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Abstract. In this paper, we have first introduced the notion of rough I∗-convergence
in a normed linear space as an extension work of rough I-convergence and then rough
IK-convergence in more general way. Then we have studied some properties on these
two newly introduced ideas. We also examined the relationship between rough I-
convergence with both of rough I∗-convergence and rough IK-convergence.
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1. Introduction

The idea of statistical convergence was formerly described under the name “almost
convergence” by Zygmund in the first edition of his celebrated monograph published
in Warsaw in 1935 [A. Zygmund, Trigonometric Series, Cambridge Univ. Press,
Cambridge, UK, 1979.]. The concept was formally introduced by Fast [H. Fast,
Sur la convergence statistique, Colloq. Math. 2 (1951) 241–244.] and was later
reintroduced by Schoenberg [I.J. Schoenberg, The integrability of certain functions
and related summability methods, Amer. Math. Monthly 66 (5) (1959) 361–375.]
and also, independently, by Buck [C. Buck, Generalised asymptotic density, Amer.
J. Math. 75 (1953) 335–346.]. Developments were carried out in this area by many
authors. The concepts of statistical convergence of sequence has been extended
to I-convergence by Kostyrko et al. [15, 17] using the structure of the ideal I of
subsets of the set of natural numbers. An another type of convergence which is
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closely related to the ideas of I-convergence is the idea of I∗-convergence given by
Kostyrko et al. [14]. It is seen in [15] that these notions are equivalent if and only if
the ideal satisfies the property (AP). Several works have been done in recent years
on I-convergence (see [2, 3, 4, 5, 19, 20]).

The idea of rough convergence in a finite dimensional space was introduced by
Phu [23] in 2001. In 2013, S. K. Pal et al. [24] introduced the notion rough ideal
convergence using the concepts of I-convergence and rough convergence. For given
two arbitrary ideals I and K on a set S, the idea of IK-convergence in topological
space was given by M. Mačaj and M. Sleziak in [21] as a generalization of the
notion of I∗-convergence. In their paper they modified the condition (AP) which
was termed as AP(I, K) condition. They showed that if such condition holds, then
I-convergence implies IK-convergence and the converse of this result also holds
for the first countable space which is not finitely generated (or Alexandroff space).
Indeed, they worked with functions instead of sequences. One of the reasons is that
using functions sometimes helps to simplify notations.

In our work we have studied the notion of rough I∗-convergence and rough
IK-convergence in a normed linear space. Rough IK-convergence is a common
generalization of rough I∗-convergence. Here we have studied the ideas of rough I∗-
convergence and rough IK-convergence in terms of sequences instead of functions.
We then intend to find the relation between rough I-convergence and rough I∗-
convergence. We also tried to find the relation of rough I-convergence with rough
IK-convergence and we have observed that the condition AP(I,K) is an necessary
and sufficient condition for the rough I-limit set to be a subset of rough IK-limit
set. We have tried to verify whether some property of IK-convergence as in [21]
also holds for rough IK-convergence.

We now recall some definitions and notions which will be needed afterwards.

2. Preliminaries

Throughout the paper, N denotes the set of all natural numbers, R the set of all
real numbers unless otherwise stated.

Definition 2.1. [12] Let K be a subset of the set of natural numbers N and let us
denote the set Ki = {k ∈ K : k ≤ i}. Then the natural density of K is given by

d(K) = lim
i→∞

|Ki|
i

, where |Ki| denotes the cardinality of the set Ki.

Definition 2.2. [12] A sequence {xn}n∈N of real numbers is said to be statistically
convergent to x if for any ε > 0, d(A(ε)) = 0, where A(ε) = {n ∈ N : |xn − x| ≥ ε}.

Let I be a collection of subsets of a set S. Then I is called an ideal [16] on S if
(i) A,B ∈ I ⇒ A ∪B ∈ I and (ii) A ∈ I and B ⊂ A ⇒ B ∈ I.

An ideal I on S is called admissible if it contains all the singletons. I is called
nontrivial if S /∈ I or I ̸= {ϕ} [16]. From the definition it is noted that ϕ ∈ I.

If S = N, the set of all positive integers then I is called an ideal on N. We will
denote by Fin the ideal of all finite subsets of a given set S.
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Definition 2.3. [18] Let S ̸= ϕ. A non empty class F is called a filer in S provided:
(i) ϕ /∈ F , (ii) A,B ∈ F ⇒ A ∩B ∈ F , (iii) A ∈ F,A ⊂ B ⇒ B ∈ F .

If I is a non trivial ideal on N, then the class F (I) = {M ⊂ N : N \M ∈ I} is a
filter on N, called the filter associated with I.

Definition 2.4. [15] An admissible ideal I ⊂ 2N is said to satisfy the condition
(AP) if for every countable family of mutual disjoint sets {A1, A2, · · · } belonging
to I there exists a countable family of sets {B1, B2, · · · } such that the symmetric

difference Aj∆Bj is a finite set for each j ∈ N and B =

∞⋃
j=1

Bj ∈ I. Several examples

of countable family satisfying the condition (AP) are seen in [15].

Definition 2.5. [15, 17] Let (X, || · ||) be a normed linear space and I ⊂ 2N be a
non-trivial ideal. A sequence {xn}n∈N of elements of X is said to be I-convergent
to x ∈ X if for each ε > 0 the set A(ε) = {n ∈ N : ||xn − x|| ≥ ε} belongs to I. The
element x is here called the I-limit of the sequence {xn}n∈N.

It should be noted here that if I is an admissible ideal then usual convergence
in X implies I-convergence in X.

Example 2.1. [15] If Id denotes the class of all A ⊂ N with d(A) = 0. Then
Id is non trivial admissible ideal and Id convergence coincides with the statistical
convergence.

Definition 2.6. [14, 15] Let (X, || · ||) be a normed linear space and I ⊂ 2N be a
non-trivial ideal. A sequence {xn}n∈N in X is said to be I∗-convergent to x if there
exists a set M = {m1 < m2 < · · · < mk < · · · } in F (I) such that the sub sequence
{xmk

}k∈N is convergent to x i.e., lim
k→∞

||x− xmk
|| = 0.

It is seen in [15] that I∗-convergence implies I-convergence. If an admissible
ideal I has the property (AP), then for a sequence {xn}n∈N in a normed linear
space X, I-convergence implies I∗-convergence.

Definition 2.7. [23] Let {xn}n∈N be a sequence in a normed linear space (X, || · ||)
and r be a non-negative real number. Then {xn}n∈N is said to be rough convergent

of roughness degree r to x or simply r-convergent to x, denoted by xn
r−→ x, if for

all ε > 0 there exists N(ε) ∈ N such that n ≥ N(ε) implies ||xn − x|| < r+ ε and x
is called rough limit of {xn}n∈N of roughness degree r.

For r = 0, the definition 2.7 reduces to definition of classical convergence of
sequences. Here x is called the r-limit point of {xn}n∈N, which is usually no more
unique for r > 0. So we have to consider the so called r-limit set (or shortly r-limit)

of {xn}n∈N defined by LIMrxn := {x ∈ X : xn
r−→ x}. A sequence {xn}n∈N is said

to be r-convergent if LIMrxn ̸= ϕ. In this case, r is called a rough convergence
degree of {xn}n∈N.
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Proposition 2.1. [23] A sequence {xn}n∈N in a normed linear space X is bounded
if and only if there exists an r ≥ 0 such that LIMrxn ̸= ϕ. For all r > 0, a bounded
sequence {xn}n∈N always contains a subsequence {xmk

}k∈N with LIMrxmk
̸= ϕ.

If {x′
n}n∈N is a sub sequence of {xn}n∈N in a normed linear space (X, || · ||), then

LIMrxn ⊂ LIMrx′
n, and for all r ≥ 0, the r-limit set LIMrxn of an arbitrary

sequence {xn}n∈N in a normed linear space (X, || · ||) is a closed convex set.

Definition 2.8. [11] Let I be an admissible ideal and {xn}n∈N be a sequence in a
normed linear space (X, || · ||). Then {xn}n∈N is said to be I-bounded if there exists
a positive real number M such that the set {n ∈ N : ||xn|| ≥ M} ∈ I and for r ≥ 0,
{xn}n∈N is said to be rough I-convergent of roughness degree r to x, denoted by

xn
r−I−−→ x if {n ∈ N : ||xn − x|| ≥ r + ε} ∈ I for every ε > 0 and then x is called

rough I-limit of {xn}n∈N of roughness degree r.

Remark 1. If I is an admissible ideal, then the usual rough convergence implies
rough I-convergence.

Note 1. If we take r = 0, then we obtain the definition of ordinary I-convergence.
In general, the rough I-limit of a sequence may not be unique for the roughness
degree r > 0. So we have to consider the so-called rough I-limit set of a sequence

{xn}n∈N which is defined by I − LIMrxn := {x ∈ X : xn
r−I−−→ x}. A sequence

{xn}n∈N is said to be rough I-convergent if I − LIMrxn ̸= ϕ.

It is seen in [11] that, for an admissible ideal I, a sequence {xn}n∈N in (X, || · ||)
is I-bounded if and only if there exists a non negative real number r such that
I−LIMrxn ̸= ϕ and if {xmk

}k∈N is a sub sequence of {xn}n∈N then I−LIMrxn ⊂
I − LIMrxmk

. Moreover the rough I-limit set of {xn}n∈N is a closed convex set.

We now give some basic ideas on IK-convergence in a topological space studied
by M. Mačaj and M. Sleziak [21].

Definition 2.9. [21] Let I be an ideal on a set S and X be a topological space. A
function f : S 7→ X is said to be I-convergent to x if f−1(U) = {s ∈ S : f(s) ∈ U} ∈
F (I) holds for every neighbourhood U of the point x and we write I − limf = x.

If S = N, then we obtain the usual definition of I-convergence of sequences in
which case the notation I − limxn = x is used.

Definition 2.10. [21] Let I be an ideal on a set S and let f : S 7→ X be a
function to a topological space X. The function f is called I∗-convergent to the
point x if there exists a set M ∈ F (I) such that the function g : S 7→ X defined by

g(s) =

{
f(s), if s ∈ M

x, if s /∈ M
is Fin-convergent to x. If f is I∗-convergent to x, then

we write I∗ − limf = x.

The usual notion of I∗-convergence of sequences is a special case when S = N.
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Definition 2.11. [21] Let K and I be two ideals on a set S and X be a topological
space. The function f : S 7→ X is said to be IK-convergent to x ∈ X if there exists a

set M ∈ F (I) such that the function g : S 7→ X given by g(s) =

{
f(s), if s ∈ M

x, if s /∈ M

is K-convergent to x. If f is IK-convergent to x, then we write IK − limf = x.

When S = N, then we speak about IK-convergence of sequences.

Remark 2. The definition of IK-convergence may also be treated from [14] as
follows: there exists M ∈ F (I) such that the function f |M is K|M -convergent to
x, where K|M = {A ∩M : A ∈ K}, the trace of K on M . The two definitions are
equivalent but the definition given in 2.11 is somewhat simpler.

Lemma 2.2. [21] If I and K are ideals on a set S and f : S 7→ X is a function
such that K − limf = x then IK − limf = x.

Definition 2.12. [21] Let K be an ideal on a set S. we write A ⊂K B whenever
A \B ∈ K. If A ⊂K B and B ⊂K A then we write A ∼K B.

Clearly A ∼K B ⇔ A∆B ∈ K.

Now we recall a lemma from [21] where several equivalent formulations of a
condition for ideals I and K have been described.

Lemma 2.3. [21] Let I and K be two ideals on the same set S. Then the following
conditions are equivalent:

(i) For every sequence {An}n∈N of sets from I there is A ∈ I such that An ∼K A
for all n’s.

(ii) Any sequence {Fn}n∈N of sets from F (I) has a K-pseudo intersection in F (I).

(iii) For every sequence {An}n∈N of sets belonging to I there exists a sequence
{Bn}n∈N of sets from I, such that Aj ∼K Bj for j ∈ N and B =

⋃
j∈N Bj ∈ I.

(iv) For every sequence of mutually disjoint sets {An}n∈N belonging to I there
exists a sequence {Bn}n∈N of sets belonging to I such that Aj ∼K Bj for
j ∈ N and B =

⋃
j∈N Bj ∈ I.

(v) For every non-decreasing sequence A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · · of sets from I,
there exists a sequence {Bn}n∈N of sets belonging to I such that Aj ∼K Bj

for j ∈ N and B =
⋃

j∈N Bj ∈ I.

Definition 2.13. [21] Let I and K be two ideals on a same set S. We say that I
has the additive property with respect to K, or briefly AP(I,K) holds, if any one
of the equivalent conditions of Lemma 2.3 holds.

The condition (AP)[15], is equivalent to the condition AP(I, Fin). Now we recall
the following two theorems from [21].
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Theorem 2.4. [21] Let I and K be two ideals on a set S and X be a first countable
topological space. If I has the additive property with respect to K, then for any
function f : S 7→ X, I-convergence implies the IK-convergence or in other words,
if the condition AP(I,K) holds then the I-convergence implies the IK-convergence.

Let us recall that a topological space X is called finitely generated space or
Alexandroff space [1] if intersection of any number of open sets of X is again an
open set. Equivalently, X is finitely generated if and only if each point x has a
smallest neighbourhood.

Theorem 2.5. [21] Let I, K be two ideals on a set S and X be a first countable
topological space which is not finitely generated. If the I-convergence implies the
IK-convergence for any function f : S 7→ X, then the ideal I has the additive
property with respect to K, or briefly the condition AP(I,K) holds.

3. Main results

Throughout our discussion (X, || · ||) or simply X will always denote a normed linear
space over the field C or R and I, K always assumed to be non trivial admissible
ideals on N unless otherwise stated.

Definition 3.1. Let r be a non-negative real number and I be a non trivial ad-
missible ideal on N. Then a sequence {xn}n∈N in (X, || · ||) is said to be rough
I∗-convergent of roughness degree r to x if there exists a set M = {m1 < m2 <
m3 < · · · < mk < · · · } in F (I) such that the sub sequence {xmk

}k∈N is rough
convergent of roughness degree r to x. Thus for any ε > 0 there exists a N ∈ N
such that ||xmk

− x|| < r + ε for all k ≥ N . we denote this by xn
r−I∗

−−−→ x.

Here x is called the rough I∗-limit of the sequence {xn}n∈N of roughness degree
r. For r = 0, we have the definition of I∗-convergence of sequences in normed
linear spaces. Obviously rough I∗-limit of a sequence in normed linear spaces is
not unique. Therefore we have to consider the rough I∗-limit set of the sequence

{xn}n∈N defined as follows: I∗ − LIMrxn = {x ∈ X : xn
r−I∗

−−−→ x}.

Definition 3.2. Let r be a non-negative real number. Also let I and K be two
non trivial admissible ideals on N. Then a sequence {xn}n∈N in a normed linear
space (X, || · ||) is said to be rough IK-convergent of roughness degree r to x if
there exists a set M = {m1 < m2 < · · · < mk < · · · } in F (I) such that the sub
sequence {xmk

}k∈N is rough K|M -convergent of roughness degree r to x, where
K|M = {A ∩M : A ∈ K} is the trace of K on M . That is for any ε > 0, the set

{k ∈ N : ||xmk
− x|| ≥ r + ε} ∈ K|M . We denote this by xn

r−IK

−−−−→ x.

Here x is called the rough IK-limit of the sequence {xn}n∈N of roughness degree
r. For r = 0, we have the definition of IK-convergent of sequences in normed linear
spaces. It should be noted that for M ∈ F (I), the trace K|M = {A∩M : A ∈ K} of
K on M also forms an ideal on N. Clearly rough IK-limit of a sequence in normed
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linear spaces is not unique. Therefore we will consider the rough IK-limit set of

the sequence {xn}n∈N defined by IK − LIMrxn = {x ∈ X : xn
r−IK

−−−−→ x}. If the
ideal K is such that it is the class of all finite subsets of N then definition 3.1 and
definition 3.2 coincides. Obviously, if x is a rough I∗-limit of a sequence {xn}n∈N
then x is also a rough IK-limit of {xn}n∈N. But it may happen that x is rough
IK-limit of a sequence {xn}n∈N in normed linear space without being rough I∗-limit
of the sequence {xn}n∈N, which is seen from the next example. So, in general, for
a sequence {xn}n∈N in a normed linear space and for any non-negative real number
r, we have I∗ − LIMrxn ⊂ IK − LIMrxn.

Example 3.1. Let us consider a decomposition of N by N = A ∪
∞⋃
i=1

Ai, where

A = {1, 3, 5, · · · } and Ai = {2n(2i − 1) : n ∈ N}. Then each of Ai’s are disjoint
from each other and each of Ai’s are disjoint from A also. Let I be the collections
of all those subsets of N such that the sets which belongs to I can intersects with A
and with only a finite numbers of Ai’s. Then I is an non trivial admissible ideal on

N. Let N =

∞⋃
j=1

Dj be another decomposition of N such that Dj = {2j−1(2s − 1) :

s = 1, 2, · · · }. Then each of Dj is infinite and Dj ∩ Dk = ϕ for j ̸= k. Let K be
the ideal of all those subsets of N which intersects with only a finite numbers of
Dj ’s. Then K is a non trivial admissible ideal on N. Let us consider the sequence
in real number space with usual norm defined by xn = 1

j if n ∈ Dj . Let us

take M = N ∈ F (I). Then K|M = K. Now let r > 0 be arbitrary. Since, by
Archimedean property for any ε > 0 there exists a l ∈ N such that ε > 1

l , so
{k ∈ N : |xk − (−r)| = |xk + r| ≥ r + ε} ⊂ D1 ∪ D2 ∪ · · · ∪ Dl ∈ K = K|M .
Therefore −r ∈ IK − LIMrxn.
If possible let −r ∈ I∗ − LIMrxn. So there exists a set M = {m1 < m2 < · · · <
mk < · · · } ∈ F (I) for which the sub sequence {xn}n∈M of the sequence {xn}n∈N is
rough convergent to x of roughness degree r. Now as M ∈ F (I), therefore we have
N\M = H (say) ∈ I. Therefore exists a p ∈ N such that H ⊂ A∪A1∪A2∪· · ·∪Ap

and so Ak ⊂ M for all k ≥ p+ 1. Now as each of the set Ak’s contains an element
from each of the set Di’s for i ≥ 2, so there exists a s ∈ N such that xmk

= 1
s for

infinitely k’s when mk ∈ Ds. As −r ∈ I∗ − LIMrxn, so for ε = 1
s+1 there exists

a N ∈ N such that |xmk
− (−r)| = |xmk

+ r| < r + ε for all k ≥ N → (i). Since
xmk

= 1
s for infinitely many k’s, therefore the condition in (i) does not holds. Thus

we arrived at a contradiction. Hence −r /∈ I∗ − LIMrxn.

Theorem 3.1. Let {xn}n∈N be a sequence in a normed linear space (X, || · ||) and
r be a non-negative real number. Then for an non trivial admissible ideal I, if
{xn}n∈N is rough I∗-convergent of roughness degree r to x then it is also rough
I-convergent of roughness degree r to x.

Proof. If possible let {xn}n∈N be rough I∗-convergent of roughness r to x. Then
there exists a set M = {m1 < m2 < · · · < mk < · · · } ∈ F (I) such that {xmk

}k∈N
is rough convergent of roughness degree r to x. Thus for any ε > 0 there exists
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N ∈ N such that ||xmk
−x|| < r+ ε for all k ≥ N . So {k ∈ N : ||xk −x|| ≥ r+ ε} ⊂

N \M ∪ {m1,m2, · · · ,mN−1} → (i). Now since the right hand side of (i) belongs
to I, so {k ∈ N : ||xk − x|| ≥ r + ε} ∈ I. Therefore the sequence {xn}n∈N is rough
I-convergent of roughness degree r to x.

In view of Theorem 3.1, it follows that rough I∗-limit set of roughness degree r
is a subset of rough I-limit set of same roughness degree r. Converse of the theorem
3.1 is not necessarily true. That is, if a sequence {xn}n∈N is rough I-convergent
of some roughness degree r to x then the sequence {xn}n∈N may not be rough I∗-
convergent of same roughness degree r to x. This fact can be seen from the next
example.

Example 3.2. Let N =

∞⋃
j=1

Dj be a decomposition of N such thatDj = {2(j−1)(2s−

1) : s = 1, 2, · · · }. Then each of Dj is infinite and disjoint from each others. Let I
be the class of all those subsets of N which intersects with only a finite numbers of
Dj ’s. Then I is an admissible ideal on N. Let us define a sequence in real numbers
space with usual norm by xn = 1

jj if n ∈ Dj . Let r be an arbitrary non-negative real

number. Let ε > 0 be arbitrarily chosen. Then there exists a l ∈ N such that ε > 1
ll
.

Then [−r, r] ⊂ I − LIMrxn, as {n ∈ N : |xn − x| ≥ r + ε} ⊂ D1 ∪D2 ∪ · · ·Dl ∈ I
for any x ∈ [−r, r].
If possible, suppose that the sequence defined above is rough I∗-convergent to −r
of same roughness degree r. Therefore, there exists a set M = {m1 < m2 < · · · <
mk < · · · } ∈ F (I) such that the sub sequence {xmk

}k∈N is rough convergent to −r
of roughness degree r. Now as M ∈ F (I), so N \ M = H(say) ∈ I. Hence there
exists a p ∈ N such that H ⊂ D1 ∪ D2 ∪ · · · ∪ Dp and so Dp+1 ⊂ M . Therefore
xmk

= 1
(p+1)p+1 for mk ∈ Dp+1. Now for ε = 1

(p+2)p+1 and mk ∈ Dp+1 we see that

|xmk
+ r| ≥ r + ε for infinitely many k’s. Therefore the sequence {xn}n∈N is not

rough I∗-convergent of roughness degree r to −r although −r ∈ I − LIMrxn.

Let r be a non-negative real number. Then for a sequence {xn}n∈N in a normed
linear space, rough I-limit of the sequence {xn}n∈N of roughness degree r is also a
rough I∗-limit of same roughness degree r if the ideal I satisfies the condition (AP).
To prove this we need the following lemma.

Lemma 3.2. [22] Let {An}n∈N be a countable family of subsets of N such that each
An belongs to F (I), the filter associated with an admissible ideal I which has the
property (AP). Then there exists a set B ⊂ N such that B ∈ F (I) and the set B\An

is finite for all n ∈ N.

Theorem 3.3. Let I be an ideal which has the property (AP) and {xn}n∈N be a
sequence in a normed linear space (X, || · ||). Then if x is a rough I-limit of the
sequence {xn}n∈N of some roughness degree r then x is also a rough I∗-limit of the
sequence {xn}n∈N of same roughness degree r.

Proof. Let I be an ideal on N which satisfies the condition (AP) and {xn}n∈N be a
sequence in a normed linear space (X, || · ||). Also let us suppose that x be a rough
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I-limit of the sequence {xn}n∈N of roughness degree r for some r ≥ 0. Therefore
for any ε > 0 the set {n ∈ N : ||xn − x|| ≥ r + ε} ∈ I. Let l be arbitrary
positive real number, so l

i is also positive real number for each i ∈ N. Define

Ai = {n ∈ N : ||xn − x|| < r + l
i} for each i ∈ N. Then Ai ∈ F (I) for each i ∈ N.

Also, by the Lemma 3.2, there exists a set B ⊂ N such that B ∈ F (I) and B \Ai is
finite for all i ∈ N. Now for any ε > 0, there exists a j ∈ N such that ε > l

j . Since

B \ Aj is finite, so there exists k = k(j) ∈ N such that n ∈ B ∩ Aj for all n ∈ B
with n ≥ k. Now ||xn − x|| < r + l

j < r + ε for all n ∈ B and n ≥ k. Thus the sub

sequence {xn}n∈B is rough convergent of roughness degree r to x. Therefore x is
also a rough I∗-limit of roughness degree r. Hence the result follows.

Corollary 1. Let {xn}n∈N be a sequence in a normed linear space (X, || · ||) and
r be a non-negative real number. Let I be an ideal on N such that it satisfies the
condition (AP). Then rough I-limit set of roughness degree r and rough I∗-limit set
of roughness degree r of the sequence {xn}n∈N are same.

Proof. In view of theorem 3.1 and theorem 3.3 the result follows.

Rough I-limit set of a sequence {xn}n∈N in a normed linear space is a subset of
rough I-limit set of a sub sequence {xnk

}k∈N. But rough I∗-limit set of a sequence
{xn}n∈N in a normed linear space may not be a subset of rough I∗-limit set of a
sub sequence {xnk

}k∈N. This fact can be justified by the following example.

Example 3.3. Let I be the ideal of all subsets of N whose natural density is
zero. Let us consider a sequence {xn}n∈N in real number space with usual norm as

follows: xn =

{
−1 n = k2

1
n n ̸= k2

, where k ∈ N. Now as the natural density of the set

A = {n ∈ N : n = k2, k ∈ N} is zero, therefore A ∈ I. So N \ A = M(say) ∈ F (I).
Put M = {m1 < m2 < · · · < mk < · · · }. Then for any ε > 0, we can see that
|xmk

− 1| < 1 + ε holds for all k ∈ N. Hence 1 is a rough I∗-limit of roughness
degree r = 1 of the sequence {xn}n∈N. Let A be enumerated as A = {n1 < n2 <
· · · < nk < · · · } and consider the sub sequence {xnk

}k∈N of {xn}n∈N. For any sub
sequence {xnkm

}m∈N of {xnk
}k∈N and for 0 < ε < 1, we have |xnkm

− 1| > 1 + ε
for all m. Hence for this choice of ε, there does not exist any N(ε) ∈ N for which
|xnkm

− 1| < 1 + ε holds for all m ≥ N(ε). Therefore there does not exists any
M ′ = {m′

1 < m′
2 < · · · < m′

k < · · · } ∈ F (I) for which {xnm′
k

}k∈N is rough

convergent to 1 of roughness degree r = 1. So 1 is not a rough I∗-limit of roughness
degree r = 1 of the sub sequence considered above.

Theorem 3.4. If I is an ideal which satisfies the condition (AP), then the rough
I∗-limit set of a sequence {xn}n∈N of some roughness degree r is a subset of rough
I∗-limit set of a sub sequence {xnk

}k∈N of same roughness degree r.

Proof. Let x be a rough I∗-limit of a sequence {xn}n∈N of some roughness degree r.
So x is also a rough I-limit of {xn}n∈N. Since rough I-limit of a sequence {xn}n∈N
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is a subset of rough I-limit of a sub sequence {xnk
}k∈N, x is rough I-limit of the

sub sequence {xnk
}k∈N. Now as I satisfies the condition (AP), so x is also a rough

I∗-limit of the sub sequence {xnk
}k∈N.

Theorem 3.5. Let I and K be two admissible ideals on N and r be a non-negative
real number. Suppose that a sequence {xn}n∈N in a normed linear space (X, || · ||)
is rough IK-convergent to x of roughness degree r then {xn}n∈N is also rough I-
convergent to x of same roughness degree r if K ⊂ I.

Proof. Let I and K be two admissible ideals on N such that K ⊂ I. Also let r be a
non-negative real number. Suppose that a sequence {xn}n∈N is rough IK-convergent
to x of roughness degree r. Then there exists a set M = {m1 < m2 < · · · < mk <
· · · } ∈ F (I) such that for any ε > 0, the set A(ε) = {k ∈ N : ||xmk

− x|| ≥ r+ ε} ∈
K|M . Suppose that A(ε) = {k ∈ N : ||xmk

− x|| ≥ r + ε} = K1 ∩ M for some
K1 ∈ K. Now as K is an ideal and K1 ∩ M ⊂ K1, so K1 ∩ M ∈ K. Again
{n ∈ N : ||xn − x|| ≥ r + ε} ⊂ (K1 ∩ M) ∪ N \ M . Since N \ M ∈ I and K ⊂ I,
therefore (K1 ∩M) ∪ N \M ∈ I. So {n ∈ N : ||xn − x|| ≥ r + ε} ∈ I. Hence the
result follows.

Converse part of the theorem 3.5 is also valid, i.e., if a rough IK-limit of a
sequence {xn}n∈N of some roughness degree r, becomes a rough I-limit of {xn}n∈N
of same roughness degree r then K ⊂ I. To prove this we need the following lemma.

Lemma 3.6. If I and K are ideals on N. Then a rough K-limit of a sequence
{xn}n∈N of some roughness degree r is also a rough IK-limit of {xn}n∈N of same
roughness degree r.

Proof. Let I and K be two ideals on N and r be a non-negative real number. Let x
be a rough K-limit of {xn}n∈N of roughness degree r i.e., x ∈ K − LIMrxn. Then
for any ε > 0, {n ∈ N : ||xn − x|| ≥ r + ε} ∈ K. We take M = {m1 < m2 <
· · · < mk < · · · } = N ∈ F (I), then {xmk

} = {xn} and K|M = K. Therefore
{k ∈ N : ||xmk

− x|| ≥ r + ε} = {n ∈ N : ||xn − x|| ≥ r + ε} ∈ K = K|M . So
x ∈ IK − LIMrxn. Hence the result follows.

Theorem 3.7. If a rough IK-limit of a sequence {xn}n∈N of some roughness degree
r is also a rough I-limit of {xn}n∈N of same roughness degree r then K ⊂ I.

Proof. Suppose that K ̸⊂ I and r be a non-negative real number. Then there exists
a set A ∈ K \ I. Let us choose x, y ∈ X such that ||x|| = 1 and y = (r + 2)x, then
we have ||x− y|| ≥ r+ ε for 0 < ε ≤ 1 and ||x− y|| < r+ ε for ε > 1. Now define a
sequence {xn}n∈N in X as follows ∥xn − x∥ = r, if n ∈ N \A and ∥xn∥ = y, if n ∈ A.
Then for any ε > 0 the set {n ∈ N : ||xn − x|| ≥ r + ε} is either the set A (when
0 < ε ≤ 1) or ϕ (when ε > 1). Since K is an admissible ideal and A ∈ K,
therefore {n ∈ N : ||xn − x|| ≥ r + ε} ∈ K. Thus x is a rough K-limit of {xn}n∈N
of roughness degree r. Now, by lemma 3.6, x is a rough IK-limit of {xn}n∈N of
roughness degree r. Since, for 0 < ε ≤ 1, {n ∈ N : ||xn − x|| ≥ r + ε} = A, so
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{n ∈ N : ||xn − x|| ≥ r + ε} /∈ I and hence x is not a rough I-limit of roughness
degree r. But by our assumption, x is also a rough I-limit of {xn}n∈N. Thus we
arrive at a contradiction and so, K ⊂ I.

Corollary 2. Let I and K be two ideals on N. Then rough IK-limit set is a subset
of I-limit set of a sequence {xn}n∈N of some roughness degree r if and only if K ⊂ I.

Proof. In view of Theorem 3.5 and Theorem 3.7 the result follows.

In general, if x is a rough I-limit of a sequence {xn}n∈N in a normed linear space
then it does not necessarily imply that x is also a rough IK-limit of {xn}n∈N. The
following is an example in support of this assertion.

Example 3.4. Let I be ideal as in example 3.2. Also let K be the ideal on N such
that it is the collection of all subsets of N whose natural density is zero. Now let
us define a sequence in real numbers space with usual norm by xn = 1

j if n ∈ Dj .
Let r be a arbitrary non-negative real number. Let ε > 0 be arbitrarily chosen,
then there exists a l ∈ N such that ε > 1

l . Clearly [−r, r] ⊂ I − LIMrxn, as
{n ∈ N : |xn − x| ≥ r + ε} ⊂ D1 ∪D2 ∪ · · ·Dl ∈ I for any x ∈ [−r, r].

If possible let −r be a rough IK-limit of {xn} of roughness degree r. Then
there exists a M = {m1 < m2 < · · · < mk < · · · } ∈ F (I) such that the sub
sequence {xmk

} is rough K|M -convergent of roughness degree r to −r. Now as
N \M = H(say) ∈ I, so there exists a p ∈ N such that H ⊂ D1 ∪D2 ∪ · · · ∪Dp.
HenceDk ⊂ M for all k ≥ p+1. Let ε = 1

p+1 . Then {k ∈ N : ||xmk
+r|| ≥ r+ 1

p+1} =

{k ∈ N : mk ∈ Dp+1}. As Dp+1 = {2p(2s− 1) : s = 1, 2, · · · } and natural density of
Dp+1 = 1

2p+1 , therefore natural density of the set {k ∈ N : ||xmk
+ r|| ≥ r+ 1

p+1} is

not zero. Hence {k ∈ N : ||xmk
+ r|| ≥ r + 1

p+1} /∈ K|M , since natural density of

each set belongs to K|M is also zero. Therefore −r is not a rough IK-limit of {xn}
of roughness degree r.

The rough I-limit x of a sequence {xn}n∈N is also a rough IK-limit of {xn}n∈N
if the ideal I satisfies the condition (AP). Thus we have the following Theorem.

Theorem 3.8. Let I and K be two admissible ideals on N such that the ideal I
satisfies the condition (AP). Also let r be a non-negative real number and {xn}n∈N
be a sequence in a normed linear space (X, || · ||). Then x ∈ I − LIMrxn implies
x ∈ IK − LIMrxn.

Proof. Suppose that I and K be two ideals on N such that the ideal I satisfies
the condition (AP). Let {xn}n∈N be sequence such that x ∈ I − LIMrxn. Now
since I satisfies the condition (AP), x ∈ I∗ − LIMrxn. Now as I∗ − LIMrxn ⊂
IK − LIMrxn, therefore x ∈ IK − LIMrxn.

Theorem 3.9. Let I and K be two ideals on N and r be a non negative real number.
Also let (X, ||·||) be a normed linear space such that it has atleast one r-limit point. If
for any sequence {xn}n∈N in (X, || · ||) the implication I−LIMrxn ⊂ IK−LIMrxn



552 A. K. Banerjee and A. Paul

holds, then the ideal I has the additive property with respect to K, i.e., AP(I, K)
holds.

Proof. Let r be a non negative real number and ξ be a r-limit point of a normed
linear space (X, || · ||). Then there exists a sequence {xn}n∈N in X such that ξ ∈
LIMrxn. Therefore for each ε > 0 there exists a N ∈ N such that ∥xn − ξ∥ < r+ ε
for n ≥ N . Now suppose εn = ∥xn − ξ∥, then {εn−r}n∈N is a a sequence converging
to 0. Let {An}n∈N be a sequence of mutually disjoint sets belonging to I. Define

a sequence {yn}n∈N in X as follows yn =

{
xj , n ∈ Aj

ξ, n ∈ N \ ∪iAi

. Then for any

ε > 0, there exists p ∈ N such that εp − r < ε. Then {n ∈ N : ||yn − ξ|| ≥
r + ε} ⊂ A1 ∪ A2 ∪ · · · ∪ Ap ∈ I. So ξ ∈ I − LIMryn. Consequently, by our
assumption, ξ ∈ IK − LIMryn. Thus there exists a set M = {m1 < m2 < · · · <
mk < · · · } ∈ F (I) such that the sub sequence {ymk

}k∈N of the sequence {yn}n∈N is
rough K|M -convergent to ξ of roughness degree r. Now if ∪iAi ∈ I then by taking
Ai = Bi for i ∈ N the results follows directly by using (iv) of the lemma 2.3. So
let ∪iAi /∈ I. Since M ∈ F (I), so the set M contains a infinite numbers of Ai’s.
Now for arbitrary ε > 0 the set {k ∈ N : ∥ymk

− ξ∥ ≥ r + ε} ∈ K|M . For each
i ∈ N either Ai ∩ M ̸= ϕ or Ai ∩ M = ϕ. By the construction of the sequence
and by the fact that ξ ∈ IK − LIMryn in both cases we have Ai ∩M ∈ K|M and
since ε > 0 is arbitrary so, Ai ∩ M ∈ K for each i ∈ N. Now as M ∈ F (I), so
N \M = B(say) ∈ I. Let us put Bi = Ai ∩ B for each i. Then each of Bi belongs

to I. Also as

∞⋃
i=1

Bi =

∞⋃
i=1

(Ai ∩B) = B ∩
∞⋃
i=1

Ai ⊂ B, so

∞⋃
i=1

Bi ∈ I. Now as Bi ⊂ Ai,

so Ai \ Bi = Ai ∩ M . Thus Ai \ Bi ∈ K. Therefore Ai ∼K Bi for i ∈ N, since
Ai ∼K Bi ⇔ Ai∆Bi ∈ K and Ai∆Bi = Ai \ Bi in this case. Thus by the virtue
(iv) of the lemma 2.3 the result follows.

In the next example we will see that, as in the case rough I∗-limit, rough IK-
limit set of a sequence {xn}n∈N in a normed linear space may not be a subset of
rough IK-limit set of a sub sequence {xnk

}k∈N.

Example 3.5. Let I be the collection of all subsets of N whose natural density

is zero. Then I is a non trivial admissible ideal on N. Also let N =

∞⋃
j=1

Dj be a

decomposition of N such that Dj = {2j−1(2s − 1) : s = 1, 2, · · · }. Then each Dj

is infinite and Dj ∩ Dk = ϕ for j ̸= k. Let K be the ideal containing of all those
subsets of N which intersects with only a finite numbers of Dj ’s. Let us consider
the sequence in real number space with usual norm, where xn = 1

j if n ∈ Dj .

Now as ϕ ∈ I, so N ∈ F (I). Let us take N = M . Let us enumerate M as,
M = {m1 < m2 < m3 < · · · < mk < · · · }. Then K|M = K. Also let r > 0 be
arbitrary. Now for an arbitrary ε > 0 one can find a l ∈ N such that ε > 1

l . Then we
have a number p ∈ N such that {k ∈ N : ||xmk

+ r|| ≥ r+ ε} ⊂ D1 ∪D2 ∪ · · · ∪Dp ∈
K = K|M . So {k ∈ N : ||xmk

+ r|| ≥ r + ε} ∈ K|M . Therefore −r is a rough
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IK-limit of roughness degree r. Again let us consider the sub sequence {xnk
} of the

sequence {xn} such that {xnk
} = 1 for all k’s. Then for any 0 < ε < 1 and for any

M = {m1 < m2 < · < mk < · · · } ∈ F (I), {k ∈ N : ||xnmk
+ r|| ≥ r + ε} = N. Since

N /∈ K|M , therefore {k ∈ N : ||xmk
+ r|| ≥ r+ ε} /∈ K|M . Hence −r is not a rough

IK-limit of the sub sequence {xmk
}.

Theorem 3.10. Let I and K be two admissible ideal on N such that K ⊂ I and
AP(I, K) holds. Then the rough IK-limit set of a sequence {xn}n∈N of some
roughness degree r is a subset of rough IK-limit set of a sub sequence {xnk

}k∈N of
same roughness degree r.

Proof. Let x be a rough IK-limit of a sequence {xn}n∈N of some roughness degree
r. Also let I and K be two ideals on N such that AP(I, K) holds and K ⊂ I. Now
since K ⊂ I, x is also a rough I-limit of the sequence {xn}n∈N. So x is also a rough
I-limit of a sub sequence {xnk

}k∈N of the sequence {xn}n∈N. Again since AP(I,
K) holds, so x is a rough IK-limit of the sub sequence {xnk

}k∈N. Hence the results
follows.

Remark 1. Rough IK-limit of a sequence {xn}n∈N of some roughness degree r
is also a rough I∗-limit of {xn}n∈N of same roughness degree r if some additional
condition holds as given in the following Theorem.

Theorem 3.11. Let I and K be two admissible ideal on N such that K ⊂ I and
the ideal I satisfies the condition (AP). Then for a sequence {xn}n∈N in normed
linear space X rough IK-limit of some roughness degree r is a rough I∗-limit of
same roughness degree r.

Proof. Let x be a rough IK-limit of a sequence {xn}n∈N of some roughness degree
r. Also let I and K be two ideals on N such that AP(I, K) holds and K ⊂ I. Again
since K ⊂ I, so x is also a rough I-limit of the sequence {xn}n∈N. Again since the
ideal I satisfies the condition (AP), so x is a rough I∗-limit of the sequence {xn}n∈N
by Theorem 3.3.

Definition 3.3 (c.f. [11]). Let I and K be two admissible ideals on N. A sequence
{xn}n∈N in a normed linear space is said to be K|M -bounded if there exists a set
M = {m1 < m2 < · · · < mk < · · · } ∈ F (I) and a positive number L such that for
the sub sequence {xmk

}k∈N we have {k ∈ N : ||xmk
|| ≥ L} ∈ K|M .

Obviously for a bounded sequence {xn}n∈N there always exists a non-negative
real number r for which IK − LIMrxn ̸= ϕ. The reverse implication is generally
not valid which can be seen from the following example. But if we take the sequence
{xn}n∈N to be K|M -bounded then the reserve implication also holds.

Example 3.6. Let I be the ideal of the class of all those subsets of N whose
natural density is zero. Then I is an admissible ideal on N. Also let K be any
admissible ideal on N. Let us consider the sequence {xn}n∈N in real number space
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with usual norm as follows: xn =

{
1, n ̸= k2

n, n = k2
, for some k ∈ N. Now since

{n ∈ N : n = k2 for some k ∈ N} = A(say) ∈ I, so N \ A = M(say) ∈ F (I). Let us
enumerate M as, M = {m1 < m2 < · · · < mk < · · · }. Now we see that for r = 1
and for any ε > 0, the set {k ∈ N : |xmk

−x| ≥ r+ ε} = ϕ ∈ K|M for any x ∈ [0, 2].
So [0, 2] ⊂ IK − LIMrxn. But the sequence considered here is unbounded.

Theorem 3.12. Let I and K be two admissible ideals on N. Then a sequence
{xn}n∈N is K|M -bounded if and only if there exists a non-negative real number r
such that IK − LIMrxn ̸= ϕ.

Proof. Suppose that the sequence {xn}n∈N is K|M -bounded. Then there exists a
set M = {m1 < m2 < · · · < mk < · · · } ∈ F (I) and a positive number L such
that for the sub sequence {xmk

}, {k ∈ N : ||xmk
|| ≥ L} = K(say) ∈ K|M . Let

r = sup {||xmk
|| : k ∈ K∁}, where K∁ denote the complement of K in N. Then for

any ε > 0 we have {k ∈ N : ||xmk
− 0|| ≥ r + ε} ⊂ K. So 0 ∈ IK − LIMrxn.

Conversely suppose that IK −LIMrxn ̸= ϕ for some r ≥ 0. Let x ∈ IK −LIMrxn

and ||x|| = L. Then there exists a set M = {m1 < m2 < · · · < mk < · · · } ∈ F (I)
such that for any ε > 0 the set {k ∈ N : ||xmk

− x|| ≥ r + ε} = K1(say) ∈ K|M .
Now ||xmk

|| = ||xmk
− x + x|| ≤ ||xmk

− x|| + ||x|| < r + ε + L for all k ∈ K∁
1 . So

{k ∈ N : ||xmk
|| ≥ r+ε+L} ∈ K|M . So the sequence {xn}n∈N isK|M -bounded.

It is remarkable that the rough IK-limit set of a sequence {xn}n∈N is convex
set, as shown in the following theorem.

Theorem 3.13. Let I and K be two ideals on N and r be a non-negative real
number. Then for a sequence {xn}n∈N, the rough IK-limit set IK − LIMrxn is
convex.

Proof. Let us assume that x1, x2 ∈ IK − LIMrxn. Then there exists M ′ = {m′
1 <

m′
2 < · · · < m′

k < · · · } and M ′′ = {m′′
1 < m′′

2 < · · · < m′′
k < · · · } in F (I) such that

{k ∈ N : ||xm′
k
− x1|| ≥ r+ ε} ∈ K|M ′ and {k ∈ N : ||xm′′

k
− x2|| ≥ r+ ε} ∈ K|M ′′.

Now as both of M ′ and M ′′ belongs to F (I). Let M = M ′ ∩M ′′. Then M ∈ F (I)
and let us enumerate M as, M = {m1 < m2 < · · · < mk < · · · }. Since the ideal
K is an admissible ideal, therefore {k ∈ N : ||xmk

− x1|| ≥ r + ε} ∈ K|M → (i)
and also {k ∈ N : ||xmk

− x2|| ≥ r + ε} ∈ K|M → (ii). Let 0 ≤ λ ≤ 1. Now
||xmi

− [(1 − λ)x1 + λx2]|| = ||(1 − λ)(xmi
− x1) + λ(xmi

− x2)|| < r + ε for
each i belongs to the complements of the set as in (i) and (ii) simultaneously. So
||k ∈ N : ||xmk

− [(1− λ)x1 + λx2]|| ≥ r + ε} ∈ K|M .

Remark 2. Let I be an ideal on N. Since for any non-negative real number r and
for a sequence {xn}n∈N in X rough I∗-limit of roughness degree r is also a rough IK-
limit of same roughness degree r, therefore rough I∗-limit set of roughness degree
r of {xn}n∈N is also a convex set.
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Theorem 3.14. Let I, I1, I2, K, K1 and K2 be ideals on N such that I1 ⊂ I2 and
K1 ⊂ K2. Also let {xn}n∈N be a sequence and r be a non-negative real number.
Then

(i) IK1 − LIMrxn ⊂ IK2 − LIMrxn.

(ii) IK1 − LIMrxn ⊂ IK2 − LIMrxn.

Proof. (i) Suppose x ∈ IK1 − LIMrxn. Thus there exists a set M = {m1 <
m2 < · · · < mk · · · } ∈ F (I1) such that the sub sequence {xmk

}k∈N is rough K|M -
convergent to x of roughness degree r. Now as I1 ⊂ I2, therefore N \M ∈ I1 ⊂ I2.
Hence M ∈ F (I2). So x ∈ IK2 − LIMrxn.
(ii) Let x ∈ IK1−LIMrxn. Therefore the exists a setM = {m1 < m2 < · · · < mk <
· · · } ∈ F (I) such that the sub sequence {xmk

}k∈N is rough K1|M -convergent to x of
roughness degree r. Now as K1 ⊂ K2, therefore the sub sequence {xmk

}k∈N is also
rough K2|M -convergent to x of roughness degree r. Hence x ∈ IK2 −LIMrxn.

Theorem 3.15. Let I and K be two admissible ideals on N. Then rough IK-limit
set of a sequence {xn}n∈N is a closed set.

Proof. The proof is trivial when IK−LIMrxn = ϕ, where r ≥ 0. Let us assume that
IK−LIMrxn ̸= ϕ for some r ≥ 0. Also let {yn}n∈N be a sequence in IK−LIMrxn

such that yn → y. Since yn → y, so for a given ε > 0 there exists a N1 ∈ N such
that ||yn − y|| < ε

2 for all n > N1. Let n1 > N1, therefore ||yn1
− y|| < ε

2 . Again
since {yn}n∈N is a sequence in IK − LIMrxn, therefore yn1

∈ IK − LIMrxn.
Therefore there exists a set M = {m1 < m2 < · · · < mk < · · · } ∈ F (I) such that
{k ∈ N : ||xmk

− yn1 || ≥ r + ε
2} = K1(say) ∈ K|M . Now for k ∈ K∁

1 we have,
||xmk

− y|| = ||xmk
− yn1

+ yn1
− y|| ≤ ||xmk

− yn1
||+ ||yn1

− y|| < r+ ε
2 +

ε
2 = r+ ε.

Thus {k ∈ N : ||xmk
− y|| ≥ r+ ε} ∈ K|M . Therefore y ∈ IK −LIMrxn and hence

the result follows.

4. Conclusion

Indeed the idea of rough convergence of sequences is an important notion in recent
times where more references can be found in the literature. In this paper, we dealt
with rough I∗-convergence and rough IK-convergence of sequences in normed linear
spaces. Rough IK-convergence is a common generalization of rough I∗-convergence.
We have established the relationship between rough I-convergence with both of
rough I∗-convergence and rough IK-convergence. We further examined how far
several results that are true in case of rough I-convergence are affected in both
cases of rough I∗-convergence and rough IK-convergence.
For further work, it will be interesting to study the notion of rough I∗-convergence
and rough IK-convergence in terms of functions instead of sequences. Also the
notion of rough I∗-convergence and rough IK-convergence can be studied in some
related spaces.
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