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Abstract. The objective of this paper is to discuss various properties of mixed super
quasi-Einstein manifolds admitting certain vector fields. We analyze the behaviour of
MS (QE)n satisfying Codazzi type of Ricci tensor. We have also constructed a non-
trivial example related to mixed super quasi-Einstein manifolds.
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1. Introduction

An n-dimensional semi-Riemannian or Riemannian manifold (Mn, g) (n > 2) ,
is called an Einstein manifold if its Ricci tensor S satisfies the criteria

(1.1) S =
r

n
g,

where r denotes the scalar curvature of (Mn, g) . We can also say an Einstein man-
ifold is a Riemannian or pseudo Riemannian manifold whose Ricci tensor is pro-
portional to the metric. The notion of quasi-Einstein manifold was introduced by
M.C. Chaki and R.K. Maity [5]. A non-flat Riemannian manifold (Mn, g) , (n ≥ 3)
is a quasi-Einstein manifold if its Ricci tensor S satisfies the criteria

(1.2) S (X,Y ) = ag (X,Y ) + bA (X)A (Y )
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and is not identically zero, where a, b are scalars, b 6= 0 and A is a non-zero 1-form
such that

g (X,U) = A (X) ,

for all vector field X. U being a unit vector field.
Here a and b are called the associated scalars, A is called the associated 1-form
and U is called the generator of the manifold. Such an n-dimensional manifold
is denoted by (QE)n . The quasi-Einstein manifolds have also been studied by De
and Ghosh [7], Bejan [1], De and De [6], Han, De and Zhao [15] and many others.
Quasi-Einstein manifolds have been generalized by many authors in several ways
such as generalized quasi-Einstein manifolds [3, 9, 11, 23], N (K)-quasi Einstein
manifolds [17, 24], super quasi-Einstein manifolds [4, 10, 19] etc.

Chaki [4] introduced the notion of a super quasi-Einstein manifold. His work
suggested a non-flat Riemannian or semi-Riemannian manifold (Mn, g) (n > 2) is
called a super quasi-Einstein manifold if its Ricci tensor S of type (0, 2) is not
identically zero and satisfies the condition

S (X,Y ) = ag (X,Y ) + bA (X)A (Y )

+ c [A (X)B (Y ) +A (Y )B (X)] + dD (X,Y ) ,(1.3)

where a, b, c, d are scalars in which b 6= 0, c 6= 0 d 6= 0 and A, B are non-zero
1-forms such that

g (X,U) = A (X) , g (X,V ) = B (X) ,

where U, V are mutually orthogonal unit vector fields, D is a symmetric (0, 2) tensor
with zero trace which satisfies the condition

D (X,U) = 0,

for all X. In that case a, b, c, d are called the associated scalars, A, B are called
the associated main and auxiliary 1-forms, U, V are called the main and auxiliary
generators of the manifold and D is called the associated tensor of the manifold.
Such an n-dimensional manifold is denoted by S (QE)n .

In [2], A. Bhattacharyya, M. Tarafdar and D. Debnath introduced the notion
of mixed super quasi-Einstein manifolds. Their work suggested that a non-flat
Riemannian manifold (Mn, g) , (n ≥ 3) is said to be mixed super quasi-Einstein
manifold if its Ricci tensor S of type (0, 2) is not identically zero and satisfies the
condition

S (X,Y ) = ag (X,Y ) + bA (X)A (Y ) + cB (X)B (Y )

+ d [A (X)B (Y ) +A (Y )B (X)] + eD (X,Y ) ,(1.4)

where a, b, c, d, e are scalars on (Mn, g) of which b 6= 0, c 6= 0, d 6= 0, e 6= 0 and A,
B are two non-zero 1-forms such that

(1.5) g (X,U) = A (X) , g (X,V ) = B (X) ,
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U, V being unit vector fields which are orthogonal, D is a symmetric (0, 2) tensor
with zero trace which satisfies the condition

(1.6) D (X,U) = 0,

for all X. Here a, b, c, d, e are called the associated scalars, A, B are called the
associated main and auxiliary 1-forms, U, V are called the main and auxiliary
generators of the manifold and D is called the associated tensor of the manifold.
If c = 0, then the manifold becomes S (QE)n . This type of manifold is denoted
by the symbol MS (QE)n . If c = d = 0, then the manifold is reduced to a pseudo
quasi-Einstein manifold which was studied by Shaikh [22].

On the other hand, Gray [14] introduced two classes of Riemannian manifolds
determined by the covariant differentiation of Ricci tensor. The class A consists of
all Riemannian manifolds whose Ricci tensor S is a Codazzi type tensor, i.e.,

(∇XS) (Y, Z) = (∇Y S) (X,Z) .

The class B contains all Riemannian manifolds whose Ricci tensor is cyclic parallel,
i.e.,

(∇XS) (Y, Z) + (∇Y S) (Z,X) + (∇ZS) (X,Y ) = 0.

A non-flat Riemannian or semi-Riemannian manifold (Mn, g) (n > 2) is called a
generalized Ricci recurrent manifold [8] if its Ricci tensor S of type (0, 2) satisfies
the condition

(∇XS) (Y,Z) = γ (X)S (Y, Z) + δ (X) g (Y,Z) ,

where γ (X) and δ (X) are non-zero 1-forms such that γ (X) = g (X, ρ) and δ (X) =
g (X,µ) ; ρ and µ being associated vector fields of the 1-forms γ and δ, respectively.
If δ = 0, then the manifold reduces to a Ricci recurrent manifold [20].

After studying and analyzing various papers [12, 13, 18], we got motivation to
work in this area. Recently in the paper [16], we have studied generalized Quasi-
Einstein manifolds satisfying certain vector fields. In the present work we have tried
to develop a new concept. This paper is organized as follows: After introduction in
Section 2, we have studied that if the generators U and V of a MS (QE)n are Killing
vector fields, then the manifold satisfies cyclic parallel Ricci tensor if and only if
the associated tensor D is cyclic parallel. Section 3 is concerned with MS (QE)n
satisfying Codazzi type of Ricci tensor. In the next two sections, we have studied
MS (QE)n with generators U and V both as concurrent and recurrent vector fields.
Finally the existence of MS (QE)n is shown by constructing non-trivial example.

2. The generators U and V as Killing vector fields

In this section we consider the generators U and V of the manifold are Killing
vector fields.
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Theorem 2.1. If the generators of a MS (QE)n are Killing vector fields and the
associated scalars are constants, then the manifold satisfies cyclic parallel Ricci
tensor if and only if the associated tensor D is cyclic parallel.

Proof. Let us assume that the generators U and V of the manifold are Killing vector
fields. Then we have

(2.1) (£Ug) (X,Y ) = 0

and

(2.2) (£V g) (X,Y ) = 0,

where £ denotes the Lie derivative.
From (2.1) and (2.2), we get

(2.3) g (∇XU, Y ) + g (X,∇Y U) = 0

and

(2.4) g (∇XV, Y ) + g (X,∇Y V ) = 0.

Since g (∇XU, Y ) = (∇XA) (Y ) and g (∇XV, Y ) = (∇XB) (Y ) .
Thus from (2.3) and (2.4) we obtain

(2.5) (∇XA) (Y ) + (∇YA) (X) = 0

and

(2.6) (∇XB) (Y ) + (∇YB) (X) = 0,

for all X, Y.
Similarly, we have

(2.7) (∇XA) (Z) + (∇ZA) (X) = 0,

(2.8) (∇ZA) (Y ) + (∇YA) (Z) = 0,

(2.9) (∇XB) (Z) + (∇ZB) (X) = 0,

(2.10) (∇ZB) (Y ) + (∇YB) (Z) = 0,

for all X, Y, Z.
We assume that the associated scalars are constants. Then from (1.4) we have

(∇ZS) (X,Y ) = b [(∇ZA) (X)A (Y ) +A (X) (∇ZA) (Y )]

+ c [(∇ZB) (X)B (Y ) +B (X) (∇ZB) (Y )]

+ d [(∇ZA) (X)B (Y ) +A (X) (∇ZB) (Y )

+ (∇ZA) (Y )B (X) +A (Y ) (∇ZB) (X)]

+ e (∇ZD) (X,Y ) .(2.11)
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Using (2.11), we get

(∇XS) (Y,Z) + (∇Y S) (Z,X) + (∇ZS) (X,Y ) = b [{(∇XA) (Y )

+ (∇YA) (X)}A (Z) + {(∇XA) (Z) + (∇ZA) (X)}A (Y )

+ {(∇YA) (Z) + (∇ZA) (Y )}A (X)] + c [{(∇XB) (Y )

+ (∇YB) (X)}B (Z) + {(∇XB) (Z) + (∇ZB) (X)}B (Y )

+ {(∇YB) (Z) + (∇ZB) (Y )}B (X)] + d [{(∇XB) (Y )

+ (∇YB) (X)}A (Z) + {(∇XB) (Z) + (∇ZB) (X)}A (Y )

+ {(∇YB) (Z) + (∇ZB) (Y )}A (X) + {(∇XA) (Y )

+ (∇YA) (X)}B (Z) + {(∇XA) (Z) + (∇ZA) (X)}B (Y )

+ {(∇YA) (Z) + (∇ZA) (Y )}B (X)] + e [(∇XD) (Y,Z)

+ (∇YD) (Z,X) + (∇ZD) (X,Y )] .(2.12)

Using the equations (2.5) - (2.10) in (2.12), we get

(∇XS) (Y,Z) + (∇Y S) (Z,X) + (∇ZS) (X,Y ) = e [(∇XD) (Y, Z)

+ (∇YD) (Z,X) + (∇ZD) (X,Y )] .

Thus the proof of theorem is completed.

3. MS (QE)n admits Codazzi type of Ricci tensor

We know that a Riemannian or semi-Riemannian manifold satisfies Codazzi type
of Ricci tensor if its Ricci tensor S satisfies the following condition

(3.1) (∇XS) (Y, Z) = (∇Y S) (X,Z) ,

for all X, Y, Z.

Theorem 3.1. If a MS (QE)n admits the Codazzi type of Ricci tensor with the
associated tensor D satisfying the relation (∇XD) (Y, V ) = (∇YD) (V,X) , then
either d = ±

√
bc or the associated 1-forms A and B are closed.

Proof. Using (2.11) and (3.1), we obtain

b [(∇XA) (Y )A (Z) +A (Y ) (∇XA) (Z)] + c [(∇XB) (Y )B (Z)

+ B (Y ) (∇XB) (Z)] + d [(∇XA) (Y )B (Z) +A (Y ) (∇XB) (Z)

+ (∇XA) (Z)B (Y ) +A (Z) (∇XB) (Y )] + e (∇XD) (Y, Z)

− b [(∇YA) (Z)A (X) +A (Z) (∇YA) (X)]− c [(∇YB) (Z)B (X)

+ B (Z) (∇YB) (X)]− d [(∇YA) (Z)B (X) +A (Z) (∇YB) (X)

+ (∇YA) (X)B (Z) +A (X) (∇YB) (Z)]− e (∇YD) (Z,X) = 0.(3.2)

Putting Z = U in (3.2) and using (∇XA) (U) = 0, we have

b [(∇XA) (Y )− (∇YA) (X)] + d [(∇XB) (Y )− (∇YB) (X)] = 0,
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i.e.,

(3.3) bdA (X,Y ) = −ddB (X,Y ) .

Similarly, putting Z = V in (3.2) and using (∇XB) (V ) = 0, we have

c [(∇XB) (Y )− (∇YB) (X)] + d [(∇XA) (Y )− (∇YA) (X)]

+e [(∇XD) (Y, V )− (∇YD) (V,X)] = 0,

i.e.,

(3.4) cdB (X,Y ) + ddA (X,Y ) + e [(∇XD) (Y, V )− (∇YD) (V,X)] = 0.

If (∇XD) (Y, V ) = (∇YD) (V,X) , then from the equations (3.3) and (3.4) we get
either

d = ±
√
bc

or
dA (X,Y ) = 0

and
dB (X,Y ) = 0.

Thus, we complete the proof.

Theorem 3.2. If a MS (QE)n admits the Codazzi type of Ricci tensor with the
associated tensor D satisfying the condition (∇VD) (Y, V ) = (∇YD) (V, V ) , then
the integral curves of the parallel vector fields U and V are geodesics.

Proof. Putting X = Z = U in (3.2), we get

b (∇UA) (Y ) + d (∇UB) (Y ) = 0,

which means that

(3.5) bg (∇UU, Y ) + dg (∇UV, Y ) = 0.

Similarly, putting X = Z = V in (3.2), we get

c (∇VB) (Y ) + d (∇VA) (Y ) + e [(∇VD) (Y, V )− (∇YD) (V, V )] = 0,

i.e.,

(3.6) cg (∇V V, Y ) + dg (∇V U, Y ) + e [(∇VD) (Y, V )− (∇YD) (V, V )] = 0.

If U, V are parallel vector fields, then ∇UV = 0 = ∇V U.
We assume that (∇VD) (Y, V ) = (∇YD) (V, V ) . So from (3.5) and (3.6), we obtain

g (∇UU, Y ) = 0, for all Y, i.e., ∇UU = 0

and
g (∇V V, Y ) = 0, for all Y, i.e., ∇VV = 0.

Thus the theorem is proved.
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4. The generators U and V as concurrent vector fields

A vector field ξ is called concurrent if [21]

(4.1) ∇Xξ = ρX,

where ρ is a non-zero constant. If ρ = 0, then the vector field reduces to a parallel
vector field.

Theorem 4.1. If the associated vector fields of a MS (QE)n are concurrent vector
fields and the associated scalars are constants, then the manifold reduces to a pseudo
quasi-Einstein manifold.

Proof. We consider the vector fields U and V corresponding to the associated 1-
forms A and B respectively are concurrent. Then

(4.2) (∇XA) (Y ) = αg (X,Y )

and

(4.3) (∇XB) (Y ) = βg (X,Y ) ,

where α and β are non-zero constants.
Using (4.2) and (4.3) in (2.11), we get

(∇ZS) (X,Y ) = b [αg (Z,X)A (Y ) + αg (Z, Y )A (X)] + c [βg (Z,X)B (Y )

+ βg (Z, Y )B (X)] + d [αg (Z,X)B (Y ) + βg (Z, Y )A (X)

+ αg (Z, Y )B (X) + βg (Z,X)A (Y )] + e (∇ZD) (X,Y ) .(4.4)

Contracting (4.4) over X and Y, we obtain

(4.5) dr (Z) = 2 [(bα+ dβ)A (Z) + (cβ + dα)B (Z)] ,

where r is the scalar curvature of the manifold.
In a MS (QE)n if the associated scalars a, b, c, d and e are constants, then con-
tracting (1.4) over X and Y we get

r = an+ b+ c,

which implies that the scalar curvature r is constant, i.e., dr (X) = 0, for all X.
Thus equation (4.5) gives

(4.6) (bα+ dβ)A (Z) + (cβ + dα)B (Z) = 0.

Since α and β are non-zero constants, using (4.6) in (1.4), we finally get

S (X,Y ) = ag (X,Y )+

[
b+ c

(
bα+ dβ

cβ + dα

)2

− 2d

(
bα+ dβ

cβ + dα

)]
A (X)A (Y )+eD (X,Y ) .

Thus the manifold reduces to a pseudo quasi-Einstein manifold.
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5. The generators U and V as recurrent vector fields

Definition 5.1. A non-flat Riemannian or semi-Riemannian manifold (Mn, g)
(n > 2) will be called a pseudo generalized Ricci recurrent manifold if its Ricci
tensor S of type (0, 2) satisfies the condition

(∇XS) (Y,Z) = β (X)S (Y, Z) + γ (X) g (Y, Z) + δ (X)D (Y,Z) ,

where β (X) , γ (X) and δ (X) are non-zero 1-forms such that

β (X) = g (X, ξ1) , γ (X) = g (X, ξ2) , δ (X) = g (X, ξ3) ;

ξ1, ξ2 and ξ3 are associated vector fields of the 1-forms β, γ and δ respectively, D
is a symmetric (0, 2) tensor with zero trace which satisfies the condition

D (X, ξ1) = 0,

for all X.

Theorem 5.1. If the generators of a MS (QE)n corresponding to the associated
1-forms are recurrent with the same vector of recurrence and the associated scalars
are constants with an additional condition that D is covariant constant, then the
manifold is a pseudo generalized Ricci recurrent manifold.

Proof. A vector field ξ corresponding to the associated 1-form η is said to be recur-
rent if [21]

(5.1) (∇Xη) (Y ) = ψ (X) η (Y ) ,

where ψ is a non-zero 1-form.

Here, we consider the generators U and V corresponding to the associated 1-
forms A and B as recurrent. Then we have

(5.2) (∇XA) (Y ) = λ (X)A (Y )

and

(5.3) (∇XB) (Y ) = µ (X)B (Y ) ,

where λ and µ are non-zero 1-forms.
Using (5.2) and (5.3) in (2.11), we obtain

(∇ZS) (X,Y ) = 2bλ (Z)A (X)A (Y ) + 2cµ (Z)B (X)B (Y )

+ d [λ (Z) + µ (Z)] [A (X)B (Y ) +A (Y )B (X)]

+ e (∇ZD) (X,Y ) .(5.4)

We assume that the 1-forms λ and µ are equal, i.e.,

(5.5) λ (Z) = µ (Z) ,
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for all Z. From the equations (5.4) and (5.5), we get

(∇ZS) (X,Y ) = 2λ (Z) [bA (X)A (Y ) + cB (X)B (Y )

+ d {A (X)B (Y ) +A (Y )B (X)}]
+ e (∇ZD) (X,Y ) .(5.6)

Using (1.4) and (5.6), we obtain

(∇ZS) (X,Y ) = α1 (Z)S (X,Y )+α2 (Z) g (X,Y )+α3 (Z)D (X,Y )+e (∇ZD) (X,Y ) ,

where α1 (Z) = 2λ (Z) , α2 (Z) = −2aλ (Z) and α3 (Z) = −2eλ (Z) .
So the proof is complete.

6. Example of MS (QE)4

In this section, we prove the existence of MS (QE)4 by constructing a non-trivial
concrete example.

Let
(
x1, x2, . . . , xn

)
∈ Rn, where Rn is an n-dimensional real number space. We

consider a Riemannian metric g on R4 =
(
x1, x2, x3, x4

)
, by

(6.1) ds2 = gijdx
idxj =

(
dx1
)2

+
(
x1
)2 (

dx2
)2

+
(
x2
)2 (

dx3
)2

+
(
dx4
)2
,

where i, j = 1, 2, 3, 4. Using (6.1), we see the non-vanishing components of Rieman-
nian metric are

(6.2) g11 = 1, g22 =
(
x1
)2
, g33 =

(
x2
)2
, g44 = 1

and its associated components are

(6.3) g11 = 1, g22 =
1

(x1)
2 , g33 =

1

(x2)
2 , g44 = 1.

Using (6.2) and (6.3), we can calculate that the non-vanishing components of
Christoffel symbols, curvature tensor and Ricci tensor are given by

Γ1
22 = −x1, Γ2

33 = − x2

(x1)
2 , Γ2

12 =
1

x1
, Γ3

23 =
1

x2
, R1332 = −x

2

x1
, S12 = − 1

x1x2

and the other components are obtained by the symmetric properties. It can be
easily shown that the scalar curvature r of the resulting manifold

(
R4, g

)
is zero.

We shall show that
(
R4, g

)
is a MS (QE)4 .

Let us consider the associated scalars as follows:

(6.4) a =
1

x1 (x2)
2 , b =

1

(x2)
3 , c = − 1

x2
, d =

1

x1
, e = − 1

(x1)
2
x2
.

We choose the 1-form as follows:

Ai (x) =

{
x1, when i = 2

0, otherwise
(6.5)
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and

Bi (x) =

{
x2, when i = 3

0, otherwise
(6.6)

at any point x ∈ R4.
We take the associated tensor as follows:

Dij (x) =


1, when i = j = 1, 3

−2, when i = j = 2

x1, when i = 1, j = 2

0, otherwise

(6.7)

at any point x ∈ R4. Now the equation (1.4) reduces to the equation

S12 = ag12 + bA1A2 + cB1B2 + d [A1B2 +A2B1] + eD12,(6.8)

since, for the other cases (1.4) holds trivially.
From the equations (6.4), (6.5), (6.6), (6.7) and (6.8) we get

Right hand side of (6.8) = ag12 + bA1A2 + cB1B2 + d [A1B2 +A2B1] + eD12

=
1

x1 (x2)
2 · 0 +

1

(x2)
3 · 0 · x

1 +

(
− 1

x2

)
· 0 · 0

+
1

x1
[
0 + x1 · 0

]
+

(
− 1

(x1)
2
x2

)
· x1

= − 1

x1x2
= S12.

Clearly, the trace of the (0, 2) tensor D is zero.
We shall now show that the 1-forms Ai and Bi are unit and also they are orthogonal.
Here,

gijAiAj = 1, gijBiBj = 1, gijAiBj = 0.

So,
(
R4, g

)
is a MS (QE)4 .
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