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Abstract. This work is intended as an attempt to extend some results of nearly
Kählerian Finsler manifolds. We give a condition to generalized (a, b,J)−manifolds
to be weakly Landsberg metric. Furthermore, we find the conditions under which a
nearly Kähler Finsler manifold has relatively isotropic Landsberg curvature and rela-
tively isotropic mean Landsberg curvature.
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1. Introduction

Nearly Kählerian Finsler manifolds have a wide range of applications in many
fields of study. In particular, their applications extend as new approaches are sug-
gested by these manifolds in the fields of physics and mathematics [15]. This fact
has motivated us to study nearly Finsler manifolds and their properties.

This paper aims to study some properties of Kähler Finsler manifolds related
to the generalized (a, b,J)−metric. The generalized (a, b,J)−metric was first intro-
duced by Didehkhani and Najafi in [2]. We gain some conditions which determine
whether a generalized (a, b,J)−manifold is weakly Landsberg metric, also when a
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nearly Kähler Finsler manifold has relatively isotropic Landsberg curvature and
relatively isotropic mean Landsberg curvature.

We first recall a quick description of nearly Kählerian Finsler manifolds. For
more details and proves the reader is invited to read [1, 10].

For a smooth manifold M with an almost complex structure J, one may consider
the following tensor field

NJ(X,Y ) = [X,Y ] + J[JX,Y ] + J[X,JY ]− [JX,JY ],

where X,Y ∈ χ(M). This tensor field is called Nijenhuis tensor. Recall that an
almost complex structure is a (1, 1)-tensor field, J = J ijdx

j⊗ ∂
∂xi , where J2 = −ITM .

Then (M,J) is said to be a complex manifold if J is integrable, i.e., NJ = 0.

Now let (M,g) be a Riemannian manifold with an almost structure J on M .
We say the triple (M,g,J) is an almost Hermitian manifold if J is compatible with
the metric g. Means, g

(
J(X),J(Y )

)
= g(X,Y ).

Let (M,J,g) be an almost Hermitian manifold. Then, following Erich Kähler
in [9], one can define the fundamental Kähler form Ω as follows,

Ω(X,Y ) = g(X,JY).(1.1)

In this case, (M,J,g) is called an almost Kähler manifold, if dΩ = 0, and is called
Kähler manifold, if dΩ = 0 and NJ = 0. The conditions for (M,J,g) to be a Kähler
manifold, are equivalent to ∇J = 0, for the Levi-Civita connection ∇ with respect
to g.

Studying the nearly Kähler manifolds goes back to the 1970s in the studies of
Alfred Gray [3]. Gray-Hervella classified almost Hermitian manifolds. One of these
classes is known as nearly Kählerian manifolds [4]. A nearly Kähler manifold is an
almost Hermitian manifold (M,J,g) such that

(∇XJ)X = 0,

where X is a vector field on M and ∇ denotes the Levi-Civita connection associated
with the metric g. An example of a nearly Kähler manifold that is not Kählerian is
S6. We can also consider G2-holonomy and super-symmetric models as interesting
examples for nearly Kähler structure in six dimension, with regards their relation
with torsion. So far, it is known that every nearly Kähler manifold of dimension
equal to 6 is isomorphic to a finite quotient of G/K of one of the following forms.

S6 =
G2

SU(3)
, S3 × S3 =

SU2 × SU(2)

〈1〉
,

CP 3 =
Sp(2)

SU(2).U(1)
, F3 =

SU(3)

U(1)× U(1)
.

In [11] the author introduces a new condition on an almost complex manifold which
is called the Rizza condition. This condition was then developed by Ichijyō on
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Finsler manifolds [6] that was leat to introducing Rizza manifolds. To be more
precise, let (M,F ) be a Finsler manifold. Ichijyō showed that for every x ∈M the
Minkowski space (TxM,Fx) is a complex Banach space [6].

Compatibility between J and F is also proposed by Ichijyō to be the following
equation:

F
(
x, y cos θ + Jx(y) sin θ

)
= F (x, y), ∀θ ∈ R, ∀y ∈ TxM.(1.2)

The equation 1.2 is called the Rizza condition. Therefore, a Finsler manifold with
this condition is called almost Hermitian Finsler manifold or a Rizza manifold [5].
One can consider Rizza manifolds as a natural generalization of almost Hermitian
manifolds in the following sense. If F is Riemannian, then it satisfies condition 1.2
if and only if (M,F,J) is an almost Hermitian manifold. The following equivalent
conditions to the Rizza condition are suggested by Ichijyō.

� gijJ
i
k y

kyj = 0,

� girJ
r
j + gjrJ

r
i + 2CijrJ

s
ry
s = 0.

In the papers [5, 6], Ichijyō studied the Kählerian Finsler manifolds. If | is an
h-covariant derivative with respect to the Cartan Finsler connection, we say M is
a Kählerian Finsler manifold if J ij|k = 0. A Rizza manifold (M,F,J) is called a
nearly Kählerian Finsler manifold if the following holds

J ij|k + J ik|j = 0.

Non–Riemannian Rizza manifolds also were studied in [7, 8]. The authors intro-
duced (a, b, J)-manifolds to be this class. To understand this class, let (M,α,J) be
a 2n-dimensional almost Hermitian manifold. The following symmetric quadratic
form is defined for a non-vanishing 1-form bi(x) on M .

β(x, y) = (bij(x)yiyj)
1
2 ,(1.3)

where bij = bibj + JiJj and Ji = brJ
r
i is the local component of the 1-form b ◦ J.

One can easily see that the Finsler metric F = α+ β is a typical example of Rizza
manifolds [5]. In this case, following [7], (M,F,J) is called an (a, b,J)-manifold. An
(a, b,J)-manifold is called normal if two conditions ∇kbi = 0 and ∇kJ ij = 0 hold
[7].

Consider two 1-forms bi and Ji on a Riemannian manifold (M,α). Then, we say
bi and Ji are cross-recurrent if there exists a 1−form λk satisfying

∇kbi = λkJi, ∇kJi = −λkbi,(1.4)

where ∇ is the Levi-Civita connection of α [7].

An (a, b, J)-manifold is called nearly normal if bi and Ji are cross-recurrent and
∇kJ ij + ∇jJ ik = 0. As an example, the class of a normal (a, b,J)-manifold is a
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Kählerian Finsler manifold. Also, as it is shown in [8], a nearly normal (a, b,J)-
manifold is a nearly Kählerian Finsler manifold.

As a substitute for β = bi(x)dxi, one can consider symmetric quadratic form
β = bijdx

i ⊗ dxj . Then β(J(y)) = β(y), and therefore β(J2(y)) = β(J(y)). The

last result is β(y) = 0. Assume that α =
√
aij(x)yiyj is a Riemannian metric. In

the paper [2] Didehkhani and Najafi introduce generalized (a, b,J)−metrics. They
consider an (a, b,J)−metric F = α + β. Now if ψ : (−b0, b0) → R be a positive
smooth function, then F = αψ(βα ) is said to be the generalized (a, b,J)−metric.
They also proved that this metric defines a Rizza manifold.

In what follows we first recall some concepts of Landsberg curvature and Finsler.
In section 3., we investigate a condition under which the nearly Kähler Finsler
manifold (M,F,J) is a weakly Landsberg metric. Then, we obtain the condition
under which F has relatively isotropic Landsberg curvature and relatively isotropic
mean Landsberg curvature.

2. Preliminary

In this section, we briefly recall some preliminaries we will be using throughout
this thesis. For the omitted details, we refer the reader to [14, 15].

Let M be an n-dimensional C∞ manifold, with the tangent bundle TM =⋃
x∈M TxM and the slit tangent bundle TM0 := TM − {0}. Let (M,F ) be a

Finsler manifold. Then the fundamental tensor, gy : TxM × TxM → R, is the
following quadratic form,

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
s=t=0

, u, v ∈ TxM.

Let x ∈ M and Fx := F |TxM . In this case, one can define an operator Cy :
TxM × TxM × TxM → R as follows,

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
t=0

, u, v, w ∈ TxM.

It is easily seen that Cy measures the non-Euclidean feature of Fx. The family
C := {Cy}y∈TM0

is called the Cartan torsion. It is well-known that C = 0 if and
only if F is Riemannian.

Let x ∈ M . We define a family I := {Iy}y∈TM0
, where for any y ∈ TxM0, the

maps Iy : TxM → R are defined as follows.

Iy(u) :=

n∑
i=1

gij(y)Cy(u, ∂i, ∂j),
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where {∂i} is a basis for TxM at a point x ∈ M . The family I := {Iy}y∈TM0
is

called the mean Cartan torsion. Then, Iy(y) = 0 and Iλy = λ−1Iy, for λ > 0.
Therefore, Iy(u) := Ii(y)ui, where Ii := gjkCijk.

Let (M,F ) be an n-dimensional Finsler manifold. Then F induces a global
vector field G on TM0 as follows. Let (xi, yi) be a standard coordinate for TM0.
Then G is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
.

The coefficients Gi = Gi(x, y) are called spray coefficients and given by

Gi =
1

4
gil
[ ∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl

]
.

The vector field G is called the spray associated with F .

The Berwald curvature, By : TxM × TxM × TxM → TxM , is defined by
By(u, v, w) := Bijkl(y)ujvkwl ∂

∂xi |x, where

Bijkl :=
∂3Gi

∂yj∂yk∂yl
.

The Finsler metric F is called a Berwald metric if B = 0.

The Landsberg curvature, Ly : TxM × TxM × TxM → R, is also defined by

Ly(u, v, w) := −1

2
gy
(
By(u, v, w), y

)
, y ∈ TxM.(2.1)

The Landsberg curvature in local coordinates is of the form Ly(u, v, w) := Lijk(y)uivjwk,
where

Lijk := −1

2
ylB

l
ijk.

The quantity L := {Ly}y∈TM is called the Landsberg curvature. If L = 0, then F
is called a Landsberg metric. According to the definition, every Berwald metric is
a Landsberg metric (see [12] and [13]).

The relative rate of change of C along Finslerian geodesics is L/C, by the
definition. In addition, F is said to be a relatively isotropic Landsberg metric if

L + cFC = 0,

where c = c(x) is a scalar function on M .

Let x ∈M and y ∈ TxM . Define Jy : TxM → R by Jy(u) := Ji(y)ui, where

Ji := gjkLijk.(2.2)
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The quantity J is called the mean Landsberg curvature. A Finsler metric F is called
a weakly Landsberg metric if J = 0. It is clear that every Landsberg metric is a
weakly Landsberg metric.

Let x ∈M and Fx := F|TxM . Put Gij = ∂Gi

∂yj . We denote the Cartan connection

of the Finsler metric F by CF = (F ijk, G
i
j , C

i
jk). Here F ijk and Cijk are as follows,

F ijk =
1

2
gir(δkgjr + δjgrk − δrgkj), Cijk =

1

2
gir(

∂gjr
∂yk

+
∂grk
∂yj

− ∂gkj
∂yr

).(2.3)

where δk = ∂
∂xk −Gik ∂

∂yi . Indeed, Cijk = girCrjk, where Cijk = 1
2
∂gij
∂yk

is the Cartan
tensor of F .
For any Finsler tensor Sij(x, y), the h−covariant and v−covariant derivatives with
respect to CΓ, are defined as follows, respectively

Sij|k =
δSij
δxk

+ Smj Γimk − SimΓmjk, Sij|k =
∂Sij
∂yk

+ Smj C
i
mk − SimCmjk.(2.4)

Put Gijk =
∂Gi

j

∂yk
. One may see that F ijk and Gijk are positively homogeneous func-

tions of degree 0 with respect to y. Also, we have Gij = F ijky
k. Furthermore, an

important identity, F ijk = Gijk − Lijk, holds, where Lijk = gisLsjk. For a Finsler

metric F , we can define the Berwald connection BΓ = (Gijk, G
i
j , 0). Then if Sij(x, y)

be any Finsler tensor

Sij;k =
∂Sij
∂xk

+ Smj G
i
mk − SimGmjk(2.5)

is then the h−covariant with respect to BΓ.

3. Main Results

Let α =
√
aij(x)yiyj be a Riemannian metric and β = βi(x)dxi be a non-

vanishing 1−form on a differentiable manifold M with ‖β‖α < 1. Then F =
α + β is called a Randers metric. In [6] Ichijiō generalized Randers metric by
replacing the 1−form β with a symmetric quadratic form β = bijdx

i⊗dxj . Also, he
introduced (a, b,J)−manifolds as a special class of generalized Randers manifold [7].
He showed that a normal (a, b,J)−metric gives a non-trivial example of a Kähler
Finsler manifold. In order to extend the class of Rizza manifolds introduced by
Ichijiō, one can define a generalized (a, b,J)−metric as follows.

Definition 3.1. ([2]) Consider an (a, b,J)−metric F = α+β. Let ψ : (−b0, b0)→
R be a positive smooth function. Then, a Finsler metric in the form F = αψ(βα ) is
called a generalized (a, b,J)−metric.

In [6], Ichijyō proved that a Kählerian Finsler manifold is a Landsberg manifold.
In the following, Didehkhani and Najafi generalized this fact to nearly Kählerian
Finsler manifold. For this, they proved that the Berwald curvature of a nearly
Kähler Finsler manifold and its almost complex structure has a delicate relation.
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Proposition 3.1. ([2]) Let (M,F,J) be a nearly Kähler manifold. Then the fol-
lowing holds

ykJrkB
i
rjm = 0.(3.1)

Now, we get the condition under which a nearly Kähler Finsler manifold (M,F,J)
is a weakly Landsberg metric. Consequently, we need the following lemma. Let us
recall two important identities

gij;k = −2Lijk, F ijk = Gijk − Lijk,(3.2)

where ”; ” denote the h−covariant derivative with respect to the Berwald connection
BΓ = (Gijk, G

i
j , 0).

Lemma 3.1. Let (M,F,J) be a nearly Kähler Finsler manifold. Then the follow-
ing hold

(i) JrmJs + grjgisy
kJrkL

i
rj,m = 0,

(ii) Jrj Jm − 2grsgisJ
i
rL

r
mj + JrmJj + grsgisy

kJrkB
i
rjm = 0.

where, Lirj,m denote the vertical derivation of Landsberg curvature Lirj with respect
to ym.

Proof. Part (i): Let (M,F,J) be a nearly Kähler Finsler manifold. Using relation
(2.5), we rewrite J ij|k + J ik|j = 0 as follows

∂kJ
i
j + Jrj F

i
rk + ∂jJ

i
k + JrkF

i
rj − 2J irF

r
jk = 0.(3.3)

Multiplying relation (3.3) with yk implies that

yk∂kJ
i
j + JrjG

i
r + yk∂jJ

i
k + ykJrkF

i
rj − 2J irG

r
j = 0,(3.4)

where ykF rkj = Grj . Taking a vertical derivation of relation (3.4) with respect to ym

yields

∂mJ
i
j + ∂jJ

i
m + JrjG

i
rm − 2J irG

r
jm + JrmG

i
rj − JrmLirj + ykJrk

∂F irj
∂ym

= 0.(3.5)

where F irj := Girj − Lirj . By (3.2), we have

J ij;m + J im;j = JrmL
i
rj − ykJrkBirjm + ykJrk

∂Lirj
∂ym

.(3.6)

By contracting relation (3.6) with gisg
rj , one can get

grjgis(J
i
j;m + J im;j) = JrmJs − grjgisykJrkBirjm + grjgisy

kJrk
∂Lirj
∂ym

.(3.7)
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We multiply relation (3.4) by yj and obtain

yjyk∂kJ
i
j + yjJrjG

i
r + ykyj∂jJ

i
k − 2yjJ irG

r
j + ykyjJrkG

i
rj − ykyjJrkLirj = 0,(3.8)

where we have used ykF rkj = Grj , F
i
jk = Gijk−Lijk. Differentiating (3.8) with respect

to yj and ym, leads us to

∂mJ
i
j + ∂jJ

i
m + JrjG

i
rm − 2J irG

r
mj + JrmG

i
rj + ykJrkB

i
rjm = 0,(3.9)

where we have used yjBijkl = 0 and yjLirj = 0. One can rewrite relation (3.9) as
follows

grjgis(J
i
j;m + J im;j) = −grjgisykJrkBirjm.(3.10)

Comparing relation (3.7) and relation (3.10) imply that

JrmJs + grjgisy
kJrk

∂Lirj
∂ym

= 0.

Part (ii): Differentiating relation (3.4) with respect to ys we get

yk∂kJ
i
s + JrsG

i
r + yj∂sJ

i
j − 2J irG

r
s + ykJrkG

i
rs = 0,(3.11)

by differentiating relation (3.11) with respect to yt we have

∂tJ
i
s + JrsG

i
rt + ∂sJ

i
t − 2J irG

r
st + Jrt G

i
rs + ykJrkB

i
rst = 0.(3.12)

Using F ijk = Gijk − Lijk we rewrite (3.12), as follows

∂mJ
i
j + Jrj F

i
rm − J irF rjm + ∂jJ

i
m + JrmF

i
rj − J irF rjm +

Jrj L
i
rm − J irL

r
jm + JrmL

i
rj − J irLrjm + ykJrkB

i
rjm = 0.

According to the relation J ij|k + J ik|j = 0, the above equation is reduced as follows

Jrj L
i
rm − 2J irL

r
jm + JrmL

i
rj + ykJrkB

i
rjm = 0.(3.13)

Finally by contracting (3.13), with gisg
rj , one can get

Jrj Jm − 2grsgisJ
i
rL

r
mj + JrmJj + grsgisy

kJrkB
i
rjm = 0.(3.14)

We get the proof.

As a direct consequence of the above lemma, the following proposition holds.

Proposition 3.2. Let (M,F,J) be a nearly Kähler Finsler manifold. Then F is
a weakly Landsberg metric if the following holds

Jrj Jm = JrmJj .(3.15)
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Proof. Let (M,F,J) be a nearly Kähler Finsler manifold so J ij|k + J ik|j = 0. Using

relation (3.15) we get

Jpi|m = Jpi;m + Jpi Jm − J
p
mJi = Jpi;m.(3.16)

Consider grsgisy
kJrkB

i
rjm = 0 so the relation (3.1)ii, is reduced to

Jrj Jm + JrmJj = 2grsgisJ
i
rL

r
mj .(3.17)

Multiplying relation (3.17) with Jki implies that

Jki J
r
j Jm + Jki J

r
mJj = −2grsgisL

k
mj .(3.18)

Contracting relation (3.18) with yj and using the relation yjLrmj = 0 and yjJj = 0,
we have

yjJki J
r
j Jm = 0.(3.19)

By differentiating (3.19) with respect to yl we have

Jki J
r
l Jm = 0.(3.20)

According to relation (3.20) and (3.1), the proof is complete.

Proposition 3.3. Let (M,F,J) be a nearly Kähler manifold. Then F has rela-
tively isotropic Landsberg curvature if and only if it is Riemannian or Landsbergian
metric.

Proof. Let F has relatively isotropic Landsberg curvature L = cFC, where c = c(x)
is a scalar function on M . We rewrite the relation (3.1) ii, using Lijk = cFCijk,
ykJrkB

i
rjm = 0 and Ji = gitLtjk. Therefore, we have

cF (JrjC
i
rm − 2J irC

r
jm + JrmC

i
rj) = 0.(3.21)

Multiplying relation (3.21) with yi implies that

−2cFJ iryiC
r
jm = 0.(3.22)

By relation (3.22), it follows that C = 0 or c = 0. If C = 0, then F is Riemannian.
Nevertheless, c = 0 and F is reduced to a Landsberg metric.

Proposition 3.4. Let (M,F,J) be a nearly Kähler manifold. Then F has rela-
tively isotropic mean Landsberg curvature if and only if it is Landsbergian metric
or satisfies the following

Jrj Ir = Jrr Ij .(3.23)
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Proof. Let F has relatively isotropic mean Landsberg curvature J = cF I, where
c = c(x) is a scalar function on M . We rewrite the relation (3.1) ii, using Jj = cF Ii
and ykJrkB

i
rjm = 0. Multiplying relation (3.1) ii with gtr, implies that

gtrJ
r
j Jm − 2grsgisJ

i
rLtmj + gtrJ

r
mJj = 0.(3.24)

By contracting relation (3.24) whit gtm, one can get

δmr J
r
j Jm − 2δri J

i
rJj + δmr J

r
mJj = 0,(3.25)

where we have used gitgtj = δij . Replacing Jj = cF Ii in relation (3.25), we have

cF (δmr J
r
j Im − 2δri J

i
rIj + δmr J

r
mIj) = 0.(3.26)

We rewrite relation (3.26), as follows

cF (Jrj Ir − Jrr Ij) = 0.(3.27)

By relation (3.27), it follows that c = 0 or

Jrj Ir = Jrr Ij .(3.28)

If c = 0, then the function F is reduced to a Landsberg metric.
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della Universiẗıa di Parma. 4 (1988), 1–28.
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