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Abstract. In 2020, Olia et al. [Olia, Z. E. D. D., Gordji, M. E. and Bagha, D.
E. (2020). Banach fixed point theorem on orthogonal cone metric spaces. FACTA
Universitatis (NIS) Ser. Math. Inform, 35, 1239-1250] examined orthogonal cone metric
spaces. They assumed that P is a normal cone with normal constant K and that self
mapping T is orthogonal continuous on the orthogonal cone metric space X in their
study. This study now presentes certain required definitions on orthogonal cone metric
spaces that were not previously given in [9]. The examples that show the link between
existing and new definitions have also been included. The results are also generalized
by eliminating the normalcy condition and utilizing point orthogonal continuity instead
of general orthogonal continuity in the major results of [9]. The fundamental finding of
the study is then generalized by removing the requirement of orthogonal continuity and
introducing normality. In addition, certain outcomes of stated theorems are proven,
and some examples are provided to demonstrate these theorems.
Keywords: fixed point theorem, metric spaces, orthogonal continuity.

1. Introduction and Preliminaries

The well-known theorem on the presence and uniqueness of a fixed point of exact
self maps defined on certain metric spaces were stated by Stefan Banach [4] in 1992:
Every self mapping h on a complete metric space (Ω, ρ) satisfying the condition

(1.1) ρ(hx, hy) ⩽ λρ(x, y), for all x, y ∈ Ω, λ ∈ (0, 1)
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has a unique fixed point. This gracious theorem has been used to show the presence
and uniqueness of the solution of differantial equation

(1.2) y′(x) = F (x; y); y(x0) = y0

where F is a continuously differantiable function. Consequently, after the Banach
Contraction Principle on complete metric space, many researchers have investigated
fixed point results and reported new fixed point theorems intended by the use of
two very influential directions, together or apart. One of them is involved with
the attempts to generalize the contractive conditions on the maps and thus, soften
them; the other with to attempts to generalize the space on which these contractions
are described. In addition, in recent studies, it is observed that some applications
of fixed point theorems have come to the fore (see [7, 10, 20, 21, 22, 23]).

In 2007, Huang and Zhang [12] introduced cone metric spaces and proved some
fixed point theorems of contractive mappings on cone metric spaces. Then, in 2008,
Rezapour and Hamlbarani [18] obtained generalizations of some results in [12] by
omitting the assumption of normality. Then many researchers are obtained fixed
point theorems on cone metric spaces.(see [1, 2, 13, 14, 19, 24]) On the other hand,
in 2017, Gordji et al [8] described the notion of orthogonal set and orthogonal
metric spaces. Generalizations of theorems in this field have been considered in
some research articles (see [11, 16, 3, 17, 5, 9]).

Recently, Olia et al. [15] examined orthogonal cone metric spaces in the year
2020. They assumed that P is a normal cone with normal constant K and that
self mapping T is orthogonal continuous on the orthogonal cone metric space X in
their study. Now, certain required definitions on orthogonal cone metric spaces are
presented in this study, which are not given in [9]. The examples that show the
link between existing and new definitions are also included. The results are also
generalized by eliminating the normalcy condition and utilizing point orthogonal
continuity instead of general orthogonal continuity in the major results of [9]. The
fundamental finding of the study is then generalized by removing the requirement
of orthogonal continuity and introducing normality.

Moreover, Bilgili Gungor and Turkoglu [6] gave some fixed point results of self
mapping which is defined on orthogonal cone metric spaces are given by using
extensions of orthogonal contractions in 2020. Also, in [6] the authors investigated
the necessary conditions for self mappings on orthogonal cone metric space to have
P property by taking advantage of these results.

In the sequel, respectively, Q,Qc,Z,R denote rational numbers, irrational num-
bers, integers and real numbers.

Definition 1.1. [8] Let Ω ̸= Ø and ⊥⊆ Ω×Ω be a binary relation. If there exists
a k0 ∈ Ω and ⊥satisfies the following condition

(1.3) (∀x ∈ Ω, x ⊥ k0) ∨ (∀x ∈ Ω, k0 ⊥ x),

then (Ω,⊥) is called an orthogonal set. And the element k0 is called an orthogonal
element.
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Example 1.1. [11] Let Ω = Z. Define k ⊥ l if there exists a ∈ Z such that k = al. It is
easy to see that 0 ⊥ l for all l ∈ Z. Hence (Ω,⊥) is an orthogonal set.

By the following example, we can see that k0 is not necessarily unique.

Example 1.2. [11] Let Ω = [0,∞), we define k ⊥ l if kl ∈ {k, l}, then by setting k0 = 0
or k0 = 1, (Ω,⊥) is an orthogonal set.

Definition 1.2. [8] Let (Ω,⊥) be an orthogonal set. Any two elements k, l ∈ Ω
are said to be orthogonally related if k ⊥ l.

Definition 1.3. [8] A sequence {kn} is called orthogonal sequence if

(1.4) (∀n ∈ N; kn ⊥ kn+1) ∨ (∀n ∈ N; kn+1 ⊥ kn).

Similarly, a Cauchy sequence {kn} is said to be an orthogonal Cauchy sequence if

(1.5) (∀n ∈ N; kn ⊥ kn+1) ∨ (∀n ∈ N; kn+1 ⊥ kn).

Definition 1.4. [8] Let (Ω,⊥) be an orthogonal set and d be an usual metric on
Ω. Then (Ω,⊥, d) is called an orthogonal metric space.

Definition 1.5. [12] Let G be a real Banach space and K a subset of G. K is
called a cone if and only if

(i) K is closed,nonempty, K ̸= {θG},

(ii) α, β ∈ R, α, β ⩾ 0, k, l ∈ K ⇒ αk + βl ∈ K,

(iii) k ∈ K and −k ∈ K ⇒ k = θG.

Given a cone K ⊆ G, we define a partial ordering ⪯ with respect to K by k ⪯ l
if and only if l − k ∈ K. We shall write k ≺ l to indicate that k ⪯ l but k ̸= l and
k ≺≺ l indicate that l − k ∈ intK , intK denotes the interior of K.

The cone K is called normal if there is a number L > 0 such that for all k, l ∈ G,
0 ⪯ k ⪯ l implies || k ||G⩽ L || l ||G .

The least positive number satisfying above is called the normal constant of K.

The cone K is called regular if every increasing sequence which is bounded from
above is convergent. That is, if {kn} is sequence such that

(1.6) k1 ⪯ k2 ⪯ k3 ⪯ ... ⪯ kn ⪯ ... ⪯ l

for some l ∈ G, then there exists k ∈ G such that || kn − k ||G→ 0(n → ∞).
Equivalently, the cone K is regular if and only if every decreasing sequence which is
bounded from below is convergent. It is well known that a regular cone is a normal
cone.

In the following, we always suppose G is a Banach space, K is a cone in G with
intK ̸= Ø and ⪯ is partial ordering with respect to K.
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Definition 1.6. [12] Let Ω be a nonempty set. Suppose the mapping d : Ω×Ω →
G satisfies

(d1) θG ⪯ d(k, l) for all k, l ∈ Ω and d(k, l) = θG if and only if k = l.

(d2) d(k, l) = d(l, k) for all k, l ∈ Ω,

(d3) d(k, l) ⪯ d(k, t) + d(t, l) for all k, l, t ∈ Ω.
Then d is called a cone metric on Ω and (Ω, d) is called a cone metric space.

Lemma 1.1. [19] Let (Ω, d) be a cone metric space. Then for each θ ≺≺ g, g ∈ G,
there exists δ > 0 such that g − k ∈ intK whenever || k ||< δ, k ∈ G.

Definition 1.7. [15] Let (Ω,⊥) be an orthogonal set and d be a cone metric on
Ω. Then (Ω,⊥, d) is called orthogonal cone metric space.

Now, some examples of orthogonal cone metric spaces shall be given.

Example 1.3. Let G = R2,K = {(k, l) ∈ G : k, l ⩾ 0} ⊆ R2 and Ω = Z. And
d : Ω × Ω → G, d(k, l) = (| k − l |, α | k − l |) is defined where α ⩾ 0, α ∈ R. Assume
that binary relation ⊥ on Ω = Z as Example 1.1 , then (Ω, d,⊥) is orthogonal cone metric
space.

Example 1.4. Let q, b ∈ R where q ⩾ 1, b > 1, G = {{kn} | kn ∈ R and∑∞
n=1(| kn |)q < ∞} and K = {{kn} ∈ G | kn ⩾ 0, ∀n ∈ N}. Assume that (Ω,⊥, ρ) is an

orthogonal metric space, then the mapping

(1.7) d : Ω× Ω → G, d(k, l) = (
ρ

bn
)
1
q

can be defined on Ω and this mapping is an orthogonal cone metric. So (Ω,⊥, d) is an
orthogonal cone metric space.

Example 1.5. Let G = (CR[0,∞), || . ||∞) and K = {f ∈ G | f(t) ⩾ 0}. Assume that
(Ω,⊥, ρ) is an orthogonal metric space, then the mapping

(1.8) d : Ω× Ω → G, d(k, l) = fk,l where fk,l(x) = ρ(k, l)x

can be defined on Ω and this mapping is an orthogonal cone metric. So (Ω,⊥, d) is an
orthogonal cone metric space.

Definition 1.8. Let (Ω,⊥, d) be an orthogonal cone metric space. Let {kn} be an
orthogonal sequence in Ω and k ∈ Ω. If for any g ∈ G with θ ≺≺ g there is N ∈ N
such that for all n ⩾ N(n ∈ N), d(kn, k) ≺≺ g, then orthogonal sequence kn is said
to be convergent and {kn} converges to k( or k is the limit of {kn}). We denote
this by

(1.9) lim
n→∞

kn = k or kn → k(n → ∞).
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Definition 1.9. Let (Ω,⊥, d) be an orthogonal cone metric space. Let {kn} be an
orthogonal sequence in Ω. If for any g ∈ G with θ ≺≺ g there is N ∈ N such that
for all n,m ⩾ N(n,m ∈ N), d(kn, km) ≺≺ g, then orthogonal sequence kn is called
an orthogonal Cauchy sequence in Ω.

Definition 1.10. [15] Let (Ω,⊥, d) be an orthogonal cone metric space, if every
orthogonal Cauchy sequence in Ω is convergent in Ω, then (Ω,⊥, d) is called an
orthogonal complete cone metric space.

Lemma 1.2. Let (Ω,⊥, d) be an orthogonal cone metric space, {kn} be an orthog-
onal sequence in Ω. {kn} converges to k ∈ Ω, then {kn} is orthogonal Cauchy
sequence.

Definition 1.11. Let (Ω,⊥, d) be an orthogonal cone metric space. If for any
orthogonal sequence {kn} in Ω, there is an orthogonal subsequence {kni

} of {kn}
such that {kni

} is convergent in Ω. Then (Ω,⊥, d) is called a sequently compact
orthogonal cone metric space.

Definition 1.12. Let (Ω,⊥, d) be an orthogonal cone metric space and γ ∈ R, 0 <
γ < 1. A mapping h : Ω → Ω is said to be orthogonal contraction with Lipschitz
constant γ when

(1.10) d(hk, hl) ⪯ γd(k, l) if k ⊥ l.

Definition 1.13. Let (Ω,⊥, d) be an orthogonal cone metric space. A mapping
h : Ω → Ω is called orthogonal preserving when

(1.11) hk ⊥ hl if k ⊥ l.

Definition 1.14. Let (Ω,⊥, d) be an orthogonal cone metric space. A mapping
h : Ω → Ω is called orthogonal continuous at k ∈ Ω if for each orthogonal sequence
{kn} in Ω such that kn → k then h(kn) → h(k). Also h is orthogonal continuous
on Ω if h is orthogonal continuous in each k ∈ Ω.

Now, the following remarkable notes can be given.

Remark 1.1. It is easy to see that every Lipschitz contraction is orthogonal Lipschitz
contraction. The following example shows that the converse of the statement is not true
in general.

Example 1.6. Let Ω = [0, 1), G = R2,K = {(k, l) ∈ G : k ⩾ 0, l ⩾ 0} ⊆ R2, d : Ω× Ω →
G, d(k, l) = (| k − l |, α | k − l |), α ⩾ 0. Assume that k ⊥ l if and only if kl ∈ {k, l}. Then
(Ω,⊥, d) be an orthogonal cone metric space. Define h : Ω → Ω,

(1.12) h(k) =

{
k
3

if k ∈ Q ∩ R,
0 if k ∈ Qc ∩ R.
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In this case, h is orthogonal Lipschitz contraction. In fact,

(1.13)
k ⊥ l ⇒ kl ∈ {k, l}

⇒ kl = k or kl = l
⇒ k = 0, l ∈ Ω or l = 0, k ∈ Ω.

We can choose k = 0, l ∈ X( The other case is similar to this case. So it can be ignored.)
In this case,

(1.14) h(k) =
k

3
= 0 and (h(l) =

l

3
( when l ∈ Q ∩ R) or h(l) = 0( when l ∈ Qc ∩ R))

Case I: k = 0 and l ∈ Q ∩ R then

(1.15)
d(hk, hl) = (| l

3
|, α | l

3
|)

⪯ γ(| l |, α | l |), for γ = 1
3
∈ (0, 1)

Case II: k = 0 and l ∈ Qc ∩ R then

(1.16) d(hk, hl) = (0, 0) ⪯ γd(k, l), ∀γ ∈ (0, 1).

But, h is not a Lipschitz contraction. Otherwise, for two points k = 5
6
, l =

√
5
6
, there

exists γ ∈ R, 0 < γ < 1 and we have d(hk, hl) ⪯ γd(k, l). One can conclude that, it is a
contradiction.Indeed,

(1.17)
h(k) = 5

18
and h(l) = 0

d(hk, hl) = (| 5
18

|, α | 5
18

|) and d(k, l) = (| 5
6
−

√
5
6
|, α | 5

6
−

√
5
6
|)

Assume that there exists γ ∈ R, 0 < γ < 1 and we have d(hk, hl) ⪯ γd(k, l). In this case,
we obtain

(1.18) (| 5

18
|, α | 5

18
|) ⪯ γ(| 5

6
−

√
5

6
|, α | 5

6
−

√
5

6
|)

and so the definition of ⪯ with respect to K,

(1.19) γ[| 5
6
−

√
5

6
| − | 5

18
|] ⩾ 0.

This contradicts with γ ∈ R, 0 < γ < 1.

Now, we shall give examples for orthogonal preserving or not orthogonal pre-
serving mappings.

Example 1.7. Ω = R, G = R2,K = {(k, l) ∈ G : k ⩾ 0, l ⩾ 0} ⊆ R2, d : Ω × Ω →
G, d(k, l) = (| k− l |, α | k− l |), α ⩾ 0. Assume that k ⊥ l if and only if k = 0 or 0 ̸= l ∈ Q.
Then (Ω,⊥, d) be an orthogonal cone metric space. Define h : Ω → Ω,

(1.20) h(k) =

{
5 if k ∈ Q,
0 if k ∈ Qc.

Then h is not orthogonal preserving, since 0 ⊥
√
2 but h(0) = 5 is not orthogonal to

h(
√
2) = 0.
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Example 1.8. Ω = [0, 1), G = R2,K = {(k, l) ∈ G : k ⩾ 0, l ⩾ 0} ⊆ R2, d : Ω × Ω →
G, d(k, l) = (| k − l |, α | k − l |), α ⩾ 0. Assume that k ⊥ l if and only if kl ∈ {k, l}. Then
(Ω,⊥, d) be an orthogonal cone metric space. Define h : Ω → Ω,

(1.21) h(k) =

{
k
3

if k ∈ Q ∩ R,
0 if k ∈ Qc ∩ R.

In this case, h is orthogonal preserving. Indeed,

(1.22)
k ⊥ l ⇒ kl ∈ {k, l}

⇒ kl = k or kl = l
⇒ k = 0, l ∈ Ω or l = 0, x ∈ Ω.

We can choose k = 0, l ∈ X( The other case is similar to this case. So it can be ignored.)
In this case,

(1.23)
h(k) = k

3
= 0 and h(l) ∈ Ω

⇒ h(k)h(l) ∈ {h(k), h(l)}
⇒ h(k) ⊥ h(l)

Remark 1.2. It is easy to see that every continuous mapping is orthogonal continuous.
The following examples show that the converse of the statement is not true in general.

Example 1.9. Ω = R, G = R2,K = {(k, l) ∈ G : k ⩾ 0, l ⩾ 0} ⊆ R2, d : Ω × Ω →
G, d(k, l) = (| k− l |, α | k− l |), α ⩾ 0. Assume that k ⊥ l if and only if k = 0 or 0 ̸= l ∈ Q.
Then (Ω,⊥, d) be an orthogonal cone metric space. Define h : Ω → Ω,

(1.24) h(k) =

{
5 if k ∈ Q,
0 if k ∈ Qc.

Then the mapping h is orthogonal continuous at all rational numbers. But h is not
continuous on real numbers.

Example 1.10. Ω = R, G = R2,K = {(k, l) ∈ G : k ⩾ 0, l ⩾ 0} ⊆ R2, d : Ω × Ω →
G, d(k, l) = (| k − l |, α | k − l |), α ⩾ 0. Assume that k ⊥ l if and only if k ⩾ 0. Then
(Ω,⊥, d) be an orthogonal cone metric space. Define h : Ω → Ω,

(1.25) h(k) =

{
1 if k ∈ {k ∈ R : k ⩾ 0},
0 if k ∈ {k ∈ R : k < 0}.

Then the mapping h is orthogonal continuous at all nonnegative real numbers. But h is
not continuous on real numbers.

Remark 1.3. It is easy to see that every complete cone metric space is orthogonal com-
plete cone metric space. The following example shows that the converse of the statement
is not true in general. Firstly, we shall give the following Lemma in cone metric spaces.

Lemma 1.3. Every Cauchy sequence in cone metric space which has convergent
subsequence is convergent.
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Proof. Let (Ω, d) be a cone metric space and K is a cone in G Banach space. Then
there are two cases:

Case I: If K is normal cone, since {kn} is Cauchy sequence and {kni
} is con-

vergent subsequence of {kn}, respectively we have d(kn, km) → θ(n,m → ∞) and
d(kni , k) → θ(ni → ∞ and k ∈ Ω). Thus d(kn, k) ⪯ d(kn, kni) + d(kni , k) →
θ(n, ni → ∞).

Case II: If K is not normal cone, since {kn} is Cauchy sequence and {kni
} is

convergent subsequence of {kn}, for all g ∈ G which satisfies θ ≺≺ g, respectively
there is N1 ∈ N

(1.26) d(kn, km) ≺≺ g

2
,∀n,m > N1

and there is N2 ∈ N, k ∈ Ω

(1.27) d(kni , k) ≺≺ g

2
,∀ni > N2.

And so, assume that max{N1, N2} = N , then for ∀n, ni > N ,

(1.28) θ ⪯ d(kn, k) ⪯ d(kn, kni) + d(kni , k).

Using inequalities 1.26 and 1.27, for ∀n, ni > N we get

(1.29)
g

2
− d(kn, kni

) ∈ intK and
g

2
− d(kni

, k) ∈ intK.

And so, using inequality 1.28

(1.30)
g − (d(kn, kni

) + d(kni
, k)) ∈ intK

⇒ g − d(kn, k) ∈ intK.

Example 1.11. Ω = R − Q = Qc, G = R2,K = {(k, l) ∈ G : k ⩾ 0, l ⩾ 0} ⊆ R2, d :
Ω × Ω → G, d(k, l) = {| k − l |, α | k − l |}, α ⩾ 0. Assume that k ⊥ l if and only if
k =

√
2 or l =

√
2. Then (Ω,⊥, d) be an orthogonal cone metric space. Clearly, (Qc, d)

is not a complete cone metric space. Indeed, if we take the general term kn = 1 +
√
2

n
of

the sequence {kn} ⊂ Qc, then {kn} is a Cauchy sequence but kn → 1 /∈ Qc. Otherwise
(Qc,⊥, d) is an orthogonal complete cone metric space. Actually, assume that (kn) is an
arbitrary orthogonal Cauchy sequence in Qc. Then there exists a subsequence {kni} of
{kn} for which kni =

√
2 for all ni. It follows that kni →

√
2 ∈ Qc. On the other hand,

using the Lemma 1.3, the sequence {kn} is convergent in Qc.

2. Main Results

Now, we are ready to give and prove our main result by omitting the normality
assumption and using point orthogonal continuity instead of general orthogonal
continuity in main results of [15].
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Theorem 2.1. Let (Ω,⊥, d) is an orthogonal complete cone metric space ( it is
not necessarily complete cone metric space ) and γ ∈ R, 0 < γ < 1. Let h : (Ω,⊥
, d) → (Ω,⊥, d) is orthogonal contraction with Lipschitz constant γ and orthogonal
preserving. In this case, there exists a point k∗ ∈ Ω such that for any orthogonal
element k0 ∈ X, the iteration sequence {hn(k0)} converges to this point. Also, if h
is orthogonal continuous at k∗ ∈ Ω, then k∗ ∈ Ω is a unique fixed point of h. In
addition h is a Picard operator.

Proof. Because of (Ω,⊥) is an orthogonal set, there exists k0 ∈ Ω:

(2.1) (∀x ∈ Ω, x ⊥ k0) ∨ (∀x ∈ Ω, k0 ⊥ x).

And from h is a self mapping on Ω, for any orthogonal element k0 ∈ Ω, k1 ∈ Ω can
be chosen as k1 = h(k0). Thus,

(2.2)
k0 ⊥ h(k0) ∨ h(k0) ⊥ k0

⇒ k0 ⊥ k1 ∨ k1 ⊥ k0.

Then, if we continue in the same way

(2.3) k1 = h(k0), k2 = h(k1) = h2(k0), ..., kn = h(kn−1) = hn(k0)

so {hn(k0)} is an iteration sequence. Since h is orthogonal preserving and orthog-
onal contraction with Lipschitz constant γ, respectively {hn(k0)} is an orthogonal
sequence and

(2.4)

d(kn+1, kn) = d(h(kn), h(kn−1))
⪯ γd(kn, kn−1)
⪯ ...
⪯ γnd(k1, k0).

If any n ∈ N, kn = kn+1 then we get kn = h(kn) and so h has a fixed point. Assume
that ∀n, n+ 1 ∈ N, kn ̸= kn+1. In this case, ∀n,m ∈ N, n > m,

(2.5)

θ ⪯ d(kn, km) ⪯ d(kn, kn−1) + d(kn−1, kn−2) + ...+ d(km+1, km)
⪯ γn−1d(x1, x0) + γn−2d(x1, x0) + ...+ γmd(x1, x0)

⪯ γm

1−γ d(x1, x0).

In the sequel there are two cases:
Case I: If K is normal cone with normal constant L, from the inequality 2.5,

(2.6)
|| d(kn, km) || ⩽ L || γm

1−γ d(k1, k0) ||
⩽ γm

1−γL || d(k1, k0) ||

Using the above equation, since 0 < γ < 1, d(kn, km) → θ(n,m → ∞) and so
{kn} = {hn(k0)} is an orthogonal Cauchy sequence.
Case II: If K is not normal cone, let g ∈ G such that θ ≺≺ g. Then g ∈ intK. Also
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δ > 0 can be chosen such that g+Nδ(θ) ⊂ K where Nδ(θ) = {x ∈ G :|| x−θ ||< δ}.
Since 0 < γ < 1,

(2.7) || γm

1− γ
d(k1, k0) ||=

γm

1− γ
|| d(k1, k0) ||→ 0(m → ∞).

From the choosing of δ, || γm

1−γ d(k1, k0) ||< δ and using the Lemma 1.1 we get

(2.8) g − γm

1− γ
d(k1, k0) ∈ intK that is

γm

1− γ
d(k1, k0) ≺≺ g(m → ∞).

Thus, for all n,m ∈ N such that n ⩾ m, we obtain that d(kn, km) ⩽ γm

1−γ d(k1, k0) ≺≺
g so {kn} = {hn(k0)} is an orthogonal Cauchy sequence.

In both cases, since (Ω,⊥, d) is an orthogonal complete cone metric space, there
exists k∗ ∈ Ω such that {kn} = {hn(k0)} converges to this point. Now, assume that
h is orthogonal continuous at k∗ ∈ Ω and let g ∈ G such that θ ≺≺ g. Because of
{kn} = {hn(k0)} converges to k∗ ∈ Ω and h is orthogonal continuous at k∗ ∈ Ω,
there exists n0 ∈ N and for all n ∈ N such that n ⩾ n0,

(2.9) d(kn+1, k
∗) ≺≺ g

2
and d(hkn, k

∗) ≺≺ g

2
.

And so for all n ∈ N such that n ⩾ n0, d(hk
∗, k∗) ⪯ d(hk∗, hkn) + d(hkn, k

∗) ≺≺ g.
On the other hand, for m ∈ N,m ⩾ 1 we obtain 0 < 1

m ⩽ 1. Using g ∈ intK and
γintK ⊆ intK(γ ∈ R, γ > 0) we get g

m ∈ intK. Thus, for all n ∈ N such that n ⩾ n0

and form ∈ N,m ⩾ 1 we hold d(hk∗, k∗) ≺≺ g
m , then g

m−d(hk∗, k∗) ∈ K. Using the
cone K is closed set, where taking limit m → ∞ we get limm→∞( g

m − d(hk∗, k∗) =
−d(hk∗, k∗) ∈ K. Besides θ ⪯ d(hk∗, k∗) that is d(hk∗, k∗) ∈ K. So, because of K
is cone d(hk∗, k∗) = θ that is hk∗ = k∗, so k∗ ∈ Ω is a fixed point of h.
Now we can show the uniqueness of the fixed point. Suppose that there exist two
distinct fixed points k∗ and l∗.Then,

(i) If k∗ ⊥ l∗ ∨ l∗ ⊥ k∗,

(2.10) d(k∗, l∗) = d(fk∗, f l∗) ⪯ γd(k∗, l∗)

So γd(k∗, l∗) − d(k∗, l∗) = (1 − γ)d(k∗, l∗) ∈ K. Because of K is cone 1
1−γ (γ −

1)d(k∗, l∗) = −d(k∗, l∗) ∈ K and so d(k∗, l∗) = 0. That is k∗ ∈ Ω is an unique fixed
point of h.

(ii) If not k∗ ⊥ l∗ ∨ l∗ ⊥ k∗, for the chosen orthogonal element k0 ∈ Ω,

(2.11) [(k0 ⊥ k∗) ∧ (k0 ⊥ l∗)] ∨ [(k∗ ⊥ k0) ∧ (l∗ ⊥ k0)]

and since h is orthogonal preserving,

(2.12) [(h(kn) ⊥ k∗) ∧ (h(kn) ⊥ l∗)] ∨ [(k∗ ⊥ h(kn)) ∧ (l∗ ⊥ h(kn))]
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is obtained. So,

(2.13)

d(k∗, l∗) ⪯ d(k∗, hkn+1) + d(hkn+1, l
∗)

= d(hk∗, h(hkn)) + d(h(hkn), hl
∗)

⪯ γ[d(k∗, hkn) + d(hkn, l
∗)]

= γ[d(k∗, kn+1) + d(kn+1, l
∗)]

and taking limit n → ∞, we get that −d(k∗, l∗) ∈ K. and so d(k∗, l∗) = 0. That is
k∗ ∈ Ω is an unique fixed point of h.
Finally we show that h is a Picard operator. Let k be a arbitrary point. Then

(2.14) k0 ⊥ k ∨ k ⊥ k0.

Since h is orthogonal preserving, for all n ∈ N,

(2.15) hn(k0) ⊥ hn(k) ∨ hn(k) ⊥ hn(k0).

Hence for all n ∈ N

(2.16) d(hn(k0), h
n(k)) ⪯ γd(hn−1(k0), h

n−1(k)) ⪯ ... ⪯ γnd(k0, k).

In the sequel there are two cases:
Case I: If K is normal cone with normal constant L, from the inequality 2.5,

(2.17)
|| d(hn(k0), h

n(k)) || ⩽ L || γnd(k0, k) ||
.

Using the above equation, since 0 < γ < 1, d(hn(k0), h
n(k)) → θ(n → ∞) and so

limn→∞ hn(k) = k∗, that is h is Picard operator.
Case II: If K is not normal cone, let g ∈ G such that θ ≺≺ g. Then g ∈ intK. Also
δ > 0 can be chosen such that g+Nδ(θ) ⊂ K where Nδ(θ) = {x ∈ G :|| x−θ ||< δ}.
Since 0 < γ < 1,

(2.18) || γnd(k0, k) ||= γn || d(k0, k) ||→ 0(n → ∞).

From the choosing of δ, || γnd(k0, k) ||< δ and using the Lemma 1.1 we get

(2.19) g − γnd(k0, k) ∈ intK that is γnd(k0, k) ≺≺ g(n → ∞).

Thus, for all n ∈ N there exists N ∈ N and for all n ⩾ N we obtain that
d(hn(k0), h

n(k) ⪯ γnd(k0, k) ≺≺ g and so limn→∞ hn(k) = k∗, that is h is Pi-
card operator.

Now, omitting the assumption of orthogonal continuity of h and adding the nor-
mality of K, we can give the following theorem.

Theorem 2.2. Let (Ω,⊥, d) is an orthogonal complete cone metric space, K be
a normal cone with normal constant L and γ ∈ R, 0 < γ < 1. Let h : (Ω,⊥
, d) → (Ω,⊥, d) is orthogonal contraction with Lipschitz constant γ and orthogonal
preserving. In this case, there exists a point k∗ ∈ Ω such that for any orthogonal
element k0 ∈ Ω, the iteration sequence {hn(k0)} converges to this point. Also, for
all n ∈ N, kn ⊥ k∗, then k∗ ∈ Ω is a unique fixed point of h. In addition h is a
Picard operator.
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Proof. Because of (Ω,⊥) is an orthogonal set, there exists k0 ∈ Ω:

(2.20) (∀x ∈ Ω, x ⊥ k0) ∨ (∀x ∈ Ω, k0 ⊥ x).

And from h is a self mapping on Ω, for any orthogonal element k0 ∈ Ω, k1 ∈ Ω can
be chosen as k1 = h(k0). Thus,

(2.21)
k0 ⊥ h(k0) ∨ h(k0) ⊥ k0

⇒ k0 ⊥ k1 ∨ k1 ⊥ k0.

Then, if we continue in the same way

(2.22) k1 = h(k0), k2 = h(k1) = h2(k0), ..., kn = h(kn−1) = hn(k0)

so {hn(k0)} is an iteration sequence. Since h is orthogonal preserving and orthog-
onal contraction with Lipschitz constant γ, respectively {hn(k0)} is an orthogonal
sequence and

(2.23)

d(kn+1, kn) = d(h(kn), h(kn−1))
⪯ γd(kn, kn−1)
⪯ ...
⪯ γnd(k1, k0).

If any n ∈ N, kn = kn+1 then we get kn = h(kn) and so h has a fixed point. Assume
that ∀n, n+ 1 ∈ N, kn ̸= kn+1. In this case, ∀n,m ∈ N, n > m,

(2.24)

θ ⪯ d(xn, xm) ⪯ d(xn, xn−1) + d(xn−1, xn−2) + ...+ d(xm+1, xm)
⪯ γn−1d(x1, x0) + γn−2d(x1, x0) + ...+ γmd(x1, x0)

⪯ γm

1−γ d(x1, x0).

Since K is normal cone with normal constant L, from the inequality 2.24,

(2.25)
|| d(kn, km) || ⩽ L || γm

1−γ d(k1, k0) ||
⩽ γm

1−γL || d(k1, k0) ||

Using the above equation, since 0 < γ < 1, d(kn, km) → θ(n,m → ∞) and so
{kn} = {hn(k0)} is an orthogonal Cauchy sequence.
Since (Ω,⊥, d) is an orthogonal complete cone metric space, there exists k∗ ∈ Ω
such that {kn} = {hn(k0)} converges to this point. Also, assume that for all
n ∈ N, kn ⊥ k∗, then from h is orthogonal contraction with Lipschitz constant γ
and K is normal cone with normal constant L ,

(2.26)
θ ⪯ d(hkn, hk

∗) ⪯ γd(kn, k
∗)

⇒ || d(hkn, hk∗) ||⩽ λL || d(kn, k∗) ||

so taking limit n → ∞, || d(hkn, hk∗) ||→ 0 ⇒ h(kn) → h(k∗) be related to d that
is h is orthogonal continuous at k∗ ∈ Ω.
Thus, all the conditions of the Theorem 2.1 are provided and k∗ ∈ Ω is a unique
fixed point of h. In addition h is a Picard operator.
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Example 2.1. Let G = R2 be the Euclidean plane, K = {(k, l) ∈ G : k, l ⩾ 0} be a cone
in G and Ω = {(k, 0) ∈ G : 0 ⩽ k < 1}. Define the binary relation ⊥ on G such that

(2.27) (k1, l1) ⊥ (k2, l2) ⇐⇒ ⟨(k1, l1), (k2, l2)⟩e ∈ {|| (k1, l1) ||e, || (k2, l2) ||e}.

(In here ⟨., .⟩e denotes Euclide inner product and || . ||e denotes Euclide norm.) In this
case, (Ω,⊥) is an orthogonal set. The mapping d : Ω× Ω → G is defined by

(2.28) d((k, 0), (l, 0)) = (
5

4
| k − l |, | k − l |).

Then,(Ω,⊥, d) is an orthogonal complete cone metric space. Let mapping h : (Ω,⊥, d) →
(Ω,⊥, d) with

(2.29) h(k, 0) = (
k

2
, 0).

Then, h is orthogonal contraction with Lipschitz constant γ = 1
2
and orthogonal preserving.

Also h is orthogonal continuous on Ω. All hypothesis of Theorem 2.1 satisfy and so, it is
obvious that h has a unique fixed point (0, 0) ∈ Ω.

Corollary 2.1. Let (Ω,⊥, d) is an orthogonal complete cone metric space, K be a
normal cone with normal constant L and γ ∈ R, 0 < γ < 1. For g ∈ G with 0 ≺≺ g
and any k0 ∈ Ω, define B(k0, g) = {k ∈ Ω : d(k0, k) ⩽ g}. Let h : (Ω,⊥, d) →
(Ω,⊥, d) is orthogonal contraction with Lipschitz constant γ for all k, l ∈ B(k0, g),
orthogonal preserving on B(k0, g) and d(hk0, k0) ⪯ (1−γ)g. In this case, there exists
a point k∗ ∈ B(k0, g) such that for any orthogonal element k0 ∈ Ω, the iteration
sequence {hn(k0)} converges to this point. Also, if h is orthogonal continuous on
B(k0, g), then k∗ ∈ B(k0, g) is a unique fixed point of h.

Proof. We only need to prove that B(k0, g) is complete and hk ∈ B(k0, g) for
all k ∈ B(k0, g). Thus, when Ω replaced with to B(k0, g) then h : (B(k0, g),⊥
, d) → (B(k0, g),⊥, d) is satisfy all conditions of Theorem 2.1. So h has an unique
fixed point in B(k0, g). Suppose kn is a Cauchy sequence in B(k0, g). Then kn
is also a Cauchy sequence in Ω. By the completeness of Ω, there is k ∈ Ω such
that kn → k(n → ∞). Then, from K is a normal cone with normal constant L,
d(kn, k) → θ(n → ∞) and taking limit n to infty,

(2.30) d(k0, k) ⪯ d(k0, kn) + d(kn, k) ⪯ c

is obtained. Hence k ∈ B(k0, g). Therefore B(k0, g) is complete.
For every k ∈ B(k0, g),

(2.31) d(k0, hk) ⪯ d(k0, hk0)+d(hk0, hk) ⪯ (1−γ)g+γd(k0, k) ⪯ (1−γ)g+γg = g

Hence hk ∈ B(k0, g).

Corollary 2.2. Let (Ω,⊥, d) is an orthogonal complete cone metric space ( it is
not necessarily complete cone metric space ) and γ ∈ R, 0 < γ < 1. Let h :
(Ω,⊥, d) → (Ω,⊥, d) is orthogonal preserving and hn is orthogonal contraction with
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Lipschitz constant γ. In this case, there exists a point k∗ ∈ Ω such that for any
orthogonal element k0 ∈ Ω, the iteration sequence {hn(k0)} converges to this point.
Also, if h is orthogonal continuous at k∗ ∈ Ω, then k∗ ∈ Ω is a unique fixed point
of h.

Proof. From Theorem 2.1, hn has a unique fixed point k∗.

(2.32) hn(hk∗) = h(hnk∗) = hk∗,

so hk∗ is also a fixed point of hn. Hence hk∗ = k∗, k∗ is a fixed point of h. Since
the fixed point of h is also fixed point of hn, the fixed point of h is unique.

3. Conclusion

In this study, as a result of a comprehensive literature review, the developments
related to the existence of fixed points for mappings that provide the appropriate
contraction conditions from the beginning of the fixed point theory studies are
mentioned, and then the general subject of this study is emphasized.

Also, certain required definitions on orthogonal cone metric spaces are presented
in this study, which are not given in [9]. The examples that show the link between
existing and new definitions are also included. The results are also generalized by
eliminating the normalcy condition and utilizing point orthogonal continuity in-
steadof general orthogonal continuity in the major results of [9]. The fundamental
finding of the study is then generalized by removing the requirement of orthogonal
continuity and introducing normality. In addition, certain outcomes of stated the-
orems are proven, and some examples are provided to demonstrate these theorems.
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