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Abstract. Let X,Y,Z and W be normed spaces and f : X XY X Z — W be a
bounded tri-linear mapping. In this manuscript, we introduce the topological centers
of bounded tri-linear mapping and we invistagate their properties. We study the re-
lationships between weakly compactenss of bounded linear mappings and regularity of
bounded tri-linear mappings. We extend some factorization property for bounded tri-
linear mappings. We also establish the relations between regularity and factorization
property of bounded tri-linear mappings.

Keywords: Arens product, Module action, Factors, Topological center and Tri-linear
mappings

1. Introduction

Let X,Y,Z and W be normed spaces and f: X XY x Z — W be a bounded tri-
linear mapping. One of the natural extensions of f can be derived by the following
procedure:

1. f*:W*x X xY — Z* given by (f*(w*,z,y), z) = (w*, f(z,y, 2)), where
reX,yeY ze Zw € W*.

The map f* is a bounded tri-linear mapping and is called the adjoint of f.
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2. [ = () Z7xW*xX — Y*, given by (f** (2™, w*, x),y) = (™", f*(w",
x,y)), where v € X,y € Y, z** € Z** w* € W*.

3. f*** _ (f**)* YR T x W — X*, given by <f***(y**,z**,w*),x) _
(y*™*, f**(z**,w*,x)), where z € X,y*™* € Y**, z** € Z** w* ¢ W*.

4. f**** — (f***)* CXFE YRR o 7R W**, given by <f****(x**,y**,z**),
’LU*> — <x**,f***(y**,z**,w*)>7 where z** € X**,y** c Y**,Z** c Z**,w* c
W=,

Now let f7: Z xY x X — W be the flip of f defined by f"(z,y,z) = f(z,y, 2),
whenever z € X,y € Y and z € Z. Then f" is a bounded tri-linear map and it may
be extended as above to f7**** : Z** x Y** x X** — W**. When f**** and f7****"
are equal, then f is called regular. Regularity of f is equvalent to the following

w* — liénw* - liénw* - li’rynf(xa,y,&zv) =w* — li’rynw* - liénw* - liérlf(xa,y57z7),
where {z,} C X,{yg} CY and {2,} C Z and convergence to z** € X** y** € Y**
and z** € Z** in the w*—topologies, respectively. A bounded tri-linear mapping
f: X XY xZ — W is regular whenever at least two of X, Y or Z are reflexive, see
[19] and [20]. Also, we have naturally six different Aron-Berner extensions to the
bidual spaces based on six different elements in S3 and compeletly regularity should

be defined accordingly to the equalities of all these six Aron-Berner extensions, see
[13].

Example 1.1. Let G be an infinite, compact Hausdorff group and let 1 < p < co. By
[9, pp 54], we know that LP(G) * L'(G) C LP(G), where

(k+ g)(x) = /G Ko ' 0)dy,  (x € G,k € IP(G),g € L(G)).

On the other hand, since the Banach space LP(G) is reflexive, the bounded tri-linear
mapping

f:LP(G) x L' (G) x LP(G) — L*(@)
defined by f(k, g,h) = (k*g)x*h, is regular for every k,h € L?(G) and g € L*(G), see [20].

A bounded bilinear(resp. tri-linear) mapping m : X XY — Z(resp. [ : X X
Y x Z — W) is said to be factor if is surjective, that is, m(X x Y) = Z(resp.
f(X XY x Z)=W), see [5].

For a discussion of Arens regularity for Banach algebras and bounded bilinear
maps, see [1], [2], [11], [12] and [18]. For example, every C*-algebra is Arens regular,
see [4]. Also L'(G) is Arens regular if and only if G is finite,[21].

The left topological center of m may be defined as follows:

Zy(m) ={z™ € X . y*™ — m™* (x™, y™") is weak™ — to — weak™ — continuous}.
Also the right topological center of turns out to be

Zy(m)={y"”" eY"™: 2™ —m

r***r( ok

", y*) is weak™ —to—weak™ —continuous}.
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The subject of topological centers has been investigated in [6], [7] and [16]. In [14],
Lau and Ulger gave several significant results related to the topological centers of
certain dual algebras. In [11], authors extend some problems from Arens regularity
and Banach algebras to module actions. They also extend the definitions of the left
and right multiplier for module actions, see [10] and [12].

Let A be a Banach algebra, and let 7 : A x A — A denote the product of
A, so that m(a,b) = ab for every a,b € A. The Banach algebra A is Arens regular
whenever the map 7 is Arens regular. The first and second Arens products, denoted
by O and ¢ respectively, are definded by

a**Op** = w***(a**,b**) , (l**<>b** _ WT***T(Q**,b**) , (a**,b** c A**)

2. Module actions for bounded tri-linear maps

Let (71, X, m2) be a Banach A-module and let 71 : Ax X — X andmy : X X A —
X be the left and right module actions of A on X, respectively. If (w1, X) (resp.
(X,m2)) is a left (resp. right) Banach A-module of A on X, then (X*, 77)(resp.
(5*", X*)) is a right (resp. left) Banach A-module and (75*", X*, 77) is the dual
Banach A-module of (m1, X, m2). We note also that (m7**, X** 75**) is a Banach
(A** 0)-module with module actions 77** : A** x X** — X** and 75** : X** x
A — X** Similary, (a7, X**, 75***7) is a Banach (A**,{)-module with
module actions w***" : A** x X** — X** and 75***7" 1 X x A — X If we
continue dualizing we shall reach (7™ X *** qi***) and (qh****" X *** gieesrs)
are the dual Banach (A**,0)-module and Banach (A**, {)-module of (7]**, X**,
75**) and (7] X** 7 7)) respectively (see [15]). In [8], Eshaghi Gordji and
Fillali show that if a Banach algebra A has a bounded left (or right) approximate
identity, then the left (or right) module action of A on A* is Arens regular if and
only if A is reflexive.

We commence with the following definition for bounded tri-linear mapping.

Definition 2.1. Let X be a Banach space, A be a Banach algebra and 2 :
Ax Ax X — X be a bounded tri-linear map. Then the pair (1, X) is said
to be a left Banach A—module when

Qq(r(a,b),7(c,d), z) = Q(a,b,Qi1(c,d, x)),

for each a,b,c,d € A and =z € X. A right Banach A—module can be defined
similarly. Let Q5 : X x A x A — X be a bounded tri-linear map. Then the pair
(X, Qs) is said to be a right Banach A—module when

Qo (z,w(a,b), m(c,d)) = Qa(Qa(x,a,b), c,d).

A triple (Q1, X, 5) is said to be a Banach A—module when (€27, X) and (X, Qs)
are left and right Banach A—modules respectively, also

Qa2 (N (a,b,2),c,d) = Qi (a, b, Qa(z, ¢, d)).
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Lemma 2.1. If (Q,X,Q5) is a Banach A—module, then (Q5*", X* Q%) is a Ba-
nach A—module.

Proof. Since the pair (X, ) is a right Banach A—module, thus for every a,b,c,d €
A, x € X and z* € X* we have

d), *),$> = <Q£*($(:*,7T(C, d)’ﬂ—(a’b))?x>
),x)) = (2", Q2(x,7(a, b), 7(c, d)))
(x*,Q5(d, ¢, Qa(x,a,b)))

= )=
= <Qg*(l‘ ,d,C) (.L“, ’b)> ( T*T(c d,x"), Qr(b a, x)>
= (5" (" (¢, d, x*),b,a), x) = (5" (a,b, Q5" (¢, d, z*)), ).

Therefore Q5" (w(a,b), w(c,d), z*) = Q5" (a, b, Q5" (¢, d, z*)), so (Q5*", X) is a left
Banach A—module. In the other hands, (Q1, X) is a left Banach A—module, thus
we have

(", 7(a,b), w(c, d)), x) = («7, (7 (a,b), (¢, d), x))
= (", Q1(a,b,Q(c,d,x))) = (Q*(x a,b), (e, d,x))
= (Q1(Q21(z", a,b),¢,d), 7).

It follows that (X, %) is a right Banach A—module. Finally, we show that
Q1 (95" (a,b, %), c,d) = Q5" (a,b, Q3 (", ¢, d)).
For every x € X we have

<Q>{( 5" (a,b,2%), c, d)7$> = <QT*T(G b,x"), Ql(c d, )>
= (Q5*(z*,b,a), U (c,d,x)) = (x*,Q5(b,a, Q1 (c,d, x)))
= (27, Qa(Q (e, d, ), a,0)) = (27, (e, d, Qa(, a,0)))
= (07 (2%, ¢,d), Qa(x,a,b)) = (A (z*, ¢,d), Q5(b, a, x))
— (@ ((2" ¢, d), b, ), 7) = (5 (a, b, X (2" ¢, ), 7).

Thus (Q5*", X*,QF) is a Banach A—module. O
Theorem 2.1. Let (1, X,5) be a Banach A—module, then
1. The triple (Q7**, X** Q5***) is a Banach (A**,0,0)—module.

2. The triple (Q7** X** QL") is a Banach (A**, ), ))—module.

Proof. We prove only (1), the other part has the same argument. Let {aq}, {bs}, {cy}
and {dp} are nets in A which converge to a™*,b**,c** and d** € A** in the
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—topologies, respectively. Then by lemma 2.1 for every x* € X* we have

(QEF5* (@, b, Q5+ (&, &, ™)), )

= (@, QU (B, QP 4, ), )

_ 1151<QT**(I)**,Q*{***( & ), 1), )

_ hén<b**’ QU (™, 4, ), 2%, ag)

= ligl liéll(Q’{*(Q}‘***(c**, d*,z™),x%, aq), bg)

= ligllién<§2’{***(c**,d** ), Q1 (x", aq, bg))

= lién 1ién<c**, QU (d, 2™, Q1 (2%, aq, bg)))

= liorénliénligmﬁf**(d**,x**, Q1 (x", aa,b8)), cy)

= lim lim lim(d**, Q7 (2™, Q7 (2%, aa, bg), cy))

= hmhmhmhm Q7 (2™, Q] (2", aa, b3), cy), dr)

«
™, (2", an, bp), ¢y, dr)

(
= lim hén hm h ( )
= hmhénhmh m(z™, Q] (2", 7(aq, bg), m(cy, dr)))
= lim lim hm h (Q
(

[e3

1 liy 1 (@™, 2", m(aa, bg)), m(cy, dr))
7hmhmhmhm T (Q7" (2™, 2", (e, bg)), cy), dr)
—hénhénhﬂr{md**, T Q7 (2™, 2%, m(aq, bg)), cy))
= lim lim lim(7**(d**, Q7" (™", 2", m(aq, bg))), ¢y)

a B~

—hmhm ¢ **(d** Q**( **,x*,w(aa,bg))»

(e
—hmh (T (¢, d™), Q7" (2™, 2", m(a, bg)))
m{(;
<b** (QT**(W***(C**7 d**)’x**,l‘*)7aa)>
< **(b**,Q***(ﬂ***(c**,d**),m**,m*)),aa>
< **(b** Q***( ***(C**7d**),$**,1}*))>
< sk *( *k b**) QT**( ***(c**,d**),x**,x*»
<Q****( *** a**?b**)’ﬂ.***(c**7 d**)7x**)7x*>.
Thus (Q7***, X**) is a left Banach (A**, 0, 0)—module. Now we show that the pair

(X, Q5**) is a right Banach (A**,0,0)—module. Let {z,} be a net in X which
converge to x** € X** in the w*—topologies. The pair (X, ) is a right Banach
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A—module, so we have

(Q;***(Q;***(x**,a**,b**),c** d**) z*
— <Q§***<x**’a**,b**)’ﬂg**( ok d**7:1:*)>
— <{E**7 QE**(CL**, b**, Q;**( **, d>|<>|<7 1'*))>
_ hm(QE**(a**, b**, Q;**(C**, d**,fﬂ*)),l‘n>
n
n
= lim lim Q3" (b**, Q;**(c**, d*™,z"), x,), aa)
n o«

= lim lim(b™*, Q5 (5™ (¢, d*", 2*), zy, aa))
n o«

= lim lim lién<Q§(Q§**(c**, A, z%), 2y, aa), ba)
n «

= limlim 11;11((23**(0**, d*,z"), Qa(xy, aq, bg))
n «

= lim lim lign(c**, Q3 (d™, 2", Qa(zy, an, bg)))
n «

= lim lim lién Hm(Q5" (d™, z*, Qa(xy, @a, b)), ¢y)
n o« Bt

= limlim lim lim(d™, Q3 (2™, Q2(2y, aa, bg), c4))
B!

h:mhinhgnhmhm< Q5 (z*, Qo(xy, an, bs), cy), dr)
= 117r7nhinhgnhmh m(z*, Qa(Qa(zy, @, bs), ¢y, dr))
= 11Trlnhorlnhénhmh m(z*, Qa(zy, m(aa, bg), 7(cy, dr)))
*117r]nh(£nhmhmh m(Q5(z*, zp, m(aa, bg)), m(cy, dr))
= 1171lnhinhénhmhm< (5 (x”, xy, (a0, bg)), Cy), dr)

= limlim hén lim(d™*, 7* (5 (2", xy, m(aa, bg)), cy))
¥

n «
= lim lim hén lHm (7™ (d*, Q5 (z*, 24y, T(Ga, b8)), Cvy)

n «
—hmhmhm(c T (d™, Q5 (2", zy, m(aa, bg)))
n
—hmhmh (T (e, d™), Q5 (2", xy, T(Ga, bg)))
n «
—hmhmh Q3 (™ (™, d™), 2", xy), m(aa, bg))

(
= hm hm hm(ﬂ'*(Q**( (T AT, 2, ), a0), bg)
n

i, 7 (2 (177 € ), ) 00)
n «
= lim lim (7™ (6™, Q3" (7™ (¢™*, d*™™), 2™, xy)), aa)

n o«
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_ lim<a**,7r**(b**, Q;*(ﬂ_***(c**7 d**),fﬂ*,l'n)»
n

_ lim<7r***(a**,b**), Q;*(TF***(C**, d**), Z‘*,Jln))
n

_ hm(QE**(w***(a*ﬂ b**)’ﬂ_***(c**7 d**), x*)7l'77>
n

_ <J3**,Q;**(T(***(CL**,b**),ﬂ'***(c**,d**),x*»

= (O (@, T (@, ), T, d)), ).
Finally, we show that

QU (U (@, 5, ™), €, d™) = QU (@, b, QEF** (2, ¢**, d*)).
Next we have

<Q;***(Q>{***(a**’ b**,l'**), C**,d**),$*

= lim 11};11((2’{*(1:**, Q3 (¢, d™™,x7), aq), bg)
«

= lim lién@**, QU5 (™, d™, z"), an, b))

= lim lign Hm(Q7 (5 (™, d™", z"), aa, bg), )
a 7

= lim lim lim(Q5™* (¢™, d**, ™), Q1 (aq, bg, xy))
a B n

= lim lign lim(c™, Q5% (d**, 2", Q1 (aq, bg, zy)))
a 7

= lim lién lim lim(Q5* (™, 2™, Q1 (aqa, bg, xy)), ¢y)
a n o

= lim lién lim lim(d™*, €5 (z*, Q1 (aq, bg, xy), cy))
a Ny

= lim lién lim lim lim(Q5 (2™, Q1 (aa, bg, 1), ¢y), dr)
o n oy T

= lim lign lim lim lim(z*, Q2(Q4 (aa, bg, zy), ¢y, d;))

= lim lién lim lim lim(z*, Q1 (aq, bg, Q2 (xy, ¢y, d7)))
@ n v T
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= lim lign lim lim im(Q7 (™, aq, bg), Qa2(zy, ¢y, d7))
« noy T

:113n11g111117n11£n<d L5 (2 (27, aa, bg), Ty, ¢y))

= li(£n lién li%n li£n<Q§*(d**, N (x",a0,b3),xy), cy)
= lién lién lign(c**, Q3 (d™, Q1 (z", a, bg), xy))

= lim li/gn li}]n(Qg**(c**, a1 (2", aa,b8)), Ty)
= lim 11;11(:1:**, Q3 (™, d™, Q1 (x*, aq, bg)))

= lim 1%1(1((2;***(x**7 A, Q5 (27, an, b))

= ligln l%n(Q”l‘*(Q;***(x**, L d™),x"aq ), bg)

_ li(gl(b**,QT*(Q;***(x**,c**,d**),:z:*,aa»

_ li£n<§21‘**(b**,Q;***(x**m**,d**),x*),aa>

— (™, (6, Q5 (7, ¢, ), 7))

_ <QT***(G**7 b**, Q;***(x**,c**, d**)),lﬂ*>

as claimed. O

Example 2.1. Let A be a Banach algebra, for any a,b € A the symbol [a,b] = ab — ba
stands for multiplicative commutator of a and b. Let My x»(C) be the Banach algebra of
all n x n matrices. We define

A:{(g g)engg(C)\u,UEC}, X:{(g Z)€M2x2(C)|x,y,Z€C}.

Now let 1 : A X A x X — X to be the bounded tri-linear map given by

Ql(a,b,x):—[<8 é),abx] , (a,be A, zeX).

_fu1r v _ [u2 w2 _ f[u3z w3 _ [Uu4 V4 _
Foreverya—(O 0),6—(0 O)’C_(O 0),d—(0 0>€Aandx—
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<ac1 yl) € X, we have
0 Z1

Ql(ﬂ-(a7 b)yﬂ'(C, d),iI)) = Ql(<U1OU2 u101)2) 5 <U30U4 u30'04) ) (1(')1 Zi))

— 0 1 ULU2UIULTT  UTU2UIULYT + UL U2UV4ZT ]
o 0 O 0 0

(0 uiuguszuazT1) B 0 0 I 0 uiugususT
—\0 0 - 0 0 0 0
— 0 1 0 wiusususTy ] = O ur U1 Uz V2 0 usuaz1 )
— o o/ \o 0 o o0)'\o o)'\o 0
o V2 0 0 0 U3U4AT1
- ( 805 5)-c6 oo i)
B V2 ] 0 1 U3U4T1T  U3ULY1 + U3Va21 )
- 0)’ 0 0/’ 0 0
B Uq4 V4 r1 Y1

Ql( )( G 5)-(

= Q4 (a, b, (e, d, x)),

Therefore (1, X) is a left Banach A—module.
Theorem 2.2. Leta,b,c,d€ A, z* € X*, 2™ € X** and b**,c** € A**.Then

1. If (01, X) is a left Banach A—module, then
Q% (57, Q1 (e, 7)) = 77 (67,07 (07 e ), 07)),

2. If (X,82) is a right Banach A—module, then

Qg***r(x*, Qg****r(m**7a’ b),C**) — WT**(C**, Qg***r(x*, (E**,’/T***(a,b)).

Proof. (1) Since the pair (€21, X) is a left Banach A—module, thus for every z € X
we have

(2%, 7(a,b), 7(c,d)), x) = (&", N (w(a,b), 7(c,d), x))
= (z",Q1(a,b, (e, d, z))) = <Q*(x a,b), (e, d, x))
= (Q1(Q21(z",a,b),¢,d), z).

Hence Q3 (z*, 7w(a,b), w(c,d)) = Q5(Q% (z*, a,b), ¢,d), which implies that

(T (0 (7 (e, d) & ,z*),a),b} (Q***( o (o, d), 7%, @), w(a, b))
= (1" (e, d), Q1" (2™, 2%, 7(a, b)) = (¢, 7 (d, Q" (2™, 2%, 7(a,)))))
= (d, 7" (Q7" (2™, 2" 7r(fl b)), c)) = (21" (=™, 2", m(a,b)), 7 (c,d))
= (¢7", Q1 (2%, 7(a,b),7(c,d))) = (=™, Q1 (] (27, a,b), ¢, d))
= (Q7* (™, Q1 (2%, a,b), ¢),d) = (Q7**(d, 2", Q] (z*, a, b)), c)
= b)) = (" (1" (¢, d,z™), 2", a), b).

c

Q***(C d .Z'**) *<J} .a,
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Thus 7 (Q7** (7*** (¢, d), z**, %), a) = Q7 (Q7** (¢, d, ™), 2", a). Finally, we have

<Q>{**(b**’ QT***(Cv d7 x**),x*),a> — <b**,QI*<Q’{***(C, d, l‘**),.%'*, a>
<b**771'*(Q)1k**(7T***(C, d),x**,x*)ﬂ))
= (T, (7 (e d), 2, 27)), a).

A similar argument applies for (2). O

3. Topological centers of bounded tri-linear maps

In this section, we shall investigate the topological centers of bounded tri-linear
maps. The main definition of this section is as follows.

Definition 3.1. Let f: X XY xZ — W be a bounded tri-linear map. We define
the topological centers of f by

le(f) — {.’I}** c X**' y** N f****(x**,y**,z**) is weak* — to — weak‘* _
continuous},

Zl2(f) — {JC** c X**‘ Z** N f****(a:**,y**,z**) is ’UJECL]{?* — to — weak* _
continuous},

ZHSf) = {2 € Z*| a* — U (@t gt 2% is weak® — to — weak® —
continuous},

Z2(f) = {2™ € Z*| y** — froenT(at gyt 2% is weak® — to — weak® —
continuous},

ZHSf) = {y™ € Y| o — freer (ot gt 2 s weak® — to — weak® —
continuous}.

Z2(f) = {y™ € Y| 2% — froe(ar gt 2" is weak® — to — weak® —
continuous}.

Lemma 3.1. For a bounded tri-linear map f: X XY x Z — W, we have

1. The map f**** is the extension of f such that x** — f***(x** y** 2**) is
weak*—weak™ continuous for each y** € Y** and 2** € Z**.

2. The map f**** is the extension of f such that y** — f****(x,y™*, 2z**) is
weak™ —weak* continuous for each x € X and z** € Z**.

3. The map f**** is the extension of f such that z** — [f***(x,y,2**) is
weak™ —weak* continuous for each v € X andy €Y.

4. The map f™***" is the extension of f such that z** — fre T (g™ y**, 2*)
is weak* —weak® continuous for each x** € X** and y** € Y**.

5. The map f™***7 is the extension of [ such that x** — f™***"(** y, z) is
weak*—weak® continuous for eachy €Y and z € Z.
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6. The map fT****" is the extension of f such that y** — fr****7(x*™* y**, 2) is
weak*—weak™ continuous for each x** € X** and z € Z.

Proof. See [19] and [20]. O

As immediate consequences, we give the next Theorem.

Theorem 3.1. If f: X XY x Z — W 1is a bounded tri-linear map, then X C
Z}(f) and Z € Z2(}).

The mapping f**** is the extension of f such that x™* — f****(z** y** | 2**) from
X** into W** is weak*— to — weak™ continuous for every y** € Y** and z** € Z**,
hence for first right topological center of f we have

Z,}(f) 2 {Z** c Z**\fr****r(:r**,y**,z**) — f****(x**,y**,z**% fOT every T c
X**7y** 6 Y**}-

The mapping f™****" is the extension of f such that z** — fr**7 (g** y** 2**)
from Z** into W** is weak*— to — weak® continuous for every z** € X** and
y** € Y** hence for second left topological center of f we have

le(f) 2 {x** c X**‘fr****r(x**’y**, Z**) — f****(x**,y**,z**), fO’I" every y** c
YRR c Z**}

Example 3.1. Let G be a finite locally compact Hausdorff group. Then
f:LYG) x L' (G) x L'(G) — L*(G)

defined by f(k, g, h) = kxgxh, is regular for every k, g and h € L'(G). So L*(G) C Z!(f).
Theorem 3.2. Let A be a Banach algebra. Then

1. If (1,X) is a left Banach A—module and Q7**, 7***(A, A) are factors, then
ZHM) € Zy(m).

2. If (X,82) is a right Banach A—module and Q5***" 1***(A, A) are factors,
then Z2(Q) C Z,.(7).

Proof. We prove only (1), the other one has the same argument. Let a** € Z} (),
we show that a** € Z;(n). Let {b%*} be a net in A** which converges to b** € A** in
the w*—topologies. We must show that 7***(a**, b%*) converges to 7***(a**, b**) in
the w*—topologies. Let a* € A*, since Q7** factors, so there exists z* € X* z** €
X** and ¢** € A** such that a* = Q7 (¢**, ™", 2*). In the other hands 7***(A, A)
factors, thus there exists ¢,d € A such that 7***(c,d) = ¢**. Because a** € Z}' (1)
thus Q3***(a**, ", £**) converges to Q1***(a**,b**, 2**) in the w*—topologies.
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In partiqular Q7***(a**, b%*, Q7*** (¢, d, 2**)) converges to Q7 ** (a™*, b**, Q7*** (¢,
d,z**)) in the w*—topologies. Now by Theorem 2.2, we have
lim(ﬂ***(&**,bi*),&*} — lim<7r***(a**,b;*),QT**(c**,x**,x*»
= lm(r™ (0™, 657), 7 (77 (¢, ), 277, 7))
_ lim(a**,ﬂ**(b’;*,Q*{**( ***(C d) 7x* )>
«
<a** **(b**,a*)}
— <7T***(a**,b**)7a/*>_
Therefore 7***(a**,b%*) converges to 7***(a**,b**) in the w*—topologies, as re-
quired. [

Theorem 3.3. Let A be a Banach algebra and 2 : Ax A x A — A be a bounded
tri-linear mapping. Then for every a € A,a* € A* and a** € A**,

1. If A has a bounded right approximate identity and bounded linear map T :
A* — A* given by T(a*) = m*(a**,a*) is weakly compactenss, then ) is
reqular.

2. If A has a bounded left approzimate identity and bounded linear map T : A —
A* given by T(a) = 7™ (a™*,a) is weakly compactenss, then § is regular.

Proof. We only prove (1). Let T be weakly compact, then 7**(A***) C A*. On the
other hand, a direct verification reveals that T (A***) = 7*****(A** A**). Thus
(AT, A7) C A*. Now let @™, 0™ € A™, a** € A and let {a,}, {aj} be
nets in A and A* which convergence to a**, a*** in the w*—topologies, respectively.
Then we have

(T (@ @) D) = (T, a0 = (0, T (@, 5))
_ licr¥n<7r*r**(a***,b**),aa> _ 1131(&***,7r*r*(b**,aa)>
= lign lién<7r*r*(b**, aa), Q) = lién lién<b**7 " (aa, aj))
= h(in lign(b**, ™ (ap, aa)) = ligl lién<ﬂ**(b**, ag),aa)
_ liglliéll<ﬁ***(aa,b**), a5) = licryn<a***,7r***(aa,b**)>
_ li(£n<7r****(a***,aa),b**> _ 1i£n<7r*****(b**7a***),aa>

= s s =
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Therefore 7* is Arens regular. It follows that A is reflexive, see [8, Theorem 2.1].

Thus 2 is regular. [

4. Factors of bounded tri-linear mapping

We commence with the following definition.

Definition 4.1. Let X,Y,Z 51,55 and S5 be normed spaces, f: X XY xZ — W
and g : S1 X S x S3 — W be bounded tri-linear mappings. Then we say that f
factors through g by bounded linear mappings h; : X — S, ho : Y — S5 and
hy : Z — 83, if f(x,y,2) = g(h1(x), ha(y), hs(2))-

The following theorem gives some necessary and sufficient conditions under which
for factorization of the first and second extension of a bouneded tri-linear mappings.

Theorem 4.1. Let f: X XY X Z — W and g : S1 X Sy x S3 — W be bounded
tri-linear mapping. Then

1. The map f factors through g if and only if f**** factors through g****,

2. The map f factors through g if and only if f****7 factors through g"****".

Proof. (1) Let f factor through g by bounded linear mappings hy : X — 51, ho :
Y — Sy and hy : Z — Ss, then f(x,y,2) = g(h1(x), ha(y), hs(z)) for every
r e X,yeYand z € Z. Let {z,},{ys} and {z,} be nets in X,Y and Z which
converge to ** € X** y** € Y** and 2** € Z** in the w*—topologies, respectively.
Then for every w* € W* we have

«

B

w*, f(za, Ys, Z'y)>
w”, g(h1(xa), h2(ys), hs(zy)))

9*(11)*7 hl (xoc)? h2(y3))7 h3(Z’Y)>
= limlimli
B

=

= limliml
a B

= limlimli

Q%QEQ

o~ o~~~

p h (g*(w*,hl(xa),hz(yg))),?:ﬁ
= lién 11;11(2**, h3 (g™ (w*, hi(za), h2(ys))))

=l lim (A ("), 9" (0" (). o)

=B
W *
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= limlim(g™ (hs™(2™), w", hi(a)), h2(ys))
= limlim{hs (g7 (hs™(2™) w”, ha(2a))), ys)
= lim(y™, ha(g™ (h3™ (z™), w", hi(za))))
= lim(h3™(y™), 97 (h3" (2"), w", ha(za)))
= lim(g™"(hy"(y™), h3™ (2™"), w"), hi(za))
= lim(hi (g™ (h3"(y™), h3™ (277), w")), za)
= (@™, hi(g"" (hy" (y" *),h**( "), w")))

(h1"(2™), g™ (ha™ (y™"), h3™ (7)), w™))
A ),

Therefore f**** factors through g****.

Conversely, suppose that f**** factors through ¢****, thus

in particular, for z € X,y € Y and z € Z we have
[ @y, 2) = g (W (), ha" (y), ha™ (2)).

Then for every w* € W* we have

(w*, f(z,y,2)) = (f(w*,2,9),2)

= (["(z,w" 2),y) = (" (y,2,0"), @
= ([ (2,y,2),w") = < (R (), b (y), k3T (2)), w)
= (h1"(2), g (h3"(y), h3™ (), w™)) = (2, hi(g"™ (h3"(y), h
= (g (h3"(y), h3™ (2), w"), ha(z)) = (h3"(y), 9" (h3" (2),
= { w” “(h3"(
= (h3

QB Q% =1 QB

" 37 (2);
yhi(z
()
)

w’)))
w” )
Y, ha (g™ (h3™(2), w™, hi(x)))) = (g7 (h3™ (2), w™, hu(2)), ha(y))
“(2), 97 (w7, ha(2), ha(y))) = (2, h3(g" (w", ha(x), hz( )
= (g"(w", h(x), ha(y)), hs(2)) = (W, g(h1(x), ha(y)), h3(2)))
It follows that f factors through g and proof follows.
(2) The proof is similar to (1). O
Corollary 4.1. Let f: X XY X Z — W and g : S1 X S2 x S3 — W be bounded
tri-linear map and let f factors through g. If g is regular then f is also regular.

Proof. Let g be regular then ¢g**** = ¢"™***"_ Since the f factors through g then
for every z** € X** ¢y** € Y** and z** € Z** we have

fr****'r( 7y **)

Therefore f**** = f™**7 as claimed. O
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5. Approximate identity and Factorization properties

Let X be a Banach space, A and B be Banach algebras with bounded left approx-
imate identitis {e,} and {eg}, respactively. Then a bounded tri-linear mapping
Ky : Ax Bx X — X is said to be left approximately unital if

w* — liénw* —lim K (eq, €8, 2) = x,
[e%

and K is said left unital if there exists e; € A and e; € B such that Ky (eq,es,z) =
x, for every x € X. Similarly, bounded tri-linear mapping Ko : X x Bx A — X
is said to be right approximately unital if

w* — liénw* —lim Ky (z, e, €q) = x,
(e}
and K is also said to be right unital if Ks(z,eq,e1) = .

Lemma 5.1. Let X be a Banach space, A and B be Banach algebras. Then
bounded tri-linear mapping

1. Ki : Ax Bx X — X is left approximately unital if and only iof K"
A** x B** x X** — X** is left unital.

2. Ko : X x Bx A — X is right approzimately unital if and only if K3*** :
X* X B* x A™ — X™* s right unital.

Proof. We prove only (1), the other part has the same argument. Let K be a
left approximately unital. Thus there exists bounded left approximate identitys
{ea} € A and {eg} C B such that

w* — liénw* - liglKl(ea,eg,x) =z,

for every x € X. Let {e,} and {eg} converge to ej* € A** and e3* € B** in the
w*—topologies, respectively. On the other hand, for every ** € X** let {z,} C X
converge to x** in the w*—topologies, then we have

(e, e, ), a) = (K (0 e ), %)

= ot R e e a)) = B e ), )

= lim{ef, K™ (65", ) = Bl (K™ e 2,4, )

= li’rynlién<e’1‘*, K" (", zy,e5)) = 1i£ﬂlig111(£ﬂ<[(f*(3&*, Ty, €3),€q)

= limliénlim@*, K{(zy,e8,€q)) = limliénlim@*,Kl(ea, eg, Ty))
Y «a ¥ «a

=lim(z", z,) = (", z").
B!

Therefore K7****"(e1*, e5*, x**) = x**. It follows that K7****" is left unital.
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Conversely, suppose that K]****" is left unital. So there exists ej* € A** and
e3* € b** such that K7™ (ej*, e5*, 2**) = z** for every z** € X**. Now let
{ea},{es} and {z,} be nets in A, B and X converging to e}*,e3s* and z** in the

w*—topologies, respectively. Thus

w* — limw* — liénw* —lim K (eq,e5,24) = K{7(e]™, 5", ™)
0 «
= 2" =w"—limz,.
g

Therefore K7 is left approximately unital and proof follows. []

Remark 5.1. It should be remarked that in contrast to the situation occurring for
K7 and K3*** in the above lemma, K{*** and K3****" are not necessarily left and
right unital respectively, in general.

Theorem 5.1. Suppose X, S are Banach spaces and A, B are Banach algebras.

1. Let K1 : Ax Bx X — X be left approzimately unital and factors through
r: AX Bx S — X from rigth by h : X — S. If h is weakly compactenss,
then X is reflexive.

2. Let Ko : X x Bx A— X be right approximately unital and factors through
1S X BxA— X fromleft by h : X — S. If h is weakly compactenss,
then X is reflexive.

Proof. We only give the proof for (1). Since K is left approximately unital, there
exists e]* € A** and e5* € B** such that

KT****T(GT*,GZ*,JJ**) — p**

for every x** € X**. On the other hand, the bounded tri-linear mapping K;
factors through g, from right, so by Theorem 4.1, K{****" factors through g, ****"
from right. Thus

KT****T(CT*763 , T )_g;****’(el ,62 7h ( ))

Then for every x*** € X*** we have

Kok sk *k
;&™)

) )
x***,g;****r(ei*,eg ,h**( **))>
r****r*( Hok ok 6:{*’62 ),h**(l‘**»

h***( T‘****T*(x***7el ,63*))7x**>.

( (
=
= (9
=

Therefore x*** = h*** (g ™ (x***, e1*, e5*)). The weak compactness of h implies
y &1 »©2

that h***(S***) C X*. In particular h***(g T****T*(x***,ef* e3*)) C X*, that is, X*
is reflexive. So X is reflexive. [J
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