
FACTA UNIVERSITATIS (NIŠ)

Ser. Math. Inform. Vol. 39, No 4 (2024), 563–578

https://doi.org/10.22190/FUMI210825038E

Original Scientific Paper

QKRK FACTORIZATION FOR IMAGE COMPRESSION

Erik Eckenberg1 and Knarik Tunyan2

1 Faculty of Science, New Jersey Institute of Technology

University Heights, Newark, 07102 New Jersey, USA
2 Department of Mathematics and Computer Science, Purchase College

State University of New York, Purchase, 10577 New York, USA

Abstract. We store and exchange more digital images than ever before. Image qualities
are often reduced to decrease the cost of storage and transfer of the images. Digital
image compression is a technique that reduces the size of an image while preserving
its quality to be acceptable for a particular purpose. Matrix factorizations are widely
used for this purpose. This paper presents an application of the QKRK and block
QKRK factorizations of a matrix to image compression. We have conducted a series of
experiments using Matlab software. This paper presents the comparative analysis of the
compressed images using the QR, SV D, QKRK , and block QKRK factorizations. The
similarity between the original and compressed images is measured using the L2-norm
and structural similarity. It is demonstrated that using the QKRK factorization for
image compression allows the achievement of the desired quality of a fragment of the
image compared to the rest of the image and is also computationally efficient.
Keywords: QKRK factorization, QR factorization, SV D factorization, block QKRK

factorization.

1. Introduction

Nowadays, the number of digital photos taken, stored, and shared on a daily basis
is increasing exponentially. Therefore, there is an enormous demand for effective
and efficient image compression algorithms that reduce the size of the images while

Received August 25, 2021, revised: August 05, 2024, accepted: August 08, 2024
Communicated by Marko Petković
Corresponding Author: Knarik Tunyan. E-mail addresses: ete2@njit.edu (E. Eckenberg),
knarik.tunyan@purchase.edu (K. Tunyan)
2020 Mathematics Subject Classification. Primary 15A23, 68U10, 94A08; Secondary 15A10

c© 2024 by University of Nǐs, Serbia | Creative Commons License: CC BY-NC-ND

563

ORCID IDs:   Erik Eckenberg
   Knarik Tunyan

https://orcid.org/0000-0002-2276-8710    
https://orcid.org/0009-0008-6281-5471 



564 E. Eckenberg and K. Tunyan

preserving their quality or minimizing transmission time. There are two main
image compression techniques, lossless and lossy [10]. The lossless compression
algorithms reduce the image size, preserving the data, while the lossy compression
techniques eliminate redundant data from the images without compromising the
image quality. The choice of the image compression algorithm depends on the
objective of the application. Many applications utilize image compression methods:
facial recognition, blurry and noisy image restoration, removing an object from an
image in machine learning, and digital image watermarking [2, 4, 12, 18, 19, 20],
just to name a few.

Matrix factorizations, such as LU and QR decompositions, Cholesky factorization,
and singular value decomposition (SV D), are widely used in digital signal and image
processing. The idea of using matrix factorization in the lossy image compression is
based on constructing a new approximated matrix of a lower rank to approximate
the original image matrix. This approach allows the elimination of unnecessary data
and extracts a piece of vital information from an image.

The effectiveness and efficiency of various matrix factorizations in image pro-
cessing have been extensively studied [13, 15, 17, 18, 19]. The theoretical and
experimental results demonstrate that using SV D leads to a better approximation
in terms of the quality of the compressed image, as it allows retrieval of the principal
information from the data effectively. The QR decomposition is computationally
more efficient than SV D [16, 17].

Many extensions and variations of the SV D and QR based image compression
methods have been proposed, analyzed, and compared. For example, in [25], it was
shown that QR with column pivoting, although more computationally expensive,
produces better image approximations than QR without using the pivoting rule. In
[1], an image compression method was proposed based on the block SV D power
method. Several quality measurements of the compressed images, such as mean
square error, compression ratio, and peak signal-to-noise ratio, have been computed
and compared with the results obtained by using MATLAB’s SV D function and
other in the state-of-the-art compression techniques. The author demonstrated that
the proposed method produces visually similar images but computationally is more
efficient and provides a better compression ratio and peak signal-to-noise values.

The current intense area of research in image compression is based on the
recent development of the randomized matrix factorizations technique [8, 15]. The
idea behind the randomized matrix factorizations is to use random sampling to
extract the most significant part of an original matrix and then apply standard
factorizations. Theoretical error analysis and computational experiments show that
using the randomized SV D and QR in image compression is computationally faster,
while the image reconstruction errors are similar to the errors produced by the other
restoration techniques [14, 25].

The methods described above deal with the overall quality of the image. However,
in some applications, such as partial image encryption, facial recognition, blurring,
and masking [11], the objectives are to keep only a part of the image at its best
possible quality or encrypt only a specific part of the image. The standard approach



QKRK Factorization for Image Compression 565

to this class of problems involves adding data to the original image resulting in a
higher dimensionality or computational inefficiency. Moreover, the methods based
on SV D, QR, and other matrix decompositions and their variations are not flexible
enough to accommodate these goals. On the other hand, the parametric nature
of the QKRK matrix factorization and its block version [22] allows us to extract a
subclass of matrix decompositions that can be used to solve these problems.

In this paper, we propose to use the QKRK matrix factorization and its block
version to preserve the quality of a desirable portion of the image, being less concerned
with the quality of the rest of the image. The implementation of both algorithms in
Matlab is described, and stability issues are discussed. Several experiments using
different factorizations have been carried out, and the comparative analysis of the
quality of the compressed image is presented.

This paper is organized as follows. In Sections 2. and 3., background information
is provided. Section 4. describes the implementation of the proposed algorithms.
Section 5. presents the results of numerical experiments. Concluding remarks are
presented in Section 6.

2. SV D and QR factorizations

In this section, we briefly describe SV D and QR matrix factorizations and explain
how they are used for low rank approximation of the original matrix.

The SV D of a real matrix Am×n with a rank r ≤ min(m,n) is a decomposition
A = UΣV T , where Um×r and V n×r are matrices with orthonormal columns, Σr×r

is a diagonal matrix. Calculating SV D requires knowledge of the eigenvalues and
eigenvectors of AAT and ATA. The eigenvectors are the columns of U and V ,
correspondingly. Square roots of the eigenvalues, called singular values, are the
diagonal elements in Σ, arranged in descending order. SV D is proved to be a very
efficient algorithm for non-singular matrices [17]. If a matrix A has a large condition
number, then the condition number of ATA is squared. Therefore, the calculated
SV D may not be accurate as needed [6].

On the other hand, the QR decomposition of a matrix provides computational
stability [6, 7]. A matrix A is decomposed into a product of two matrices A = QR,
where Qm×n is a matrix with orthogonal columns and Rn×n is an upper triangular
matrix. QR factorization is computed using the Gram-Schmidt orthogonalization
process, Householder transformations, or Givens rotations. Each of these algorithms
has its advantages and drawbacks. Householder transformation or Givens rotations
are known to be more robust than Gram-Schmidt orthogonalization. However, the
Givens rotations are known for their difficulty in implementation, and Householder
transformations cannot be effectively parallelized.

Both SV D and QR matrix factorizations are used to construct a new approx-
imated matrix of a lower rank to approximate the original image matrix A. For
example, if A has rank r, then the matrix of the compressed image with the rank
s, s < r can be obtained by neglecting (setting equal to zero) the last r− s non-zero



566 E. Eckenberg and K. Tunyan

singular values in Σ for the SV D or the lowest r − s non-zero rows in R for the
QR factorizations. To achieve the desirable error threshold, the analysis should
be conducted [3, 5]. If the image quality should be improved, then the rank s is
increased by including more singular values in SV D or adding more rows in R in
QR factorization.

3. QKRK factorization

QKRK factorization of a matrix A is obtained using a partial orthogonalization
process, the base for which is a parametric linear transformation [22]. Both algorithms
are described below.

3.1. Notations and definitions.

In this paper, we will be using the following notations and definitions.

Let a = (a1, a2, . . . , an) denote a row vector in Rn. Note that bold-faced variables
denote vectors, and variables in italic denote vector elements.

Let K = {1, 2, . . . , k}, 1 ≤ k ≤ n. The Kth piece of the vector a, or a subvector,
is denoted by a(K) = (a1, a2 . . . , ak).

A system of m row vectors is represented as {a1,a2, ...am}, where
ai = (ai1, ai2, . . . , ain), i = 1, . . . ,m. The corresponding Kth pieces of these vectors
are denoted by ai(K) = (ai1, ai2 . . . , aik).

Vectors a = (a1, a2 . . . , an) and b = (b1, b2 . . . , bn) are called partially orthogonal
if their Kth pieces are orthogonal, that is, the dot product a(K)b(K) = 0. Vectors
a and b are called partially orthonormal, if they are partially orthogonal and their
norms ‖a(K)‖ = ‖b(K)‖ = 1.

The partial orthogonalization method [21] is a particular type of oblique projection
that enables us to obtain a partially orthogonal/orthonormal system of vectors from a
given system of vectors. The foundation for partial orthogonalization is a parametric
linear transformation, which is a generalization of the Gaussian and Gram-Schmidt
transformation [21]. The idea behind the parametric transformation is to choose k
elements simultaneously (called the pivot vector of length k) instead of the pivot
element in the Gaussian transformation.

3.2. Parametric linear transformation.

Let a system of linearly independent row vectors {a1,a2, ...am} be given, where
ai = (ai1, ai2, . . . , ain), i = 1, . . . ,m. We require m ≤ k ≤ n.

Without loss of generality, we assume that the Euclidean norm ‖a1(K)‖ 6= 0.
Otherwise, we can switch the rows to satisfy this condition.



QKRK Factorization for Image Compression 567

To obtain a new system of vectors {b1,b2, ...bm}, set

(3.1) bi =


ai

‖a1(K)‖
, i = 1

ai + αib1, otherwise,

where αi = −ai(K)b1(K), i 6= 1.

Note that b1(K)bi(K) = 1 for all i = 1, 2, . . . ,m, because

b1(K)b1(K) =
a1(K)

‖a1(K)‖
a1(K)

‖a1(K)‖
= 1,

and for i = 2, . . . ,m,

b1(K)bi(K) = b1(K)(ai(K) + αib1(K))

= b1(K)ai(K)− b1(K)ai(K)b1(K)b1(K)

= b1(K)ai(K)− b1(K)ai(K)‖b1(K)b1(K)‖

= b1(K)ai(K)− b1(K)ai(K) = 1.

Thus, the parametric linear transformation (3.1) allows us to obtain a new system
of vectors, where the first row and any other row are partially orthonormal.

3.3. Partial orthogonalization.

To reduce a given linearly-independent system of vectors to a partially orthogo-
nal/orthonormal one, parametric linear transformation (3.1) is used at each step of
the process, as described below.

Let a system of linearly independent row vectors {a1,a2, ...am} be given. A
partially orthonormal system {b1,b2, ...bm} is constructed as follows.

Let

(3.2) b1 =
a1

‖a1(K)‖
.

Successively, for s = 2, . . . ,m, set

(3.3) bs =
bs

‖bs(K)‖
,

where

bs = as + αs1b1 + · · ·+ αs,s−1bs−1,

αsi = −ai(K)b1(K), i = 1, . . . , s− 1.

The resulting system of vectors {b1,b2, ...bm} is partially orthonormal, that is,

bi(K)bs(K) =

{
1, i = s

0, otherwise.



568 E. Eckenberg and K. Tunyan

Thus, the partial orthogonalization process (3.2)-(3.3) depends on the choice of
the parameter k. In two extreme cases, when k = 1 and k = n, it is the Gaussian
transformation and Gram-Schmidt orthogonalization, respectively.

3.4. Stability issues

Stability issues of both Gaussian elimination and Gram-Schmidt orthogonalization
have been discussed extensively. It is well known that both processes are unstable.
However, more accurate results can be obtained if the computations are organized
properly. Gaussian elimination is stable when the partial pivoting rule is used.
Namely, the rows are interchanged at each elimination step so that the pivot element
has the largest absolute value. Gram-Schmidt orthogonalization provides stable
computations when the modified version is used, when at each step, all the rows
below the pivot row are transformed [6, 7, 9, 24].

To ensure the stability and accuracy of the results of our experiments, the modified
partial orthogonalization is used. The pivoting rule for this process combines both
strategies described above. At each sth step, the row whose Kth piece has the
maximum norm is a pivot row. The transformations are performed on all the rows
below the pivot one.

3.5. QKRK factorization.

Let Am×n, m ≤ n, be a full row rank matrix.

Applying the partial orthogonalization process (3.2)-(3.3) to the rows of a matrix
A, an RKQK factorization is obtained. Namely, A = RKQK , where Rm×mK is a
nonsingular lower triangular matrix constructed from the coefficients α, and Qm×nK

is a matrix with partially orthonormal rows. A matrix with partially orthonormal
rows is called a partially orthonormal matrix.

Visually, the RKQK decomposition can be represented as follows

Q1 Q2

A =


1 0 . . . 0
−α21 1 . . . 0

...
...

. . .
...

−αm1 −αm2 . . . 1

×



RK QK

where Q1 is an m× k submatrix with orthogonal/orthonormal rows.

Therefore, AT = QTKR
T
K = [QT1 QT2 ]RTK is in the following form

where QT1 is an k ×m matrix with orthogonal columns and RTK is an m×m non-
singular upper triangular matrix. This decomposition is called a partially orthogonal
decomposition.



QKRK Factorization for Image Compression 569

Let us emphasize that in the case k = n, the modified partial orthogonalization
coincides with the modified Gram-Schmidt orthogonalization. Therefore, we obtain
the standard QR factorization of A.

3.6. Block QKRK factorization.

The block QKRK factorization of A allows us to receive a class of decompositions
in the form A = RKQK , where RK is a lower triangular matrix, and QK is in the
following form

with

Ks ⊆ N, s = 1, . . . , τ, τ 6 m, Ki

⋂
Kj = Ø, i 6= j for all i, j, M =

τ⋃
s=1

Ms,

the diagonal submatrices Qs are matrices with orthogonal rows, 0 is a zero submatrix.
Note that depending on the selection of the sets Ks, the set Nτ can be empty. If



570 E. Eckenberg and K. Tunyan

m ≥ n, then the operations are performed on the transpose of A.

4. Implementation of QKRK decomposition

The pseudo-code below describes the implementation of the QKRK algorithm. The
algorithm starts by copying the input matrix A to a matrix V . While iterating
through the rows of V , we keep track of a pivotRow, indicating the pivot row number
in the current iteration. If the Kth subvector in the pivotRow is a zero vector, then
we swap this row with the closest row with a non-zero Kth piece and update the
permutation matrix according to the swap. Otherwise, we perform the row reduction
on all rows below the pivotRow. When all vectors below the pivot row are zero
vectors, we move on to the next stage of the process. If we orthonormalize V , the
alpha coefficient matrix should be updated accordingly.

5. Experiments and results

For our experiments, we used a picture of the puppy Anoushig in a jpeg format, see
Figure 5.1a). First, the image is translated into black and white, with pixel values
ranging from 0 to 255. To capture the details of the image, such as the puppy’s eye
and crate, we select a portion of the image to run tests against Figure 5.1b). The
original image is reduced from 2016× 1512 to a 500× 900 full rank matrix.

All experiments have been performed using MATLAB 2020b software. Exper-
iments involving the QKRK factorization and its block version were performed



QKRK Factorization for Image Compression 571

a) color image

b) black and white reduced image

Fig. 5.1: Original image that was used for the experiments.

using the code outline described above. Experiments involving the QR and SV D
factorizations were conducted using MATLAB built-in functions. The command
[Q,R, P ] = qr(A) calculates QR factorization of A, such that A = QRP−1, where
Q is an orthogonal matrix, R is an upper triangular matrix, and P is a permu-
tation matrix. The command [U,E, V ] = svd(A) calculates SV D of A, such that
A = UEV , where U and V are orthogonal matrices, E is a diagonal matrix.

5.1. Experiment 1

We examined the performance of QKRK factorization and its block version for low
rank approximation of an image on Figure 5.1b). The approximation of the original
500 rank matrix is made by reducing it to the r rank approximated matrix, where
r = 10, 20, 100, 200, 500. The comparison analysis has been performed using relative
error, or L2-norm, and the structural similarity methods.

Relative error results for all four algorithms are presented in Table 5.1. The
QKRK algorithm was performed with K = {1, . . . , 500}, and for the block QKRK
decomposition, the partition is K = {K1,K2,K3}, where K1 = {1, . . . , 200},K2 =
{201, . . . , 350},K3 = {351, . . . , 500}.

Our numerical results confirm that, as expected, low rank approximation using
SV D produces the best results with the minimum error for all ranks, followed by the
performance of QR factorization. As the rank of the approximated matrix increases,
the error for all algorithms, except for the QKRK blockwise approach, decreases.



572 E. Eckenberg and K. Tunyan

Table 5.1: Relative errors. QR, SV D, QKRK and block QKRK factorizations

Rank QR SV D QKRK QKRK block
10 0.1 0.06 0.43 0.53
20 0.067 0.035 0.39 0.53
50 0.036 0.013 0.31 0.4
100 0.019 6.9 ∗ 10−3 0.31 0.35
200 6.6 ∗ 10−3 2.8 ∗ 10−3 0.30 0.9
350 2.0 ∗ 10−3 1.0 ∗ 10−3 0.115 1.066
500 2.1 ∗ 10−16 8.2 ∗ 10−16 9.6 ∗ 10−17 1.2 ∗ 10−16

Images of rank 50 reconstructions using the QR, SV D, QKRK algorithm are
presented in Figure 5.2b)-d). The original image is presented in Figure 5.2a) for
visual comparison purposes. From the images, we can see that for the rank r = 50,
the overall image appearance is better when using SV D or QR, but the details,
such as the eye or crate wire, appear sharper when using the QKRK while the rest
of the image being blurry.

a) original image b) QKRK

c) QR d) SV D

Fig. 5.2: Reconstructed images with r = 50.

Images on the Figure 5.3 show a comparison between QKRK with
K = {1, . . . , 500} and block QKRK with K = {K1,K2,K3}, where
K1 = {1, . . . , 200}, K2 = {201, . . . , 350}, K3 = {351, . . . , 500}.



QKRK Factorization for Image Compression 573

Table 5.2: Relative errors calculated for a fragment of an image, l = 10

Rank QKRK QR SVD
10 1.23 ∗ 10−18 2 ∗ 10−3 5.9 ∗ 10−3

50 1.23 ∗ 10−18 7 ∗ 10−4 9.3 ∗ 10−4

100 1.23 ∗ 10−18 2.6 ∗ 10−4 5.8 ∗ 10−4

200 1.23 ∗ 10−18 2.5 ∗ 10−4 2.2 ∗ 10−4

500 1.23 ∗ 10−18 1.4 ∗ 10−17 4.1 ∗ 10−17

The image is reconstructed using 50, 100, 200, and 350 ranks.

From these examples, it is visually evident that after reconstructing the image,
the lower right side of the images by QKRK suffers the most. Similar results are
obtained when using its block version implementation. This distortion is caused by
the fact that QKRK is checking the first 500 columns and effectively neglecting the
rest. As such, this region’s numerical errors are significantly heightened compared
to the more conventional QR and SV D algorithms. With the block approach,
since the lower right corner of the image is reconstructed poorly, the relative error
increases beyond 100%. The block lies in the right portion of the bottom m − r
rows. With increasing the r value, this block emerges, and the remainder of the
image is reconstructed reasonably well.

5.2. Experiment 2

For this experiment, we test the accuracy of the QKRK factorization with K =
{1, . . . , 500}, and compare it with the QR and SV D decompositions on a selected
portion of the original image. We reconstruct the entire image but only evaluate its
accuracy on an l × l submatrix in the upper left corner.

The images of rank 50 reconstructions of the 100 × 100 submatrix using the
specified algorithms are in Figures 5.4b)-d) and 5.5. The original image, Figure 5.4
a) is included for visual comparison purposes.

As we can see from Figures 5.4 and 5.5, both QKRK and its block variant create
a perfectly reconstructed upper portion of the sub-image, and a poorly reconstructed
bottom part. It happens because the current implementation of the QKRK algorithm
does not utilize permutation to reconstruct the most critical rows first. On the other
hand, SV D and QR do, leading to although poor, but more consistent quality in
the image.

Tables 5.2 and 5.3 present the results of the experiments for l = 10 and l = 100
with the r = 10, 50, 100, 200, 500 rank approximations.

Our experiments demonstrate that the accuracy of the l × l portion of the
reconstructed image using QKRK with K = {1, 2, . . . , k} is almost perfect at l = k.
It is because the partial orthogonalization process produces orthogonal Kth l × l
subvectors. On the contrary, QR and SV D work on the entire matrix, resulting in



574 E. Eckenberg and K. Tunyan

QKRK , r = 50 block QKRK , r = 50

QKRK , r = 100 block QKRK , r = 100

QKRK , r = 200 block QKRK , r = 200

QKRK , r = 350 block QKRK , r = 350

Fig. 5.3: Reconstructed images using QKRK and block QKRK .

an approximated image with a better overall visual appearance.



QKRK Factorization for Image Compression 575

a) original image b) QKRK

c) QR d) SV D

Fig. 5.4: Reconstructed subimages, l = 100, r = 50.

a) QKRK b) block QKRK

c) QR d) SV D

Fig. 5.5: Reconstructed subimages.

5.3. Experiment 3. Structural similarity, QKRK vs QR and SV D

In this experiment, we compare the performance of QKRK , QR, and SV D using
the structural similarity method [23]. For this purpose, we use the MATLAB ssim
built-in function.

The graphics in Figure 5.6 demonstrate the structural similarity of reconstructions
by QKRK , QR, and SV D up to the rank r = 300. The structural similarity is
calculated for n×n square sub-matrices, where n varies from 20 to 300. Interestingly,



576 E. Eckenberg and K. Tunyan

Table 5.3: Relative errors calculated for a fragment of an image, l = 100

Rank QKRK QR SVD
10 0.071 0.03 0.019
50 0.032 6.9 ∗ 10−3 4.3 ∗ 10−3

100 1.27 ∗ 10−17 4.1 ∗ 10−3 2.6 ∗ 10−3

200 1.27 ∗ 10−17 1.8 ∗ 10−3 9.5 ∗ 10−4

500 1.27 ∗ 10−17 5.4 ∗ 10−17 1.6 ∗ 10−16

bothQR and SV D have a concave-down tendency to produce better results already at
lower rank approximations. On the contrary, QKRK shows a concave-up tendency for
the lower rank reductions but outperforms both QR and SV D as the approximation
rank r increases.

Fig. 5.6: Structural similarity, QKRK , QR, SV D.

6. Conclusion

In this paper, we propose to use a parametric QKRK matrix factorization and
its block version for low rank approximation in image compression. With our
experiments, we have demonstrated that when reducing the original image to rank r,



QKRK Factorization for Image Compression 577

the QKRK factorization effectively reconstructs the Kth portion of the image, while
the rest of the image is reconstructed with less accuracy. In addition, QKRK produces
better approximations as the matrix size increases. QR attempts to reconstruct
the entire image, while QKRK reconstructs the first r ranks almost perfectly. Our
numerical results suggest that QKRK can be effectively utilized in applications, such
as face recognition and forensics, where the interest is to reconstruct the overall
picture while placing emphasis on a certain portion of the image. The parametric
nature of QKRK allows us to focus on any part of the image. Our experiments have
also confirmed theoretical results on the computational efficiency of QKRK and the
block QKRK compared with QR and SV D [6, 22]. Furthermore, the block QKRK
algorithm is proven to be computationally less expensive than QKRK .

The proposed application of QKRK factorization opens future work and possi-
bilities. Our next focus is to create strategies and algorithms for the optimal choice
of the partition K in the QKRK and block QKRK factorizations and investigate
them in various image processing applications.

REFERENCES

1. K. E. Asnaoui: Image compression based on block SV D power method. Journal of
Intelligent Systems, 29(1) (2020), 1345–1359.

2. S. Chountasis, D. Pappas and V. Katsikis: Image restoration via fast computing of
the Moore-Penrose inverse matrix. 16th International Conference on Systems, Signals
and Image Processing, Chalkida, Greece (2009). doi:10.1109/IWSSIP.2009.5367731

3. M. T. Chu, R. E. Funderlic and R. J. Plemmons: Structured low rank approximation.
Linear Algebra and Its Applications, 366 (2003), 157–172.

4. H. Dadkhahi, A. Gotchev and K. Egiazarian: Inverse polynomial reconstruction
method in DCT domain. EURASIP Journal on Advances in Signal Processing, 2012(133)
(2012).

5. C. Eckart and G. Young: The approximation of one matrix by another of lower
rank. Psychometrika, 1 (1936), 211–218.

6. G. E. Forsythe and C. B. Moler: Computer Solution of Linear Algebraic Systems.
Prentice Hall, Englewood Cliffs, New Jersey, (1967).

7. G. H. Golub and C. F. Van Loan: Matrix Computations. The Johns Hopkins
University Press, Baltimore, Maryland, 4th edition, (2013).

8. N. Halko, P. G. Martinsson and J. A. Tropp: Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM
Review, 53(2) (2011), 217–288.

9. N. J. Higham: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia,
PA, (1996).

10. A. J. Hussain, A. Al-Fayadh and N. Radi: Image compression techniques: A
survey in lossless and lossy algorithms. Neurocomputing, 300 (2018), 44–69.

11. W. Jang and S-Y. Lee: Partial image encryption using format-preserving encryption
in image processing systems for Internet of things environment. International Journal
on Distributed Sensor Networks, 16(3) (2020).



578 E. Eckenberg and K. Tunyan

12. S. Krivenko, V. Lukin, O. Krylova and K. Egiazarian: A fast method of visually
lossless compression of dental images. Applied sciences, 11(1) (2021).

13. R. Kumar, U. Patbhaje and A. Kumar: An efficient technique for image compression
and quality retrieval using matrix completion. Computer and Information Sciences,
34(4) (2022), 1231–1239.

14. K. Li and G. Wu: A randomized generalized low rank approximations of matrices
algorithm for high dimensionality reduction and image compression. Numerical Linear
Algebra with Applications, 28(1) (2021).

15. P. G. Martinsson and S. Voronin: A randomized blocked algorithm for efficiently
computing rank-revealing factorizations of matrices. SIAM Journal on Scientific Com-
puting, 38(5) (2016), S485–S507.

16. W. S. Ng and W. W. Tan: Some properties of various types of matrix factorization.
The 16th International Conference on Mathematics, Statistics, and Their Applications,
ITM Web Conf., 36 (2021). doi:10.1051/itmconf/20213603003

17. A. Pandey and S. Shrotriya: Comparing the effect of matrix factorization techniques
in reducing the time complexity for traversing the big data of recommendation systems.
International Journal of Computer and Communication Engineering, 2(2) (2013),
170–173.

18. M. A. Rahman, M. Hamada and J. Shin: The impact of state-of-the-art techniques
for lossless still image compression. Electronics, 3(10(360)) (2021), 1–40.

19. A. Rowayda: SVD based image processing applications: state of the art, contributions
and research challenges. International Journal of Advanced Computer Science and
Applications, 7(3) (2012), 26–34.

20. Q. Su, Y. Niu, G. Wang, S. Jia and J. Yue: Color image blind watermarking scheme
based on QR decomposition. Signal Processing, 94 (2014), 219–235.

21. A. D. Tuniev: Pivot vector method and its applications. Cybernetics and Systems
Analysis, 28(1) (1992), 99–109.

22. K. Tunyan, K. Egiazarian, A. Tuniev and J. Astola: An efficient approach to
the linear least squares problem. SIAM J. Matrix Anal. Appl., 26(2) (2005), 583–598.

23. Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli: Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on Image
Processing, 13(4) (2004), 600-612.

24. J. H. Wilkinson: Rounding Errors in Algebraic Processes. Prentice Hall, Englewood
Cliffs, New Jersey, (1963).

25. J. Xiao, M. Gu and J. Langou: Fast parallel randomized QR with column
pivoting algorithms for reliable low-rank matrix approximations. IEEE 24th Inter-
national Conference on High Performance Computing (HiPC), (2017), 233–242.
doi:10.1109/HiPC.2017.00035




