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Abstract. We prove Ekeland’s variational principle in SJS - metric spaces. A gener-
alization of Caristi fixed point theorem on SJS - metric spaces is obtained as a conse-
quence.
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1. Introduction

In his classic paper Ekeland [7] proved a theorem (Ekeland’s variational principle)
that asserts that there exists nearly optimal solutions to some optimization prob-
lems. Ekeland’s variational principle can be applied when the lower level set of a
minimization problems is not compact, so that the Bolzano–Weierstrass theorem
cannot be used. Ekeland’s principle relies on Cantor intersection theorem and axiom
of choice. Ekeland’s principle also leads to an elegant proof of the famous Caristi
fixed point theorem [5]. For further generalizations and applications of Ekeland’s
variational principle we refere to [2, 8, 9, 11] and their references. Recently Beg et
al. [1, 12, 13] introduced a very general notion of SJS - metric spaces (see prelimi-
naries) which does not satisfy the triangle inequality and symmetry, and obtained
several interesting results with examples. In fact b - metric spaces [6], Sb- metric
spaces [14], JS- metric spaces [10], and partial metric spaces [4] are special cases
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of SJS - metric spaces. The aim of this paper is to prove a variant of Ekeland’s
variational principle in SJS - metric spaces and then derive Caristi fixed point the-
orem as an application. The results above generalize/extend several results from
the existing literature.

2. Preliminaries

In this section, we first give the notion of SJS- metric space (X, J), due to [1], some
notations and terminology and a lemma to use in next section.

Let X be a nonempty set and J : X3 → [0,∞] be a function. We define the set

S(J,X, x) = {{xn} ⊂ X : lim
n→∞

J(x, x, xn) = 0},

for all x ∈ X. If J satisfies

(i) J(x, y, z) = 0 implies x = y = z for any x, y, z ∈ X;

(ii) there exists some s > 0 such that for any (x, y, z) ∈ X3 and {zn} ∈
S(J,X, z), we have

J(x, y, z) ≤ s lim sup
n→∞

(J(x, x, zn) + J(y, y, zn)),

then the pair (X,J) is called an SJS- metric space (with coefficient s). Several
known examples of SJS- metric spaces are given in [1] and [13], we give another
examples of SJS- metric spaces in the below.

Example 2.1. Let X = R and J : X3 → [0,∞] be defined by J(x, y, z) = exp(|x|) +
exp(|y|) + exp(|z|) − 3 for all x, y, z ∈ X, then clearly (J1) is satisfied. For any z 6= 0,
S(J,X, z) = Ø. For any {zn} ∈ S(J,X, 0), we see that

J(x, y, 0) ≤ h lim sup
n→∞

(J(x, x, zn) + J(y, y, zn)),

where h > 1
2
, for all x, y ∈ X. Then condition (J2) is also satisfied. So J is an SJS-metric.

It is a non-symmetric SJS-metric space.

Example 2.2. LetX = R and J : X3 → [0,∞] be defined by J(x, y, z) = |x−y|+|y|+2|z|
for all x, y, z ∈ X, then clearly (J1) is satisfied. For any z 6= 0, S(J,X, z) = Ø. If z = 0
then for any sequence {zn} ∈ S(J,X, 0), we get

J(x, y, 0) = |x− y|+ |y| 6 |x|+ 2|y| 6 2(|x|+ |y|) = 2 lim sup
n→∞

(J(x, x, zn) + J(y, y, zn)),

for all x, y ∈ X. Therefore, the condition (J2) is satisfied and J is an SJS-metric on X. It
is a non-symmetric SJS-metric space.

In an SJS- metric space (X, J), a sequence {xn} ⊂ X is said to be convergent to
an element x ∈ X if {xn} ∈ S(J,X, x). A sequence {xn} ⊂ X is said to be Cauchy
if limn,m→∞ J(xn, xn, xm) = 0.
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Space (X, J) is said to be complete if every Cauchy sequence in X is convergent.
Open ball of center x ∈ X and radius r > 0 in X is defined as follows:

BJ(x, r) = {y ∈ X : J(x, x, y) < r}.

A nonempty subset U of X, with the property that for any x ∈ U there exists
r > 0 such that BJ(x, r) ⊂ U is called an open set. A subset B of X is called
closed if Bc is open.

Lemma 2.1. [1][Cantor’s Intersection Theorem] Every complete SJS- metric space
has Cantor’s intersection property.

3. Ekeland’s variational principle

Definition 3.1. In an SJS-metric space (X, J), a mapping ψ : X → R is said to
be lower semi-continuous at t0 ∈ X if for any ε > 0 there exits some δε > 0 such
that ψ(t0) < ψ(t) + ε for all t ∈ BJ(t0, δε).

Definition 3.2. Let (X,J) be an SJS-metric space and {An} be a decreasing
sequence of nonempty subsets of X. Then {An} is said to have vanishing diameter
property (vd−property) if for each i ∈ N there exists some fixed ai ∈ Ai such that
J(x, x, ai) ≤ J(ai, ai, ai)+ri for all x ∈ Ai, where {ri} ⊂ R+ with ri → 0 as i→∞.

Definition 3.3. An SJS-metric space (X, J) is said to have vanishing diame-
ter property if for any decreasing sequence of nonempty subsets {An} of X with
vd−property we have diam(An)→ 0 as n→∞.

We now establish Ekeland’s variational principle in an SJS-metric space. Let us
denote dJ(x, y) = J(x, x, y) for all x, y ∈ X.

Theorem 3.1. Let (X, J) be a complete SJS-metric space with coefficient s > 1,
such that dJ is continuous in both variables, sup{J(x, x, x) : x ∈ X} < ∞ and X
has vanishing diameter property. Now let, f : X → R be a lower semi-continuous,
proper and lower bounded mapping. Then for every x0 ∈ X and ε > 0 with

f(x0) ≤ inf
x∈X

f(x) + ε(3.1)

there exists a sequence {xn} ⊂ X and xε ∈ X such that:

(i) xn → xε as n→∞,

(ii) For all n ≥ 1,

J(xε, xε, xn)− J(xn, xn, xn) ≤ ε

2n
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(iii) For all x 6= xε,

f(x) +

∞∑
n=0

1

sn
J(x, x, xn) > f(xε) +

∞∑
n=0

1

sn
J(xε, xε, xn)

(iv)

f(xε) +

∞∑
n=0

1

sn
J(xε, xε, xn) ≤ f(x0) +

∞∑
n=0

1

sn
J(xn, xn, xn)

≤ inf
x∈X

f(x) + ε+

∞∑
n=0

1

sn
J(xn, xn, xn).

Proof. Consider the set

Sf (x0) = {x ∈ X : f(x) + dJ(x, x0) ≤ f(x0) + dJ(x0, x0)}.

Since x0 ∈ Sf (x0) then Sf (x0) is nonempty. Let {zn} ⊂ Sf (x0) be such that {zn}
converges to some z ∈ X. Then f(zn)+dJ(zn, x0) ≤ f(x0)+dJ(x0, x0) for all n ∈ N.
Now f is lower semi-continuous at z ∈ X, so for any ε1 > 0, f(z) < f(t) + ε1

2 for
all t ∈ BJ(z, δε1) for δε1 > 0. Also {zn} converges to some z, so there exists N1 ≥ 1
such that zn ∈ BJ(z, δε1) for all n ≥ N1. Therefore f(z) < f(zn)+ ε1

2 for all n ≥ N1.
Now continuity of dJ implies that dJ(zn, x0) → dJ(z, x0) as n → ∞. Thus for all
n ≥ N2

dJ(z, x0)− ε1
2
< dJ(zn, x0) < dJ(z, x0) +

ε1
2
.

Therefore, for all n ≥ N = max{N1, N2} we get,

f(z) + dJ(z, x0) < f(zn) + dJ(zn, x0) + ε1∀n > N

≤ f(x0) + dJ(x0, x0) + ε1.(3.2)

Since ε1 > 0 is arbitrary, thus f(z) + dJ(z, x0) ≤ f(x0) + dJ(x0, x0). Therefore
z ∈ Sf (x0). Hence Sf (x0) is closed. Also for any y ∈ Sf (x0) we get

dJ(y, x0)− dJ(x0, x0) ≤ f(x0)− f(y)

≤ f(x0)− inf
x∈X

f(x) ≤ ε.(3.3)

We choose x1 ∈ Sf (x0) such that f(x1)+dJ(x1, x0) ≤ infx∈Sf (x0){f(x)+dJ(x, x0)}+
ε
2s and let

Sf (x1) = {x ∈ X : f(x) + dJ(x, x0) +
1

s
dJ(x, x1) ≤ f(x1) + dJ(x1, x0) +

1

s
dJ(x1, x1)}.

(3.4)

Thus x1 ∈ Sf (x1) and in a similar way as above we can prove that Sf (x1) is also
closed.
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Inductively, we can suppose that xn−1 ∈ Sf (xn−2) (for n > 2) was already
chosen and we consider

Sf (xn−1) = {x ∈ Sf (xn−2) : f(x) +

n−1∑
i=0

1

si
dJ(x, xi) ≤ f(xn−1) +

n−1∑
i=0

1

si
dJ(xn−1, xi)}.

(3.5)

Let us choose xn ∈ Sf (xn−1) such that

f(xn) +

n−1∑
i=0

1

si
dJ(xn, xi) ≤ inf

x∈Sf (xn−1)
{f(x) +

n−1∑
i=0

1

si
dJ(x, xi)}+

ε

2nsn

and we define the set

Sf (xn) = {x ∈ Sf (xn−1) : f(x) +

n∑
i=0

1

si
dJ(x, xi) ≤ f(xn) +

n∑
i=0

1

si
dJ(xn, xi)}.

(3.6)

Clearly xn ∈ Sf (xn) and Sf (xn) is also closed. Now for each y ∈ Sf (xn) we get

1

sn
dJ(y, xn) ≤ {f(xn) +

n∑
i=0

1

si
dJ(xn, xi)} − {f(y) +

n−1∑
i=0

1

si
dJ(y, xi)}

≤ {f(xn) +

n∑
i=0

1

si
dJ(xn, xi)} − inf

x∈Sf (xn−1)
{f(x) +

n−1∑
i=0

1

si
dJ(x, xi)}

≤ 1

sn
dJ(xn, xn) +

ε

2nsn
.(3.7)

Therefore, for any y ∈ Sf (xn) we have

dJ(y, xn)− dJ(xn, xn) ≤ ε

2n
∀n ∈ N.

Thus the decreasing sequence of nonempty closed subsets {Sf (xn)}n≥0 has vd−property.
Since X has vd− property therefore diam(Sf (xn))→ 0 as n→∞. Thus by Cantor’s
intersection theorem (See Lemma 2.1) we have ∩∞n=0Sf (xn) = {xε}.

Now dJ(xε, xn) ≤ diam(Sf (xn)) → 0 as n → ∞ and we have xn → xε as
n→∞. From (3.7) we see that

J(xε, xε, xn)− J(xn, xn, xn) ≤ ε

2n
∀n ∈ N.

Now

f(x1) + dJ(x1, x0) ≤ f(x0) + dJ(x0, x0),

f(x2) + dJ(x2, x0) +
1

s
dJ(x2, x1) ≤ f(x1) + dJ(x1, x0) +

1

s
dJ(x1, x1)
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≤ f(x0) + dJ(x0, x0) +
1

s
dJ(x1, x1)

...

f(xm) +

m−1∑
i=0

1

si
dJ(xm, xi) ≤ f(x0) +

m−1∑
i=0

1

si
dJ(xi, xi)∀m > 1.

(3.8)

Also xε ∈ Sf (xq) for all q ∈ N, therefore

f(xε) +

q∑
i=0

1

si
dJ(xε, xi) ≤ f(xq) +

q∑
i=0

1

si
dJ(xq, xi)

≤ f(x0) +

q∑
i=0

1

si
dJ(xi, xi)∀q ≥ 1,(3.9)

which in turn implies that

f(xε) +

∞∑
i=0

1

si
dJ(xε, xi) ≤ f(x0) +

∞∑
i=0

1

si
dJ(xi, xi)

≤ inf
x∈X

f(x) + ε+

∞∑
i=0

1

si
dJ(xi, xi).(3.10)

Moreover for all x 6= xε, we have x /∈ ∩∞n=0Sf (xn) and thus there exists m ∈ N such
that x /∈ Sf (xm). So x /∈ Sf (xq) for all q ≥ m. Therefore,

f(x) +

q∑
i=0

1

si
dJ(x, xi) > f(xq) +

q∑
i=0

1

si
dJ(xq, xi)

≥ f(xε) +

q∑
i=0

1

si
dJ(xε, xi)∀q ≥ m.(3.11)

Hence we see that

f(x) +

∞∑
i=0

1

si
dJ(x, xi) > f(xε) +

∞∑
i=0

1

si
dJ(xε, xi).

Example 3.1. Let us consider X = (−∞,+∞) and let J : X3 → [0,∞] be defined
as J(x, y, z) = |x − y|2 + |y − z|2 for all x, y, z ∈ X. Then (X, J) is an SJS-metric
space for s = 3. Here dJ(x, y) = |x − y|2, which is continuous in both the variables and
sup{J(x, x, x) : x ∈ X} = 0. Now we show that X has vanishing diameter property.

Let {En} be a decreasing sequence of nonempty subsets ofX such that it has vd−property.
Then for any i ∈ N there exists some fixed ei ∈ Ei such that J(x, x, ei) = |x − ei|2 ≤
J(ei, ei, ei) + ri = ri for all x ∈ Ei, where {ri} ⊂ R+ with ri → 0 as i→∞.
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Let x(i), y(i), z(i) ∈ Ei be arbitrary. Then

J(x(i), y(i), z(i)) = |x(i) − y(i)|2 + |y(i) − z(i)|2

6 2[|x(i) − ei|2 + |y(i) − ei|2] + 2[|y(i) − ei|2 + |z(i) − ei|2]

= 2[|x(i) − ei|2 + 2|y(i) − ei|2] + |z(i) − ei|2]

6 8ri → 0

as i→∞. This implies diam(Ai) ≤ 8ri. Since this is true for all i ∈ N we get diam(Ai)→
0 as ri →∞. Thus (X, J) has vanishing diameter property.

Let f : X → R be defined as f(x) = e|x|+x2 + 4|x| for all x ∈ X. Then f is continuous
and lower bounded. Let us take ε > 0 as arbitrary and choose x0 ∈ X which satisfies
f(x0) ≤ infx∈X f(x) + ε. Now let us consider xε = 0, if x0 = 0 then we have to choose
xn = 0 for all n ≥ 1 and clearly Theorem 3.1 follows immediately. Now if x0 6= 0 then we
choose xn =

√
ε

Krn
, where K ≥ 1 and r > 2 are chosen in such a way that

ε ≤ min{K(3r − 1)

3r
[f(x0)− 1],K}.

Then we have

(i) xn → xε as n→∞,

(ii) For all n ≥ 1,

J(xε, xε, xn)− J(xn, xn, xn) = |xε − xn|2 =
ε

Krn
<

ε

2n

(iii) For all x 6= xε,

f(x) +
∑∞
n=0

1
sn
J(x, x, xn)

= e|x| + x2 + 4|x|+
∑∞
n=0

1
3n
|x−

√
ε

Krn
|2

= e|x| + x2 + 4|x|+ 3
2
x2 − 2

√
ε
K

3r
1
2

3r
1
2−1

x+ ε
K

3r
3r−1

> e|x| + x2 + 4|x|+ 3
2
x2 − 2 3r

1
2

3r
1
2−1

x+ ε
K

3r
3r−1

> 1 + ε
K

3r
3r−1

= f(xε) +
∑∞
n=0

1
sn
J(xε, xε, xn).

(iv)

f(xε) +

∞∑
n=0

1

sn
J(xε, xε, xn) = 1 +

ε

K

3r

3r − 1
6 f(x0)

= f(x0) +

∞∑
n=0

1

sn
J(xn, xn, xn)

≤ inf
x∈X

f(x) + ε+
∞∑
n=0

1

sn
J(xn, xn, xn).

Next we have the following consequence of Ekeland’s variational principle in
SJS-metric spaces.
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Corollary 3.1. Let (X, J) be a complete SJS-metric space with coefficient s > 1,
such that dJ is continuous in both variables, sup{J(x, x, x) : x ∈ X} < ∞ and X
has vanishing diameter property. Now let, f : X → R be a lower semi-continuous,
proper and lower bounded mapping. Then for every ε > 0 there exists a sequence
{xn} ⊂ X and xε ∈ X such that:

(i) xn → xε as n→∞,

(ii) f(x) +
∑∞
n=0

1
sn J(x, x, xn) ≥ f(xε) +

∑∞
n=0

1
sn J(xε, xε, xn) for every x ∈ X,

(iii) f(xε) +
∑∞
n=0

1
sn J(xε, xε, xn) ≤ infx∈X f(x) + ε+

∑∞
n=0

1
sn J(xn, xn, xn).

As an application of Theorem 3.1 we now prove Caristi’s fixed point theorem in
the context of SJS-metric spaces.

Theorem 3.2. Let (X, J) be a complete SJS-metric space with coefficient s > 1,
such that dJ is continuous in both variables, sup{J(x, x, x) : x ∈ X} <∞ and X has
vanishing diameter property. Let T : X → X be an operator for which there exists
a lower semi-continuous mapping, proper and lower bounded mapping f : X → R
such that

J(u, u, v) + sJ(u, u, Tu) ≥ J(Tu, Tu, v)(3.12)

and
s2

s− 1
J(u, u, Tu) ≤ f(u)− f(Tu)∀u, v ∈ X.(3.13)

Then T has at least one fixed point in X.

Proof. Let us assume that for all x ∈ X, Tx 6= x. Using Corollary 3.1 for f , we
obtain that for each ε > 0 there exists a sequence {xn} ⊂ X such that xn → xε as
n→∞ and

f(x) +

∞∑
n=0

1

sn
J(x, x, xn) > f(xε) +

∞∑
n=0

1

sn
J(xε, xε, xn)∀x 6= xε.

If in the above inequality, we put x = T (xε) then, since T (xε) 6= xε, we get that

f(xε)− f(Txε) <

∞∑
n=0

1

sn
[dJ(Txε, xn)− dJ(xε, xn)]

<

∞∑
n=0

1

sn
sdJ(xε, Txε)(5.15)

= s

∞∑
n=0

1

sn
dJ(xε, Txε)

=
s2

s− 1
dJ(xε, Txε).(3.14)
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Also from (3.13) we get s2

s−1dJ(xε, Txε) ≤ f(xε)−f(Txε), a contradiction. Therefore
there exists at least one x∗ ∈ X such that Tx∗ = x∗.

Definition 3.4. [14] Let X be a nonempty set and s ≥ 1 be a given number.
Also let a function Sb : X3 → [0,∞) satisfy the following conditions, for each
x, y, z, w ∈ X :

(i) Sb(x, y, z) = 0 if and only if x = y = z;

(ii) Sb(x, y, z) ≤ s[Sb(x, x, w) + Sb(y, y, w) + Sb(z, z, w)].
The pair (X,Sb) is called an Sb-metric space.

Souayah and Mlaiki [14, Theorem 2.4] follows from our Theorem 3.1 as an
immediate corollary.

Corollary 3.2. Let (X,Sb) be a complete Sb-metric space with coefficient s > 1,
such that the Sb-metric is continuous and f : X → R is a lower semi-continuous,
proper and lower bounded mapping. Then for every x0 ∈ X and ε > 0 with

f(x0) ≤ inf
x∈X

f(x) + ε,(3.15)

there exists a sequence {xn} ⊂ X and xε ∈ X such that:

(i) xn → xε as n→∞,

(ii) Sb(xε, xε, xn) ≤ ε
2n for all n ≥ 1,

(iii) f(x) +
∑∞
n=0

1
snSb(x, x, xn) > f(xε) +

∑∞
n=0

1
snSb(xε, xε, xn) for every

x 6= xε,

(iv) f(xε) +
∑∞
n=0

1
snSb(xε, xε, xn) ≤ f(x0) ≤ infx∈X f(x) + ε.

Proof. Let {An} be a decreasing sequence of nonempty subsets of X such that it
has vd−property. Then for each i ∈ N there exists some fixed ai ∈ Ai such that
Sb(x, x, ai) ≤ Sb(ai, ai, ai) + ri = ri for all x ∈ Ai, where {ri} ⊂ R+ with ri → 0 as
i→∞.

Let x(i), y(i), z(i) ∈ Ai be arbitrary. Then

Sb(x
(i), y(i), z(i)) ≤ s[Sb(x

(i), x(i), ai) + Sb(y
(i), y(i), ai) + Sb(z

(i), z(i), ai)]

≤ 3sri.(3.16)

It implies diam(Ai) ≤ 3sri. Since this is true for all i ∈ N we get diam(Ai)→ 0 as
ri →∞. Thus (X,Sb) has vanishing diameter property. Therefore all the conditions
of Theorem 3.1 are satisfied and the result follows immediately.

Corollary 3.3. Let (X,Sb) be a complete Sb-metric space with coefficient s > 1,
such that the Sb-metric is continuous and let T : X → X be an operator for which
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there exists a lower semi-continuous, proper and lower bounded mapping f : X → R,
such that:

Sb(u, u, v) + sSb(u, u, Tu) ≥ Sb(Tu, Tu, v)(3.17)

and
s2

s− 1
Sb(u, u, Tu) ≤ f(u)− f(Tu)∀u, v ∈ X.(3.18)

Then T has at least one fixed point in X.

Proof. Using Theorem 3.2 and Corollary 3.2 we get the required proof.

Remark 3.1. [3, Theorem 2.2] is a particular case of our Theorem 3.1.
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