµ (r)

∫ ∞
0

H(x) · xµ−
1
2 Jµ− 1

2
(rx) dx, r, µ > 0

where Cµ (r) is positive as defined in (1.7)and H(x) is one of the following

(2.11) HM (x) =
x

ex − 1
, HA(x) =

x

ex + 1
, HO(x) =

x

ex − e−x , HE(x) =
x

e2x − 1
,

where the subscripts relate to the generalized Mathieu , alternating Mathieu, odd Mathieu
and even Mathieu series integral representations, respectively.

Remark 2.2. It should be emphasized that the H·(·) in (2.11) represent the weights
associated with the integral representation of the generalized Mathieu and its companions.
They satisfy the following conditions

(2.12) HA(x) < HE(x) < HO(x) < HM (x) , x < ln(2)

HE(x) < HA(x) < HO(x) < HM (x) , x > ln(2).

In ([16] )the odd and even generalized Mathieu series bounds were obtained via
a Čebyšev functional approach. If we allow the subscripts of O and E to represent
the cases related to φµ(r) (odd) and ψµ(r) (even).

We note from (2.9) that

(2.13)
φµ(r)

2Cµ (r)
=

∫ ∞
0

HO(x) · xµ− 1
2 Jµ− 1

2
(rx) dx, r, µ > 0

where from (2.11)

(2.14) HO(x) =
x

ex − e−x
.

The following theorem is a corection of the result in [16] . The ( 1
2 )2 within the

integral was (1)2.

Theorem 2.2. (see [16] for the proof). For µ > 0 and r > 0 the odd generalized
Mathieu series φµ(r) satisfies the following relationship, namely,

(2.15)

∣∣∣∣φµ(r)− π2

4µ (r2 + 1)
µ

∣∣∣∣
≤ κO

 4Γ
(
2µ− 1

2

)
22µ−1

√
πΓ2 (µ+ 1)

∫ π
2

0

cos2µ−1 φ[
( 1

2 )2 + r2 cos2 φ
]2µ− 1

2

dφ− 4

µ2 (12 + r2)
2µ

 1
2
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≤ κO

[
22µ+3

µ2(µ− 1
2 ) ·B

(
µ, µ− 1

2

) − 4

µ2 (12 + r2)
2µ

] 1
2

,

where,

κO =

[
π2

8
(1− π2

8
) +

7

8
ζ (3)

] 1
2

and B(x, y) is the Euler beta function given by (2.5).

We note from (2.9) that

(2.16)
ψµ(r)

2Cµ (r)
=

∫ ∞
0

HE(x) · xµ− 1
2 Jµ− 1

2
(rx) dx, r, µ > 0

where from (2.11)

(2.17) HE(x) =
x

e2x − 1
.

Theorem 2.3. (see [16] for the proof). For µ > 0 and r > 0 the even generalized
Mathieu series ψµ(r) satisfies the following relationship

(2.18)

∣∣∣∣ψµ(r)− π2

6µ (r2 + 22)
µ

∣∣∣∣
≤ κE

 4Γ
(
2µ− 1

2

)
22µ−1

√
πΓ2 (µ+ 1)

∫ π
2

0

cos2µ−1 φ[
(1)

2
+ r2 cos2 φ

]2µ− 1
2

dφ− 8

µ2 (12 + r2)
2µ


1
2

≤ κE

[
1

4µ−1µ2(µ− 1
2 ) ·B

(
µ, µ− 1

2

) − 8

µ2 (12 + r2)
2µ

] 1
2

,

where,

(2.19) κE =

[
π2

24
(1− π2

12
)

] 1
2

and B(x, y) is the Euler beta function given by (2.5).

The remainder of the results in this Section were developed in [16] to complete
the interplay between the generators as depicted by the Zeta family and the gener-
alized Mathieu series expressions.

The following lemma demonstrates the relationship for the generalised Mathieu
series and its companions.
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Lemma 2.3. (see [16] for the proof) The companion generalised Mathieu series
may be expressed in terms of the generalised Mathieu series, namely,

S̃µ (r) = Sµ (r)− 4−µSµ

(r
2

)

(2.20) φµ(r) = Sµ (r)− 2−2µ−1Sµ

(r
2

)
ψµ(r) = 2−2µ−1Sµ

(r
2

)
.

Remark 2.3. It is important to emphasize, as mentioned earlier, that obtaining bounds
for the companions in terms of those of the generalised Mathieu series would produce
inferior bounds from using the triangle inequality required for the first two results in
(2.20).

Theorem 2.4. The following relationships holds,

(2.21) Sµ (r) =

{
2φµ(r)− S̃µ (r)

2ψ(r) + S̃µ (r)

}
.

Proof. The first relationship (2.21) follows easily from (2.20) by subtracting the
first equation from twice the second. The second result is obtained by noting that
2ψµ(r) = 4−µSµ

(
r
2

)
in the third equation and substitution in the first of (2.20).

The first equation in (2.21) recaptures, on allowing r− > 0, the well known
result involving the Zeta function, ζ(x)

(2.22) ζ(x) = 2λ(x)− η(x)

where λ(x) is the odd zeta, η(x) is the alternating zeta ,and x = 2µ + 1. This
demonstrates that (2.21) is an extention of the Zeta expression (2.22) through the
variable r of Mathieu type functions. A similar resoning gives ζ(x) = 2ψ(x) +
η(x).

2.2. Dirichlet Beta and L-Function Generalized Mathieu Series
Bounds

The Dirichlet beta function or Dirichlet L-function is given by [19]

(2.23) β (x) =

∞∑
n=0

(−1)
n

(2n+ 1)
x , x > 0

where β (2) = G, Catalan’s constant.See [8] and [9] in which sharp double bounds
were obtained.

It is readily observed that β (x) is the alternating version of λ (x) , however, it
cannot be directly related to ζ (x) . It is also related to η (x) in that only the odd
terms are summed.
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The beta function may be evaluated explicitly at positive odd integer values of
x, namely,

(2.24) β (2n+ 1) = (−1)
n E2n

2 (2n)!

(π
2

)2n+1

,

where En are the Euler numbers generated by

sech (x) =
2ex

e2x + 1
=

∞∑
n=0

En
xn

n!
.

The Dirichlet beta function may be analytically continued over the whole com-
plex plane by the functional equation

β (1− z) =

(
2

π

)z
sin
(πz

2

)
Γ (z)β (z) .

The function β (z) is defined everywhere in the complex plane and has no singular-
ities, unlike the Riemann zeta function, ζ (s) =

∑∞
n=1

1
ns , which has a simple pole

at s = 1.

The Dirichlet beta function and the zeta function have important applications in
a number of branches of mathematics, and in particular in Analytic number theory.
See for example [3], [17].

Further, β (x) has an alternative integral representation [19, p. 56]. Namely,

β (x) =
1

2Γ (x)

∫ ∞
0

tx−1

cosh (t)
dt, x > 0.

That is,

(2.25) β (x) =
1

Γ (x)

∫ ∞
0

tx−1

et + e−t
dt, x > 0.

The function β (x) is also connected to prime number theory [19] which may perhaps
be best summarised by

β (x) =
∏

p prime
p≡1mod 4

(
1− p−x

)−1 ·
∏

p prime
p≡3mod 4

(
1 + p−x

)−1
=
∏
p odd
prime

(
1− (−1)

p−1
2 p−x

)−1

,

where the rearrangement of factors is permitted because of absolute convergence.

The main thrust of the article is to investigate the Dirichlet Beta function via
generalised Mathieu series approach, which may be looked upon as an alternating
odd generalized Mathieu series, φ̃µ(r), namely

(2.26) φ̃µ(r) =

∞∑
n=1

(−1)n−1 2(2n− 1)

((2n− 1)2 + r2)
1+µ
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= Cµ (r) · 2
∫ ∞

0

xµ+ 1
2

ex + e−x
Jµ− 1

2
(rx) dx, r, µ > 0.

This is, in part, inspired by the alternating odd zeta function, β(s) =
∑∞
n=1

(−1)n−1

(2n−1)s

which has explicit closed form solution in terms of Euler polynomials for s =
2m+ 1 whereas ζ (2m) for m ∈ N, is explicitly given in terms of Bernoulli polyno-
mials.This is so, since using a limiting argument φ̃µ(0) = 2β(2µ+ 1).

Theorem 2.5. (See [11] for the proof). For µ > 0 and r > 0 the alternating odd
generalized Mathieu series φ̃µ(r) satisfies the following relationship, namely,

(2.27)

∣∣∣∣φ̃µ(r)− 2 ·G
µ (r2 + 1)

µ

∣∣∣∣
≤ κÕ

 4Γ
(
2µ− 1

2

)
22µ−1

√
πΓ2 (µ+ 1)

∫ π
2

0

cos2µ−1 φ[(
1
2

)2
+ r2 cos2 φ

]2µ− 1
2

dφ− 4

µ2 (12 + r2)
2µ


1
2

≤ κÕ

[
22µ+3

µ2(µ− 1
2 ) ·B

(
µ, µ− 1

2

) − 4

µ2 (12 + r2)
2µ

] 1
2

,

where,

(2.28) κÕ =

[
G(1−G) +

π3

32

] 1
2

and B(x, y) is the Euler beta function given by (2.5)

The previous work investigating the generalised Mathieu series was extended
to the alternating, odd, and even generalised Mathieu series.The odd (φµ(r)) and

alternating (φ̃µ(r)) generalised Mathieu series will be used to obtain other results
conserning L(4,1)(·) and L(4,3)(·) as generators.

Let,

(2.29) Φ+
µ (r) :=

φµ (r) + φ̃µ (r)

2
=

∞∑
n=0

2 · (4n+ 1)

((4n+ 1)2 + r2)
1+µ

= Cµ (r) · 2
∫ ∞

0

xex

e2x − e−2x
xµ−

1
2 Jµ− 1

2
(rx) dx, r, µ > 0,

and,

(2.30) Φ−µ (r) :=
φµ (r)− φ̃µ (r)

2
=

∞∑
n=0

2 · (4n+ 3)

((4n+ 3)2 + r2)
1+µ
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= Cµ (r) · 2
∫ ∞

0

xe−x

e2x − e−2x
xµ−

1
2 Jµ− 1

2
(rx) dx, r, µ > 0,

where,

(2.31) Cµ (r) =

√
π

(2r)
µ− 1

2 Γ (µ+ 1)
·

Theorem 2.6. (See [11] for the proof). For µ > 0 and r > 0 the alternating odd
generalized Mathieu series φ̃µ(r) satisfies the following relationship, namely,

(2.32)

∣∣∣∣∣ Φ+
µ (r)

2Cµ (r)
− (2r)

µ− 1
2 Γ (µ)√

π (12 + r2)
µ · L(4,1)(2)

∣∣∣∣∣
≤ κφ+

 4Γ
(
2µ− 1

2

)
22µ−1

√
πΓ2 (µ+ 1)

∫ π
2

0

cos2µ−1 φ[(
1
2

)2
+ r2 cos2 φ

]2µ− 1
2

dφ− 4

µ2 (12 + r2)
2µ


1
2

≤ κφ+

[
22µ+3

µ2(µ− 1
2 ) ·B

(
µ, µ− 1

2

) − 4

µ2 (12 + r2)
2µ

] 1
2

,

where,

(2.33) κφ+ =

[
L(4,1) (2) (

1

2
− L(4,1) (2)) +

3

2
L(4,1) (3)

] 1
2

and B(x, y) is the Euler beta function given by (2.5).

Theorem 2.7. (See [11] for the proof). For µ > 0 and r > 0 the alternating odd
generalized Mathieu series φ̃µ(r) satisfies the following relationship, namely,

(2.34)

∣∣∣∣∣Φ−µ (r)− (2r)
µ− 1

2 Γ (µ)√
π (32 + r2)

µ · L(4,3)(2)

∣∣∣∣∣
≤ κφ−

 4Γ
(
2µ− 1

2

)
22µ−1

√
πΓ2 (µ+ 1)

∫ π
2

0

cos2µ−1 φ[(
3
2

)2
+ r2 cos2 φ

]2µ− 1
2

dφ− 1

3

(2r)
µ− 1

2 Γ (µ)√
π (32 + r2)

µ


1
2

≤ κ
φ−

[
22µ+3

µ2(µ− 1
2 ) ·B

(
µ, µ− 1

2

) − 1

3

(2r)
µ− 1

2 Γ (µ)√
π (32 + r2)

µ

] 1
2

,

where,

(2.35) κφ− =

[
1

2

(
L(4,3) (2) + L(4,3) (3)

)
− 1

3

(
L(4,3) (2)

)2] 1
2

and B(x, y) is the Euler beta function given by (2.5).
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We may notice that the integral representation for the Dirichlet beta function
family, may be represented by

(2.36) 2Cµ (r)

∫ ∞
0

H(x) · xµ− 1
2 Jµ− 1

2
(rx) dx, r, µ > 0

where Cµ (r) is positive as defined in (1.7) and H(x) is one of the following kernels
(2.37)

Hφ(x) =
x

ex − e−x
, Hφ̃(x) =

x

ex + e−x
, HL(4,1)

(x) =
xex

e2x − e−2x
, HL(4,3)

(x) =
xe−x

e2x − e−2x
.

The subscripts relate to the generalized Mathieu beta family; odd, alternating,
L(4,1)(x) and L(4,3)(x) Mathieu series integral representations, respectively.

Remark 2.4. It should be emphasized that the H·(·) in (2.36) represent the weights or
kernel associated with the integral representation of the generalized Mathieu beta family
and its companions. They satisfy the following conditions

(2.38) HL(4,3)
(x) < Hφ̃(x) < HL(4,1)

(x) < Hφ(x) , x >
ln(2)

2

Hφ̃(x) < HL(4,3)
(x) < HL(4,1)

(x) < Hφ(x) , x <
ln(2)

2
.

The following theorem demonstrates the relationship for the generalized Mathieu
series related to the Beta L-function family.This can be compared with the Zeta
function family results were discussed in the previous subsection.

Theorem 2.8. The following relationships hold,. Namely,

(2.39) φµ (r) =

{
2 · Φ+

µ (r)− φ̃µ (r)

2 · Φ−µ (r) + φ̃µ (r)

}

where φµ (r) is defined in (2.9), φ̃µ (r) is given in (2.26) and, Φ+
µ (r) and Φ−µ (r)

are defined in (2.29) and (2.30) respectively.These entities represent the generalized
Mathieu series propogated by series of reciprocal powers of odd numbers, alternating
odd numbers,L(4,1)(·) and L(4,3)(·).

Proof. This is trivial since Φ+
µ (r) :=

φµ(r)+φ̃µ(r)

2 and Φ−µ (r) :=
φµ(r)−φ̃µ(r)

2 are
defined (2.29) and (2.30).

Remark 2.5. If r is allowed to tend to zero for the first result at (2.39),namely, φµ (r) =

2 ·Φ+
µ (r)− φ̃µ (r) then the relationship λ(x) = 2L(4,1)(x)− β(x) where x = 2µ+ 1 results.

Further, from the second result, φµ (r) = 2 · Φ−µ (r) + φ̃µ (r) then the relationship λ(x) =
2L(4,3)(x) + β(x) where x = 2µ+ 1 results.The similar process relating the Zeta function
ζ(x) produced ζ(x) = 2λ(x) − η(x) ,where λ(x) is the odd zeta, η(x) is the alternating
zeta ,and x = 2µ+ 1 at (2.22).
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3. Hardy upper bounds for Zeta and Beta families and double bounds
for Eta and Dirichlet Beta

The current section develops a result by Hardy which enables a sharp upper bound
of a well known function. The theorem is reproduced here since the result does not
seem to have been utilised in the literature.The Zeta and Beta families which have
been developed by the author, sharp lower and upper bounds as demonstrated to
date. Further, upper bounds for some five of the Zeta and Beta families, bounds of
Hardy -type have been developed within the remainder of this article.

3.1. An upper bound of Hardy for 1
1−e−x .

Some initial background is presented prior to the theorem of Hardy, below.

A theorem of Grüss [21] states that if a > 0, F1 ≤ f ≤ F2 and G1 ≤ g ≤ G2

where,

(3.1) D(f, g) =
1

a

∫ a

0

f(x)g(x)dx− 1

a2

∫ a

0

f(x)dx ·
∫ a

0

g(x)dx,

then,

(3.2) |D(f, g)| ≤ 1

4
(F2 − F1)(G2 −G1)

for any bounded and integrable f, g.

Definition 3.1. f is a total-monotone in (0, a) if

(3.3) f ≥ 0, f ′ ≤ 0, f ′′ ≥ 0, f ′′′ ≥ 0....

in (0, a).

Definition 3.2. If f is a total-monotone in (0,∞) then a well known theorem of
Bernstein

(3.4) f(x) =

∫ ∞
0

e−xtdχ(t)

where dχ ≥ 0,for all positive x.

Theorem 3.1. (Hardy [24] ). If f and g are total-monoton in (0,∞) ,then

(3.5) D(f, g) ≤ 1

12
(F2 − F1)(G2 −G1)

for every a. The constant 1
12 is best possible.
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Proof. If F = 1
a

∫ a
0
f(x)dx, G = 1

a

∫ a
0
g(x)dx then (3.1) may be represented as that

due to Sönin

(3.6) D(f, g) =
1

a

∫ a

0

(f(x)− F ) · (g(x)−G)dx

and so

(3.7) D2(f, g) ≤ 1

a

∫ a

0

(f(x)− F )2dx · 1

a

∫ a

0

(g(x)−G)2dx = D(f, f) ·D(g, g)

and so it is enough to prove (3.5) when f = g since D(f, f) ≥ 0.

Hence from (3.4)

(3.8)
1

a

∫ a

0

f 2(x)dx =
1

a

∫ a

0

∫ ∞
0

e−xtdχ(t)

∫ ∞
0

e−xudχ(u)dx

=
1

a

∫ ∞
0

∫ ∞
0

1− e−a(t+u)

t+ u
dχ(t)dχ(u)

and further

(3.9)
1

a

∫ a

0

f (x)dx =
1

a

∫ ∞
0

1− e−at

t
dχ(t),

F2 − F1 = f(0)− f(a) =

∫ ∞
0

(1− e−at)dχ(t)

Thus from (3.8) and (3.9) gives

D(f, f) =

∫ ∞
0

∫ ∞
0

H(t, u)dχ(t)dχ(u), (F 2 − F 1) =

∫ ∞
0

∫ ∞
0

K(t, u)dχ(t)dχ(u)

where

H(t, u) =
1− e−a(t+u)

a(t+ u)
− (1− e−at)(1− e−au)

a2tu
, K(t, u) = (1− e−at)(1− e−au),

and it is enough to prove that H(t, u) ≤ 1
12K(t, u) ,for all t, u.

It is sufficient to prove that

(3.10)
1− e−(x+y)

(x+ y)(1− e−x)(1− e−y)
− 1

xy
≤ 1

12
, x > 0, y > 0

where x = at and y = au.

Equation (3.10) may be expressed as

1

1− e−x
+

1

1− e−y
− 1 ≤ 1

x
+

1

y
+
x+ y

12
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or that

(3.11) ϕ(x) + ϕ(y) ≤ 1

where

(3.12) ϕ(x) =
1

1− e−x
− 1

x
− x

12

and so ϕ(x) ≤ 1
2 .

Corollary 3.1. The above Theorem of Hardy’s effectively results in the following
upper bound,

(3.13)
1

1− e−x
≤ 1

x
+

1

2
+

x

12
or

1

ex − 1
≤ e−x(

1

x
+

1

2
+

x

12
), x > 0, and

x

1− e−x
≤ 1 +

x

2
+
x2

12
or

x

ex − 1
≤ e−x(1 +

x

2
+
x2

12
), x > 0.

3.2. An Identity and Bounds Involving the Eta and Related Functions

We note that there are functions that are closely related to the Zeta function ,ζ(x).
Namely, the Dirichlet function eta, η(x) and lamda, λ(x) given by

(3.14) η(x) =

∞∑
n=1

(−1)

nx

(n−1)

=
1

Γ (x)

∫ ∞
0

tx−1

et + 1
dt, x > 0, x 6= 1

and

(3.15) λ(x) =

∞∑
n=1

1

(2n+ 1)x
=

1

Γ (x)

∫ ∞
0

tx−1

et − e−t
dt, x > 1,

These are related to ζ(x) by,

(3.16) η(x) = (1− 21−x) · ζ(x) and λ(x) = (1− 2−x) · ζ(x)

satisfying the well known identtity

(3.17) ζ(x) + η(x) = 2λ(x).

It is also obious from (3.16) that eliminating ζ(x) produces

(3.18) η(x) = (1− b(x))λ(x).

where

(3.19) b (x) =
1

2x − 1
.

The following lemma was developed in Cerone [9] to obtain sharp bounds for
the eta function, η (x) as given in Theorem 3.2.
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Lemma 3.1. The following identity for the eta function holds. Namely

(3.20) Q (x) :=
1

Γ (x+ 1)

∫ ∞
0

tx

(et + 1)
2 dt = η (x+ 1)− η (x) , x > 0.

The following theorem presents sharp bounds for the secant slope η (x) for a
distance of one apart.

Theorem 3.2. (Proven in [9]) For real numbers x > 0, we have

(3.21)
cη

2x+1
< η (x+ 1)− η (x) <

dη
2x+1

with the best possible constants

(3.22) cη = 2 ln 2− 1 = 0.3862943 . . . and dη = 1.

Given the sharp inequalities for η (x+ 1)− η (x) in (3.21) – (3.22), then we may
readily obtain sharp bounds for expressions involving the zeta function and the
lambda function at a distance of one apart.

Corollary 3.2. (Proven in [9]) For real numbers x > 0 we have

(3.23)

(
ln 2− 1

2

)
b (x) < ζ (x+ 1)− (1− b (x)) ζ (x) <

b (x)

2
,

where b (x) is as given by (3.19).

Proof. From Theorem 3.2 and (3.16) giving a relationship between η (x) and ζ (x)
we have

η (x+ 1)− η (x) =
(
1− 2−x

)
ζ (x+ 1)−

(
1− 21−x) ζ (x)

and so from (3.21) and (3.22)

cη
2
· b (x) < ζ (x+ 1)− (1− b (x)) ζ (x) <

dη
2
· b (x) .

Remark 3.1. Cerone et al. [12] obtained the upper bound in (3.23) and a coarser lower

bound of b(x)
8

. Alzer [2] demonstrated that the constants ln 2 − 1
2

and 1
2

in (3.23) are
sharp.The Corollary 3.2 is developed via the eta function presented in Theorem 3.2, which
is somewhat easier to procure.

Corollary 3.3. (Proven in [9]) For real x > 0 we have

(3.24)

(
ln 2− 1

2

)
b (x)

(
1− 2−(x+1)

)
< λ (x+ 1)−

(
1− b (x)

1− b (x+ 1)

)
λ (x)
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<
b (x)

2
·
(

1− 2−(x+1)
)
,

where b (x) is from (3.19) and from (3.16) and (3.18 ) we have,

(3.25) η (x) = (1− b (x))λ (x)

and so from (3.16) and (3.19)

2 ln 2− 1

2x+1
< η (x+ 1)− η (x)

= (1− b (x+ 1))λ (x+ 1)− (1− b (x))λ (x) <
1

2x+1
.

Division by 1− b (x+ 1) and some simplification readily produces (3.24).

The advantage of having sharp inequalities such as (3.21), (3.23) and (3.24)
involving function values at a distance of one apart is that if we place x = 2n, then
since ζ (2n) is known explicitly, we may approximate ζ (2n+ 1) and provide explicit
bounds. This is so for η (·) and λ (·) as well because of their relationship to ζ (·) via
(3.16) – (3.17).

In what follows, we investigate some numerical results associated with bounding
the unknown ζ (2n+ 1) by expressions involving the explicitly known ζ (2n) . The
following corollaries hold.

Corollary 3.4. The bound

(3.26)

∣∣∣∣ζ (x+ 1)− (1− b (x)) ζ (x)− ln 2

2
b (x)

∣∣∣∣ ≤ 1− ln 2

2
b (x) , x > 0

holds, where b (x) is as given by (1.6).

3.3. An Identity and Bounds Involving the Beta and Related
Functions

We note that there are functions that are closely related to the Beta function ,β(x).
Namely, the Dirichlet functions L(4,1)(·) and L(4,3)(·) and, lamda, λ(x) are given
by

(3.27) λ(x) =

∞∑
n=1

1

(2n+ 1)x
=

1

Γ (x)

∫ ∞
0

tx−1

et − e−t
dt, x > 1,

(3.28) β(x) =

∞∑
n=1

(−1)

nx

(n−1)

=
1

Γ (x)

∫ ∞
0

tx−1

et + e−t
dt, x > 0, x 6= 1
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and

(3.29) L(4,1)(x) =

∞∑
n=1

1

(4n+ 1)x
=

2

Γ (x)

∫ ∞
0

tet

e2t − e−2t
· tx−1dt, x > 0,

L(4,3)(x) =

∞∑
n=1

1

(4n+ 3)x
=

2

Γ (x)

∫ ∞
0

te−t

e2t − e−2t
· tx−1dt, x > 0.

These are related to λ(x) by,
(3.30)
β(x) = (1− 21−x) · λ(x), L(4,1)(x) = (1− 2−x) · λ(x) and L(4,3)(x) = 2−x · λ(x)

satisfying the identities

(3.31) λ(x) = 2L(4,1)(x)− β(x) and λ(x) = 2L(4,3)(x) + β(x).

It is also obvious from (3.31) that eliminating λ(x) produces

(3.32) β(x) = (1− b(x)) · L(4,1)(x), and β(x) =
2

b(x)
· L(4,3)(x)

where,

(3.33) b (x) =
1

2x − 1
.

The following lemma plays a significant role in obtaining bounds for the Dirichlet
beta function, β (x) as shown in the theorem below.

Lemma 3.2. (See [8] for the proof) The following identity for the Dirichlet beta
function holds. Namely,

(3.34) P (x) :=
2

Γ (x+ 1)

∫ ∞
0

e−t

(et + e−t)
2 · t

xdt = β (x+ 1)− β (x) .

The following theorem produces sharp bounds for the secant slope of β (x) .

Theorem 3.3. (See [8] for the proof).For real numbers x > 0, we have

(3.35)
cβ

3x+1
< β (x+ 1)− β (x) <

dβ
3x+1

,

with the best possible constants

(3.36) cβ = 3

(
π

4
− 1

2

)
= 0.85619449 . . . and dβ = 2.

Given the sharp inequalities for β (x+ 1) − β (x) in (3.35) – (3.36), then we may
readily obtain sharp bounds for expressions involving the lambda function and the
Dirichlet functions, L(4,1)(·) and L(4,3)(·) at a distance of one apart.
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Corollary 3.5. For real numbers x > 0 we have

(3.37) 3
(π

2
− 1
)

(
2

3
)x+1b (x) < λ (x+ 1)− (1− b (x))λ (x) < (

2

3
)x+1b (x) ,

where b (x) is as given by (3.33).

Proof. From Theorem 3.3 and (3.30) giving a relationship between β (x) and λ (x)
we have

β (x+ 1)− β (x) =
(
1− 2−x

)
λ (x+ 1)−

(
1− 21−x)λ (x)

and so from (3.35) and (3.36) produces

cβ
3x+1

· (1 + b (x)) < λ (x+ 1)− (1− b (x))λ (x) <
dβ

3x+1
· (1 + b (x)).

from which (3.37) is obtained after some simplification.

Corollary 3.6. For real numbers x > 0 we have

(3.38)
3

4

(π
2
− 1
)

(
2

3
)x+1(1−2−(x+1))b (x) < L(4,1) (x+ 1)− 1− b(x)

1− b(x+ 1)
·L(4,1)(x)

< (
2

3
)x+1(1− 2−(x+1))b (x) ,

where b (x) is as given by (3.33).

Proof. From Theorem 3.3 and (3.32) giving a relationship between β (x) and L(4,1)(x)
we have

β (x+ 1)− β (x) = (1− b(x+ 1)) · L(4,1)(x+ 1)− 1− b(x)

1− b(x+ 1)
· L(4,3)(x)

and so from (3.35) and (3.36) produces

cβ
3x+1(1− b(x+ 1))

< L(4,1)(x+ 1)− 1− b(x)

1− b(x+ 1)
· L(4,1)(x) <

dβ
3x+1(1− b(x+ 1))

from which (3.38) is obtained after some simplification.

Corollary 3.7. For real numbers x > 0 we have

(3.39)
3

4

(π
2
− 1
)
· b (x)

3x+1
< L(4,3) (x+ 1)− 1− b(x)

1− b(x+ 1)
· L(4,3)(x) <

b (x)

3x+1
,

where b (x) is as given by (3.33).
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Proof. From Theorem 3.3 and (3.32) giving a relationship between β (x) and L(4,3)(x)
we have

β (x+ 1)− β (x) =
2

b(x)
· L(4,3)(x+ 1)− 2

b(x− 1)
· L(4,3)(x)

and so from (3.35) and (3.36) produces

cβ
3x+1

· b(x)

2
< L(4,3)(x+ 1)− b(x)

b(x− 1)
· L(4,3)(x) <

dβ
3x+1

· b(x)

2
.

from which is obtained after some simplification.

Corollary 3.8. From (3.35)

(3.40)

∣∣∣∣β (x+ 1)− β (x)− dβ + cβ
2 · 3x+1

∣∣∣∣ ≤ dβ − cβ
2 · 3x+1

, x > 0

the bound above holds where the lower and upper bound cβ and dβ respectively are
given as in (3.36).

3.4. Application of Hardy upper Bounds for the Zeta and Beta
Families

Consider the integral version of the Zeta and Beta families as

(3.41) F (x) =
1

Γ (x)

∫ ∞
0

W (t) · tx−1dt

where the weight W (t) have subscripts to represent different Zeta and Beta
families respectively, as shown below

(3.42) Wζ(t) =
1

et − 1
,Wη(t) =

1

et + 1
,Wλ(t) =

1

et − e−t
,WE(t) =

1

e2t − 1
,

Wβ(t) =
1

et + e−t
,WL(4,1)

(t) =
et

et − e−t
,WL(4,3)

(t) =
e−t

et − e−t
.

However, the Hardy result cannot be used for the η and β subscripted cases.

Lemma 3.3. The Hardy upper bounds for the appropriate bounds for (3.42) are
given by

(3.43) Wζ(t) ≤ Bζ(t) = e−t(
1

t
+

1

2
+

t

12
)
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and so, from (3.42) and (3.43) gives,

(3.44) Wλ(t) ≤ et

2
Bζ(2t) = Bλ(t) =

e−t

2
(
1

t
+ 1 +

t

3
),

WE(t) ≤ et

2
Bζ(2t) = BE(t) =

e−2t

2
(
1

t
+ 1 +

t

3
),

WL(4,1)
(t) ≤ e3t

4
Bζ(4t) = BL(4,1)(t) =

e−t

4
(
1

t
+ 2 +

4

3
t) and,

WL(4,3)
(t) ≤ et

4
Bζ(4t) = BL(4,3)

(t) =
e−3t

4
(
1

t
+ 2 +

4

3
t).

Theorem 3.4. The Hardy upper bounds derived from the above Lemma for the
weights, provide the bounds for the respective Zeta and Beta families. Namely,

(3.45) ζ(x) <
1

x
+

1

2
+

x

12
, x > 1,

λ(x) <
1

2
(
1

x
+ 1 +

x

3
), x > 1,

E(x) < 2−x(
1

x
+

1

2
+

x

12
), x > 0,

L(4,1)(x) <
1

4
(
1

x
+ 2 +

4

3
x), x > 0,

and

L(4,3)(x) <
3
−
−x

4
(
3

x
+ 2 +

4

9
x), x > 0

where E(x) is the even Zeta function given by E(x) =
∑∞
n=1

1
(2n)x = 2−xζ(x).

Proof. From (3.41) the zeta function, is defined as

ζ(x) =
1

Γ (x)

∫ ∞
0

Wζ(t) · tx−1dt

where (3.42) the weight function is Wζ(t) = 1
et−1 is bounded by Bζ(t) (3.43) to

give

ζ(x) =
1

Γ (x)

∫ ∞
0

1

et − 1
· tx−1dt

<
1

Γ (x)

∫ ∞
0

e−t(
1

t
+

1

2
+

t

12
) · tx−1dt.

Now it is a well known fact that
∫∞

0
e−pttαdt = Γ(α+1)

pα+1 resulting in

ζ(x) <
1

Γ (x)

{
Γ (x− 1)

1x−1
+

Γ (x)

2 · 1x
+

Γ (x+ 1)

12 · 1x+1

}
.

So upon using the result that Γ (x+ 1) = xΓ (x) and simplifying, produces the
first result in (3.45).

The rest of the results in (3.45) are obtained similarly.
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4. Application of Hardy-type Upper Bounds for Generalized Mathieu
Series

The subsection upper bounds for Zeta and Beta families were obtained utilising
Hardy [24] result as shown in subsection 3.1. In this Section it is intended to
procure upper bounds for Generalzed Mathieu Series for the Zeta and Beta families
except for alternating series relating to HA(x) and Hφ̃(x).

Let

(4.1) Gµ(r;H) = 2 · Cµ(r)

∫ ∞
0

H(x) · xµ− 1
2 Jµ− 1

2
(rx) dx, r, µ > 0

where, Cµ(r) is given in (1.7),and here,for convenience,

Cµ (r) =

√
π

(2r)
µ− 1

2 Γ (µ+ 1)

and H(·) the generators of the generalized Mathieu Series,

(4.2) HM (x) =
x

ex − 1
, HA(x) =

x

ex + 1
, HO(x) =

x

ex − e−x
, HE(x) =

x

e2x − 1
.

Hφ(x) =
x

ex − e−x
, Hφ̃(x) =

x

ex + e−x
,

HL(4,1)
(x) =

xex

e2x − e−2x
, HL(4,3)

(x) =
xe−x

e2x − e−2x
,

where, the first line relates to the generalized Mathieu series Zeta family and the
second line represents the generalized Mathieu series Beta family. It should be
noticed that HO(x) and Hφ(x) represent both the Zeta and Beta family.

Lemma 4.1. The folowing integral is evaluated as

(4.3) Bν(β,H) :=

∫ ∞
0

e−αx
[
A+Bx+ Cx2

]
x
ν

Jν (βx) dx

=
(2β)ν√

π

Γ(ν + 1
2 )[

α2 + β2
]ν+ 1

2

 A+ [B(2α)− 2C]
(ν+ 1

2 )

[α2+β2]1

+C(2ν)2 (ν+ 3
2 )(ν+ 1

2 )

[α2+β2]2

 .

Proof. Gradshtein and Ryzhik [23] on page 712 quotes the reult

∫ ∞
0

e−αxx
ν

Jν (βx) dx =
(2β)νΓ(ν + 1

2 )
√
π
[
α2 + β2

]ν+ 1
2

,Re(ν) > −1

2
,Re(α) > |Im(β)| ,
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which accounts for the coefficient of A . Differentiating with respect to α gives
the coefficient of B, namely

∫ ∞
0

e−αxx
ν+1

Jν (βx) dx =
(2β)νΓ(ν + 3

2 )
√
π
[
α2 + β2

]ν+ 3
2

,Re(ν) > −1,Re(α) > |Im(β)|

and, the coefficient of C is procured by differentiating again with respective to
α to give,

∫ ∞
0

e−αxx
ν+2

Jν (βx) dx =
(2β)ν√

π

 (2α)2Γ(ν + 5
2 )[

α2 + β2
]ν+ 5

2

−
Γ(ν + 3

2 )[
α2 + β2

]ν+ 3
2

 ·
Rearanging the three coefficients of the powers, produces (4.3).

Lemma 4.2. The upper bound for the equation (4.1) is given by
(4.4)

Gµ(r;H) ≤ 1

[α2 + r2]
µ

{
A

µ
+ [B(2α)− 2C]

1

[α2 + r2]
1 + C(2α)2 (µ+ 1)

[α2 + r2]
2

}

:= Bµ(r,H),

the Hardy theorem leading to the result (3.13).

Proof. If in (4.3) let ν = µ − 1
2 , β = r ,then after simple manipulation produces

the upper bound depending on (4.2) without HA(x) and Hφ̃(x), the drivers of
alternating Mathieu series .

Theorem 4.1. The Generalized Mathieu positive series upper bounds obtained via
intergral equivalence for the Zeta and Beta families

Gµ(r;H) = 2 · Cµ(r)

∫ ∞
0

H(x) · xµ− 1
2 Jµ− 1

2
(rx) dx,

where
Sµ(r) = Gµ(r;HM ), HM (x) =

x

ex − 1

and

BM (x) = e−x(1 +
x

2
+
x2

12
).

(i) So with α = 1, A = 1, B = 1
2 and C = 1

12 gives the upper bound

Sµ(r) ≤ 1

[12 + r2]
µ

{
1

µ
+

5

6

1

[12 + r2]
1 +

1

3

(µ+ 1)

[12 + r2]
2

}
:= Bµ(r,HM ).
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(ii) For

φµ(r) = Gµ(r;H
φ
), H

φ
(x) =

x

ex − e−x
=
ex

2
HM (2x)

and

Bφ(x) =
e−x

2
(1 + x+

x2

3
)

with α = 1, A = 1
2 , B = 1

2 and C = 1
6 gives the upper bound

φµ(r) ≤ 1

[12 + r2]
µ

{
1

µ
+

4

3

1

[12 + r2]
1 +

4

3

(µ+ 1)

[12 + r2]
2

}
:= Bµ(r,H

φ
).

(iii) For

ψµ(r) = Gµ(r;HE), HE(x) =
x

e2x − 1
=

1

2
HM (2x) and

BE(x) =
e−2x

2
(1 + x+

x2

3
)

with α = 2, A = 1
2 , B = 1

2 and C = 1
6 gives the upper bound

ψµ(r) ≤ 1

[22 + r2]
µ

{
1

µ
+

10

3

1

[22 + r2]
1 +

16

3

(µ+ 1)

[22 + r2]
2

}
:= Bµ(r,HE).

(iv) For

Φ+
µ (r) = Gµ(r;HL(4,1)

), HL(4,1)
(x) =

xex

e2x − e−2x
=
e3x

4
HM (4x)

and,

BL(4,1)
(x) =

e−x

4
(1 + 2x+

4

3
x2)

with α = 1, A = 1
4 , B = 1

2 and C = 1
3 gives the upper bound

Φ+
µ (r) ≤ 1

[12 + r2]
µ

{
1

2µ
+

2

3

1

[12 + r2]
1 +

8

3

(µ+ 1)

[12 + r2]
2

}
:= Bµ(r,HL(4,1)

).

(v) For

Φ−µ (r) = Gµ(r;HL(4,3)
), HL(4,3)

(x) =
xe−x

e2x − e−2x
=
ex

4
HM (4x)

and, BL(4,3)
(x) =

e−3x

4
(1 + 2x+

4

3
x2)

with α = 3, A = 1
4 , B = 1

2 and C = 1
3 gives the upper bound

Φ−µ (r) ≤ 1

[32 + r2]
µ

{
1

2µ
+

2

3

1

[32 + r2]
1 +

8

3

(µ+ 1)

[32 + r2]
2

}
:= Bµ(r,HL(4,3)

).
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Remark 4.1. The upper bounds of the five generalized Mathieu series, which are gen-
erated by the Hardy bounds, have equivalent behaviour.For example from (i),

lim
r→0+

Bµ(r,HM ) = Bµ(0, HM ) =
1

µ
+

5

6
+

(µ+ 1)

3
, µ > 0

and

lim
r→∞

Bµ(r,HM ) = 0.

All the upper bounds of the above, tend to zero as r →∞ however they differ for 0 < r <
∞.

As mentioned, the main goal is to develop bounds of generalized Mathieu series
involving generators of Zeta and Beta families with an emphasis of the Hardy result,
in Section 3. It is worthwhile to compare bounds for the Mathieu series, S(r) (1.1)
and the integral version (1.4) with :Alzer et al.(1.2) [1], Čebyšev functional method
(1.10) and, the Hardy approach for the upper bound as in Theorem 15 part (i)
with µ = 1, namely

(4.5)


1

r2+2ζ(3) < SA (r) < 1
r2+ 1

6

, x 6= 0∣∣∣∣SČ (r)− π2

12(r2+ 1
4 )

∣∣∣∣ ≤ 2
√

2 · κ
{

2
1+(4r)2

− 1

[1+(2r)2]
2

} 1
2

SH(r) ≤ 1
[12+r2]

{
1 + 5

6 .
1

[12+r2] + 2
3 .

1
[12+r2]2

}
where the subscripts of S(r) represent the inequations above and,

κ =

[
π2

(
1− π2

72

)
− 7ζ (3)

] 1
2

= 0.3198468959....

Lemma 4.3. Let the first and third upper bounds of (4.5) are derived by DAH(·) then,

(4.6) DAH(r) = SA (r)− SH(r) =
r2 + 21

36(r2 + 1)3(r2 + 1
6 )

> 0, r ≥ 0

so that SH(r) is a superior (tighter) upper bound than the upper bound of SA (r) . Further,
SH(0) = 2.5 , SA (0) = 6 and, both upproach zero as r →∞.

Proof. Let σ = r2 + 1then SA (σ) = 1
σ− 5

6

and SH(σ) = 1
σ + 5

6 .
1
σ2 + 2

3 .
1
σ3 .

Now, 1
σ− 5

6

− 1
σ = 5

6σ .
1

σ− 5
6

and so

DAH(σ) = SA (σ)− SH(σ)

=
5

6σ
.

1

σ − 5
6

− 5

6
.

1

σ2
− 2

3
.

1

σ3
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=
5

6σ
.[

1

σ − 5
6

− 1

σ
]− 2

3
.

1

σ3
=

(
5

6σ

)2

.
1

σ − 5
6

− 2

3
.

1

σ3

=
1

σ2

{
52

62(σ − 5
6 )
− 2

3σ

}
=

σ + 20

36σ3(σ − 5
6 )
·

Hence, return to r gives DAH(r) > 0 as at (4.6).

Remark 4.2. The Mathieu series upper bound from the second in (4.5) is given by

(4.7) SČ (r) ≤ π2

12
(
r2 + 1

4

) + 2
√

2 · κ

{
2

1 + (4r)2 −
1[

1 + (2r)2]2
} 1

2

where SČ (r) represents the Čebyšev functional method. Consider now, from the expression

DČH(r) = SČ (r)− SH(r).

Now, from (4.5),

SČ (0) =
π2

3
+ 2
√

2

[
π2

(
1− π2

72

)
− 7ζ (3)

] 1
2

= 4.1945317698984431729

and SH(0) = 2.5. Further, the functions cross only at r∗ = 0.62102384511259743548

SČ (r∗) = SH(r∗) = 1.4062510257077055102.

Hence,

SH(r) < SČ (r) , 0 ≤ r ≤ r∗, SČ (r) < SH(r), r > r∗

so that SH(r) is sharper than SČ (r) in 0 ≤ r < r∗ and, for r > r∗ , SČ (r) is slightly
lower than SH(r) as both tend to zero as r →∞.

The work has been undertaken using Maple-2021 with 20 digit calculation.

Milovanović and Pogany [32] , obtain a Mathieu series upper bound over different
zone

SMP (r) ≤

{
1

r2+ 1
4

, 0 ≤ r ≤
√

3
2

1√
4r2+1 −1

, r >
√

3
2

and compare with SA (r) < 1
r2+ 1

6

.Using a different approach they obtain a sharper

bound over 0 < r ≤ r1 =
√

1
6 (5 + 2

√
3) ≈ 1.18772 and for r > r1,a better result

with 1
r2+ 1

6

.

The current result relies on the Mathieu series, whereas the generalized Math-
ieu series involving generators of Zeta and Beta families are extended to Čebyšev
functional methods to abtain lower and upper bounds, and with Hardy- type upper
bounds.



278 P. Cerone

5. Some further results using Hardy-type upper bounds

In the literature, there are many applications for which the Hardy theorem leads to
the result (3.13) to produce a best possible upper bound. Before undertaking some
examples it is worthwhile to outline some deffinitions.

The Hurwitz zeta function ζ(s, a) is an analytic function of s everywhere in the
complex s-plane (except for a simple pole at s = 1 with residue 1) and is defined
by the series (see [34] , p 607)

ζ(s, a) =

∞∑
n=1

1

(n+ a)s
, ...R(s) > 1, a 6= 0,−1,−2....

The Riemann zeta function is a special case of the Hurwitz zeta function with
a = 1 and has its only singularity a simple pole, with residue 1, at the point s = 1.

ζ(s, a) is an analytic function of s in the half-plane R(s) = σ > 1, and have the
integral representation

(5.1) Γ (s) ζ(s, a) =

∫ ∞
0

xs−1e−(a−1)x

ex − 1
dx, ...R(s) > 1,R(a) > 0.

The digamma(or Psi) function (see [34] , p 139-140, by 5.7.6 and 5.9.16) are
given by

(5.2) ψ(z) + γ =

{ ∑∞
n=0

z
n(n+z) , ...z 6= 0,−1,−2....∫∞

0
e−t−e−zt

1−e−t dt, ...,R(z) > 0

}

where γ is the Euler constant

(5.3) γ = −ψ(1) =

∫ ∞
0

(
1

et − 1
− 1

tet

)
dt

The function ψ(n)(z), n = 1, 2, ...are the polygamma functions and given by

(5.4) ψ(n)(z) = (−1)n+1

∫ ∞
0

tne−zt

1− e−t
dt, n = 1, 2, 3...R(z) > 0

Theorem 5.1. The Hardy -type upper bound are obtained utilizing the above func-
tions are given below:

(i) The Hurwitz zeta function upper bounds are given from (5.1)

(5.5) ζ(s, a) ≤ 1

sas−1

{
1 +

s

2a
+
s(s− 1)

12a2

}
., .R(s) > 1.

(ii)The digamma(or Psi) function from (5.2) the upper bounds are given as

(5.6) ψ(z) + γ ≤ 1

12z2
(z − 1)(z + 7)., .R(z) > 0,
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and the Hardy bound of the Euler constant by

(5.7) γ ≤ 7

12
.

(iii)The polygamma function integral from (5.4) the upper bounds are given by

(5.8)
∣∣∣ψ(n)(z)

∣∣∣ ≤ Γ (n)

12zn+2

[(
z +

n

4

)2

+
(3n+ 4)n

48

]
., .R(z) > 0.

Proof. It is well known facts that

(5.9)

∫ ∞
0

e−pttαdt =
Γ (α+ 1)

pα+1
and Γ (x+ 1) = xΓ (x) .

Further, the Hardy theorem which leads to the result (3.13) to provide the upper
bounds for the proofs.

(i) From (5.1)

Γ (s) ζ(s, a) =

∫ ∞
0

xs−1e−ax

1− e−x
dx

≤
∫ ∞

0

e−axxs−1

{
1

x
+

1

2
+

x

12

}
dx

=

∫ ∞
0

e−axxs−1

{
xs−2 +

xs−1

2
+
xs

12

}
dx

=
Γ (s− 1)

as−1
+

1

2
· Γ (s)

as
+

1

12
· Γ (s+ 1)

as+1
,

where the Hardy upper bound is used and the last two lines are due from (5.9) to
give the result,(5.5).

(ii) From the integrals (5.2) and (5.3)

ψ(z) + γ =

∫ ∞
0

e−t − e−zt

1− e−t
dt.., ..R(z) > 0

≤
∫ ∞

0

(e−t − e−zt)
{

1

t
+

1

2
+

t

12

}
dt

=
1

2
(1− 1

z
) +

1

12
(1− 1

z2
) =

1

12
(1− 1

z
)(7 +

1

z
),

where the Hardy upper bound is used and (5.6).

Note that

γ =

∫ ∞
0

(
1

et − 1
− e−t

t
)dt ≤

∫ ∞
0

e−t(
1

2
+

t

12
)dt =

1

2

(
Γ (1)

11
+

Γ (2)

6.12

)
which is as given in (5.7).
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(iii) From (5.4)∣∣∣ψ(n)(z)
∣∣∣ ≤ ∫ ∞

0

e−zttn
(

1

t
+

1

2
+

t

12

)
dt, n = 1, 2, 3...R(z) > 0

=

∫ ∞
0

e−zt
(
tn−1 +

tn

2
+
tn+1

12

)
dt

=
Γ (n)

zn
+

Γ (n+ 1)

2 · zn+1
+

Γ (n+ 2)

12 · zn+2

=
Γ (n)

zn

(
1 +

n

2 · z1
+

(n+ 1)n

12 · x2

)
=

Γ (n)

12 · zn+2

[
12z2 + 6nz + (n+ 1)n

]
.

The polygamma function integral upper bound is given by (5.8).
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