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Ser. Math. Inform. Vol. 38, No 2 (2023), 285–299

https://doi.org/10.22190/FUMI210830020B

Original Scientific Paper

THE SPIRALS ON THE OBLATE AND PROLATE SPHEROIDS OF
LORENTZ-MINKOWSKI 3− SPACE R3

1

Vahide Bulut1 and H. Huseyin Ugurlu2

1 Izmir Katip Celebi University

Department of Engineering Sciences, 35620 Izmir, Turkey
2 Gazi University, Faculty of Education

Department of Secondary Education Science and Mathematics Teaching

06560, Ankara, Turkey

Abstract. Spirials are differentiable curves that meet all meridians of a rotational
surface at a constant angle. In this study, we obtain differential equations of all spirals
on hyperbolic oblate and Lorentzian prolate spheroids. Then we define the general
parametrizations of spirals which are solutions of differential equations.
Keywords: Unit hyperbolic sphere, unit Lorentzian sphere, hyperbolic oblate spiral,
Lorentzian prolate spiral, Lorentz Minkowski 3−space.

1. Introduction

Spherical coordinates are one of them most used curvilinear coordinate systems
in such fields as Earth science, cartography and physics(in particular quantum me-
chanics, relativity) and engineering (in particular, electric and electronic) [4].

The oblate spheroidal coordinate system is generated by taking an orthogonal
family of confocal ellipses and hyperbolas and rotating it about the minor axis of
the ellipses. The resulting coordinate surfaces are oblate spheroids, hyperboloids of
one sheet and half planes. Oblate spheroidal coordinates are often useful in solving
partial differential equations when the boundary conditions are defined on an oblate
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spheroid or a hyperboloid of revolution. We can use these coordinates to solve the
electrostatics problems [4].

The prolate spheroidal coordinates are generated by rotating an orthogonal fam-
ily of confocal ellipses and hyperbolas about the major axis of the ellipses. Prolate
spheroidal coordinates are a three-dimensional orthogonal coordinate system that
results from rotating the two-dimensional elliptic coordinate system about the focal
axis of the ellipse i.e., the symmetry axis on which the foci are located. Rotation
about the other axis produces oblate spheroidal coordinates. Prolate spheroidal
coordinates can also be considered as a limiting case of ellipsoidal coordinates. The
resulting coordinate surfaces are prolate spheroids, hyperboloids of two shhets and
meridian planes. The boundary value problems involving prolate spheroid bodies
may be treated in prolate spheroidal coordinates [4].

Lorentzian and hyperbolic spherical coordinates are two of used curvilinear co-
ordinate systems in such fields as Lorentzian geometry (in particular, relativity),
non-Euclidean geometry (in particular, hyperbolic geometry), Lorentzian mecha-
nism, Lorentzian field theory. Ugurlu and Gurdal [8] defined the Lorentzian and
hyperbolic coordinate systems in the Lorentz Minkowski 3-space R3

1
. Two of them

are Lorentzian prolate and hyperbolic oblate coordinate systems.

The Lorentzian prolate coordinate system is generated by taking an orthogonal
family of confocal Lorentzian circles and hyperbolic circles, and rotating it about the
time axis of the timelike hyperbol. The resulting coordinate surfaces are Lorentzian
spheroids, hyperbolic spheroids and timelike half planes. The coordinates on these
spheroids are used in solving partial differential equations when the boundary con-
ditions are defined on an prolate or oblate spheroids, respectively.

The hyperbolic oblate coordinate system is also generated by taking an ortho-
gonal family of confocal spacelike hyperbols and timelike hyperbolas and rotating it
about the time axis of the spacelike hyperbol. The resulting coordinate surfaces are
hyperbolic oblate spheroids, Lorentzian oblate spheroids and timelike half planes.
Hyperbolic oblate coordinates are often useful in solving partial differential equa-
tions when the boundary conditions are defined on an Lorentzian or hyperbolic
oblate spheroid. (For these coordinate systems, see [8]). These spheroids are newly
introduced surface families in the space R3

1
.The presence of some special curves on

Lorentzian and hyperbolic spheroids is an important research topic.

In this paper, we obtain the differential equations of spirals on the surfaces of
Lorentzian prolate and hyperbolic oblate spheroids in the space R3

1
, and define the

general parametrizations of all spirals which are the solutions of the differential
equations.

2. Preliminaries

The Minkowski 3-space R3
1
is the real vector space endowed with the natural

Lorentzian metric given by:

(2.1) ⟨., .⟩ = dx2
1 + dx2

2 − dx2
3
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where (x1, x2, x3) is a standard rectangular coordinate system of R3. An arbitrary
vector v = (v1, v2, v3) in R3

1
is said to be spacelike, timelike or lightlike (null) if

⟨v,v⟩ > 0 or v = 0, ⟨v,v⟩ < 0, ⟨v,v⟩ = 0 and v ̸= 0, respectively. Thus, a spacelike
(timelike) vector v is unit if ⟨v,v⟩ = 1 (⟨v,v⟩ = −1). Two non zero vectors u and
v are said to be orthogonal if ⟨u,v⟩ = 0. A set of {e1, e2, e3} of vectors in R3

1
is

called an orthonormal frame if it satisfies that

⟨e1, e1⟩ = ⟨e2, e2⟩ = 1 ⟨e3, e3⟩ = −1 and ⟨ei, ej⟩ = 0, i ̸= j.

The norm of a vector v ∈ R3
1
is defined by ∥v∥ =

√
| ⟨v,v⟩ |. The spheres of the

space R3
1
are defined as follows: The set of all spacelike vectors of radius r > 0 with

origin-centered is called Lorentzian sphere of radius r and denoted by

S2
1
(r) = {v ∈ R3

1

∣∣ ⟨v,v⟩ = r2}.

The sphere S2
1
(r) is a Lorentzian 2-manifold of constant sectional curvature 1/r2.

On the other hand, for r > 0, the quadric

H2
0 (r) = {v ∈ R3

1

∣∣ ⟨v,v⟩ = −r2}.

is called hyperbolic sphere of radius r. The sphere H2
0 (r) is also a Riemannian

2-manifold of constant sectional curvature −1/r2. This quadric has two connected
components given by

H+(r) = {v ∈ H2
0 (r)

∣∣ ⟨v, e3⟩ < 0},

H−(r) = {v ∈ H2
0 (r)

∣∣ ⟨v, e3⟩ > 0}.

The surface H2
0 (r) is the hyperboloid model of hyperbolic geometry from non-

Euclidean geometries in yhe space R3
1
. The set Λ2

Λ2 = {v ∈ R3
1
− {0}

∣∣ ⟨v,v⟩ = 0}

off all lightlike vectors with length r = 0 is called lightlike cone of R3
1
. This quadric

has also two components given by

(2.2)
Λ+ = {v ∈ Λ2

∣∣ ⟨v, e3⟩ < 0},

Λ− = {v ∈ Λ2
∣∣ ⟨v, e3⟩ > 0}.

The components Λ+ and Λ− are called future cone and past cone, respectively.
Then a ray in Λ+ stating at the origin corresponds to a point on boundary of H3.
The set of such rays form the sphere at infinity S2

∞ = ∂H3. For the two non-zero
vectors u = (u1, u2, u3) and v = (v1, v2, v3) in R3

1
, the Lorentzian cross product of

u and v is defined as the following:
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(2.3) u× v = (u3v2 − u2v3, u1v3 − u3v1, u1v2 − u2v1).

The equation (2.3) is the reflection of Euclidean cross product with respect to the
plane of equation x = 0. For standard base vectors, we have

e1 × e2 = e3, e2 × e3 = −e1, e3 × e1 = −e2.

Let V be a 2-dimensional linear subspace R3
1
. Then, there are three mutually

exclutive possibilities for V :

(i) V is said to be spacelike if the restriction ⟨., .⟩ |V of the Lorentzian metric on
V is positive definite.

(ii) V is said to be timelike if the restriction ⟨., .⟩ |V of the Lorentzian metric on
V is Lorentzian, i.e, non-degenerate and of the signature (1). Then, V is a
timelike plane.

(iii) V is lightlike (or null) if ⟨., .⟩ |V is degenerate.

Fig. 2.1: The space R3
1
equipped with the Lorentzian inner product ⟨ , ⟩ is 3-

dimensional Lorentzian space [9].

For an arbitrary point u in Λ+ the horosphere is defined as

hu = {x ∈ H+
∣∣ ⟨x,u⟩ = −1},
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(a) d > 0 (b) d = 0

(c) d < 0

Fig. 2.2: The signed distance from a plane to a horosphere is the distance d by
which the horosphere extends to the plane.

which inherits an Euclidean structure [1].

Assume that p denotes the radial projection. Then the projection is given by

p{x ∈ R3
1

∣∣x3 ̸= 0} → P 3
1 = {x ∈ R3

1

∣∣x3 = 1},

where P 3
1 is affine plane along the rays through the origin. The projection p is a

homeomorphism from H+ onto the 3-dimensional open unit ball B3 in P 3
1 centered

at the origin (0, 0, 1) of P 3
1 , which yields the projective model of H3, The affine

plane P 3
1 contains B3 and its see theoretic boundary ∂B3 in P 3

1 , which is identified
with S2

∞. In this case, we have B3 = B3 ∪ ∂B3. Now we define the geodesic plane
u⊥ for an arbitrary point u in S2

1 as

u⊥ = {x ∈ H3
∣∣ ⟨x,u⟩ = 0}.

A point u also defines a half − space in H3 given by

ΠM = {x ∈ H3
∣∣ ⟨x,u⟩ ≤ 0},

where u is the position vector field of the point u.
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Definition 2.1. The signed dis tan ce d between horosphere and a plane (respec-
tively, point, horosphere) is the distance by which the horosphere extends past the
plane (respectively, point, horosphere). The distance d may be positive, negative,
or zero, as shown in (Fig. 2.2). (For hyperbolic distances, see [1]).

3. The angles in the Minkowski Space R3
1

Let u, v be two vectors in the space R3
1
. The angle between u and v is defined

with respect to causal characters of these vectors as follows [1], [4], [6]:

(i) Let u and v be two positive (negative) timelike vectors. Then |⟨u,v⟩| ≥
∥u∥ ∥v∥ and equality holds if and only if u and v are proportional. Thus,
there exists a unique non-negative real number θ ≥ 0 such that

(3.1) ⟨u,v⟩ = −∥u∥ ∥v∥ cosh θ.

This number is called the hyperbolic angle between the vectors u and v.

(ii) Let u and v be spacelike vectors and they span a timelike vector subspace.
Thus, there is a unique non negative real number θ ≥ 0 such that

(3.2) ⟨u,v⟩ = ∥u∥ ∥v∥ cosh θ.

This number is called the central angle between the vectors u and v.

(iii) Let u and v be spacelike vectors in R3
1
and they span a spacelike vector

subspace. Then |⟨u,v⟩| ≤ ∥u∥ ∥v∥ and equality holds if and only if u and v
are proportional. Thus, there exists a unique real number θ ≥ 0 such that

(3.3) |⟨u,v⟩| = ∥u∥ ∥v∥ cos θ.

This number is called the spacelike angle between the vectors u and v.

(iv) Let u be spacelike vector and v be a timelike vectors in R3
1
. Thus, there is a

unique real number θ ≥ 0 such that

(3.4) |⟨u,v⟩| = ∥u∥ ∥v∥ sinh θ.

This number is called the timelike angle between the vectors u and v.

(v) Two geodesic planes u⊥ and v⊥ do not intersect in H2 but intersect in ∂H2

if and only if

(3.5) |⟨u,v⟩| = cos 0 = 1.

In this case the Lorentzian angle between them is zero. Note that the
Lorentzian angles correspond to hyperbolic distances between two points on
the hyperboloid model H+(r).
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(vi) Let u ∈ Λ+ and v ∈ S2
1
. The lightlike angle between them is signed distance

d between v and hu. This angle gives the equality as

(3.6) |⟨u,v⟩| = e−d.

(vii) Let u ∈ Λ+ and v ∈ H+. The lightlike angle between them is signed distance
d between v⊥ and hu. This angle gives the equality as

(3.7) ⟨u,v⟩ = −e−d.

(viii) Let u,v ∈ Λ+.The lightlike angle between them is signed distance d between
hu and hv. This angle gives the equality as

(3.8) ⟨u,v⟩ = −2e−d.

(For the geometrical interpretations of angles in the space R3
1
, see [3], [7]).

4. The Spirals on the Oblate Forms of Hyperboloid Model H+(r)

We know that the hyperbolic sphere of center O and radius r is the surface given
by

H2
0 (r) =

{
(x, y, z) ∈ R3

1
| x2 + y2 − z2 = −r2

}
.

We express that the set H2
0 (r) has exactly two connected components. Therefore,

the hyperboloid model H+(r) is obtained by taking z > 0. This model is a spacelike
surface and called a hyperbolic plane [3], [5], [7]. The oblate form of hyperbolic
sphere H2

0 (r) which is also called “hyperbolic oblate spheroid” is given by

(4.1) H2
0 (λ, r) =

{
(x, y, z) ∈ R3

1

∣∣ x2 + y2

1 + λ2
− z2

λ2
= −r2

}
,

where λ ∈ R\{0} and r > λ. Similarly, there exists an oblate form H+(λ, r) for
z > 0, which is a spacelike surface.

Now, we compute the first fundamental from of H+(λ, r) at a point of the
coordinate neightborhood given by parametrization

(4.2) x(u, v) =
(
r
√
1 + λ2 sinhu cos v, r

√
1 + λ2 sinhu sin v, rλ coshu

)
,

where 0 ≤ v ≤ 2π and u ∈ R. The partial derivatives of the surface in (4.2) yields

(4.3)
xu(u, v) =

(
r
√
1 + λ2 coshu cos v, r

√
1 + λ2 coshu sin v, rλ sinhu

)
,

xv(u, v) =
(
−r

√
1 + λ2 sinhu sin v, r

√
1 + λ2 sinhu cos v, 0

)
.


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Hence, the coefficients of the first fundamental form are

(4.4)

E(u, v) = ⟨xu,xu⟩ = r2
(
cosh2 u+ λ2

)
,

F (u, v) = ⟨xu,xv⟩ = 0,

G(u, v) = ⟨xv,xv⟩ = r2
(
λ2 + 1

)
sinh2 u.


Thus, if w is a tangent vector to the spheroid at the point x(u, v), given in the
basis associated to x(u, v) by

w = axu + bxv.

Then, the square of the length of w is given by

|w|2 = I(w) = a2E + 2abF + b2G = a2r2
(
cosh2 u+ λ2

)
+ b2r2

(
1 + λ2

)
sinh2 u.

Let us determine the curves in this coordinate neighborhood of the H+(λ, r) which
make a constant spacelike angle θ with meridians (v = const.).

Definition 4.1. Let αλ(t) be a differentiable curve on the oblate form of hyper-
boloid model H+(r) denoted by H+(λ, r) for λ ∈ R. Then, the curve αλ(t) is called
hyperbolic spheroidal spiral if αλ(t) cuts all meridians of H+(λ, r) with a constant
spacelike angle.

Theorem 4.1. Let θ be constant spacelike angle between the meridians of the hy-
perbolic oblate spheroid and the spacelike curve αλ(t) and assume that λ = tan θ.
Then the parametrization of all spirals on the oblate form the spheroid H+(λ, r) is
given by

(4.5) αλ(t) = (r
√
1 + λ2 sinh t cos v(t), r

√
1 + λ2 sinh t sin v(t), rλ cosh t),

where

(4.6)

v (t) = ± tan θ√
1 + λ2

[
−
√
1 + λ2 tanh−1

( √
2+2λ2 cosh t√

1+2λ2+cosh 2t

)
+ ln

(√
2 cosh t+

√
1 + 2λ2 + cosh 2t

)]
+ k


where k is the constant of integration.

Proof. We may assume that the required curve

αλ(t) = x (u(t), v(t)) =
(
r
√
1 + λ2 sinhu(t) cos v(t),

r
√
1 + λ2 sinhu(t) sin v(t), rλ coshu(t)

)
.
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is the image by x of a curve (u(t), v(t)) of the uv− plane. In this case we have

α′
λ =

(
r
√
1 + λ2u′(t) coshu(t) cos v(t)− r

√
1 + λ2v′(t) sinhu(t) sin v(t),

r
√
1 + λ2u′(t) coshu(t) sin v(t) + r

√
1 + λ2v′(t) sinhu(t) cos v(t),

λu′(t) sinhu(t)) .

At the point x(u, v) where the curve meets the meridians (v = const.), we have

(4.7)

cos θ =
|⟨xu,α

′
λ (t)⟩|

∥xu∥ ∥α′
λ (t)∥

=
u′ (λ2 + cosh2 u

)√
λ2 + cosh2 u

√
u′2
(
λ2 + cosh2 u

)
+ (1 + λ2) v′2 sinh2 u

since in the basis {xu,xu} the vector α′
λ(t) has coordinates (u

′, v′) and the vector

(a) λ = 2, r = 1 and θ = π/6 (b) λ = 2, r = 1 and θ = π/4

(c) λ = 2, r = 1 and θ = π/3 (d) λ = 2, r = 1 and θ = 4π/9

Fig. 4.1: Spirals on H+ (r, λ) for different values of θ
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xu has coordinates (1, 0). By (4.7) we obtain the differantial equation

u′2 (λ2 + cosh2 u
) (

cos2 θ − 1
)
+
(
1 + λ2

)
v′2 sinh2 u cos2 θ = 0

or

(4.8)
dv

du
= ± tan θ

√
λ2 + cosh2 u√
1 + λ2 sinhu

The solution of the differential equation (4.8) gives (4.6). If we take the signature
+, the constant of integration as zero and u(t) = t, then we obtain the equations of
the hyperbolic spheroidal spirals and this completes the proof (See, Figure 4.1).

5. The spirals on the Prolate Forms of the Lorentzian Sphere S2
1(r)

We know that there exist three tupes of curves on the surface of the unit
Lorentzian sphere S2

1(r); namely spacelike, timelike and lightlike (null). Since the
induced metric on a null curve is degenerate, the null curves are different from the
timelike and spacelike curves. Therefore, there should be three types of curves on
the prolate Lorentzian spheroids. Are there three types of spirals on these spheroids?
If there is any, what are the differential equations of these spirals and the parame-
terizations of the casual spirals that are solutions of these differential equations. In
this section, we will look for answers to these questions.

Let’s consider Lorentzian sphere S2
1 with radius r. this sphere is defined as

S2
1 (r) =

{
x ∈ R3

1

∣∣ ⟨x, x⟩ = r2
}
.

From an Euclidean viewpoint, this surface is a ruled surface. It is a timelike surface
since TpS

2
1 (r) = sp {p}⊥ and p is a spacelike vector.

The equation of the prolate Lorentzian spheroids in cartesian coordinates is
given as

(5.1)
x2 + y2

λ2 − 1
− z2

λ2
= r2, 0 ≤ λ ≤ ∞.

A parameterization of the equation (5.1) is

(5.2) X (u, v) =
(
r
√
λ2 − 1 coshu cos v, r

√
λ2 − 1 coshu sin v, rλ sinhu

)
,

where 0 ≤ v ≤ 2π, u ∈ R. Using the partial derivatives of the equation (5.2) as

(5.3)
Xu =

(
r
√
λ2 − 1 sinhu cos v, r

√
λ2 − 1 sinhu sin v, rλ coshu

)
,

Xv =
(
−r

√
λ2 − 1 coshu sin v, r

√
λ2 − 1 coshu cos v, 0

)
,


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the coefficients of first fundamental form are found as

(5.4)

E = ⟨Xu,Xu⟩ = −r2
(
λ2 + sinh2 u

)
,

F = 0,

G = ⟨Xv,Xv⟩ = r2
(
λ2 − 1

)
cosh2 u.


Theorem 5.1. Let θ be constant hyperbolic angle between the meridians of the
Lorentzian prolate spheroid S2

1 (λ, r) and the timelike curve βλ (t). Then the para-
metrizations of all spirals on the spheroid S2

1 (λ, r) is given by

(5.5) βλ (t) =
(
r
√
λ2 − 1 cosh t cos v (t) , r

√
λ2 − 1 cosh t sin v (t) , rλ sinh t

)
,

where

(5.6)

v (t) =
tanh θ√
λ2 − 1

(
√
λ2 − 1 tan−1

( √
2λ2 − 2 sinh t√

cosh 2t+ 2λ2 − 1

)

+sinh−1

(
sinh t

|λ|

))
+ k, (k : int. constant)


Proof. Let a timelike curve that cuts all meridians of the prolate Lorentzian sphe-
roids with a hiperbolic angle θ be as follows:

(5.7)
βλ (t) =

(
r
√
λ2 − 1 coshu (t) cos v (t) ,

r
√
λ2 − 1 coshu (t) sin v (t) , rλ sinhu (t)

)
.

In this case, we obtain

β′
λ (t) =

(
r
√
λ2 − 1u′ sinhu cos v − r

√
λ2 − 1v′ sin v coshu,

r
√
λ2 − 1u′ sinhu sin v + r

√
λ2 − 1v′ cos v coshu,

rλu′ coshu) .

Hence, if the values

(5.8)

|Xu| = r
√

λ2 + sinh2 u

∣∣β′
λ (t)

∣∣ = r
√
(λ2 − 1) v′2 cosh2 u−

(
λ2 + sinh2 u

)
u′2

〈
Xu,β

′
λ (t)

〉
= −r2

(
λ2 + sinh2 u

)
u′,


are substituted into the equation

(5.9)
〈
Xu,β

′
λ (t)

〉
= − |Xu|

∣∣β′
λ (t)

∣∣ cosh θ,
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we find the differential equation

(5.10)
dv

du
= ±

√
λ2 + sinh2 u√
λ2 − 1 coshu

tanh θ.

The solution of the differential equation (5.10) gives (5.6). If we take the signature
+, the constant of integration as zero and u(t) = t, we obtain the equations of
Lorentzian prolate spheroidal spirals. This completes the proof (see Figure 5.1).

Theorem 5.2. Let θ be constant timelike angle between the meridians of the Lo-
rentzian prolate spheroid S2

1 (λ, r) and the spacelike curve βλ (t). Then the parame-
trization of all spirals on the spheroid S2

1 (λ, r) is given by

(5.11) βλ (t) =
(
r
√
λ2 − 1 cosh t cos v (t) , r

√
λ2 − 1 cosh t sin v (t) , rλ sinh t

)
,

where

(5.12)

v (t) = ± coth θ√
λ2 − 1

[
√
λ2 − 1 tan−1

( √
2λ2 − 2 sinh t√

cosh 2t+ 2λ2 − 1

)

+sinh−1

(
sinh t

|λ|

)]
+ k, (k : int. constant)

Proof. Assume that, the curve (5.11) be a spacelike curve that cuts all meridians of
the prolate Lorentzian spheroids with a timelike angle θ. In this case, we can write

(5.13)
∣∣〈Xu,β

′
λ (t)

〉∣∣ = |Xu|
∣∣β′

λ (t)
∣∣ sinh θ.

If the equations in (5.8) are substituted into the equation (5.13), we obtain the
differential equation.

(5.14)
dv

du
= ±

√
λ2 + sinh2 u√
λ2 − 1 coshu

coth θ.

The solution of the equation (5.14) is

(5.15)

v (t) = ± coth θ√
λ2 − 1

[
√
λ2 − 1 tan−1

( √
2λ2 − 2 sinh t√

cosh 2t+ 2λ2 − 1

)

+sinh−1

(
sinh t

|λ|

)]
+ k, (k : int. constant)

It is presented some Lorentzian prolate spheroidal spacelike spirals for different
values of λ in Figure 5.2.

For the spirals and special curves on the surfaces of the Euclidean space E3, see
[2], [6], [7].
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(a) λ = 2, r = 1 and θ = ln2 (b) λ = 2, r = 1 and θ = ln8

(c) λ = 2, r = 1 and θ = ln16 (d) λ = 2, r = 1 and θ = ln32

Fig. 5.1: Lorentzian prolate spheroidal timelike spirals for different values of θ
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(a) λ = 2, r = 1 and θ = ln2 (b) λ = 4, r = 1 and θ = ln2

(c) λ = 8, r = 1 and θ = ln2 (d) λ = 12, r = 1 and θ = ln2

Fig. 5.2: Lorentzian prolate spheroidal spacelike spirals for different values of λ
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6. Conclusion

In this paper, we defined the differential equations of causal spirals on the surfaces of
the hyperboloid model H+ (r), the set of positive timelike vectors of the Lorentzian
sphere S2

1 (r), the set of spacelike vectors with length r and of the lightlike cone Λ2

gave the general parametrizations of casual spirals which are the solutions of their
differential equations. In the next study, we will examine the geometries of the
causal spirals on the spheres of the Minkowski 3− Space R3

1
provided with Lorentz

metric ⟨, ⟩ with signature (+,+,−).
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