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Abstract. This work is intended as an attempt to extend some results of nearly
Kahlerian Finsler manifolds. We give a condition to generalized (a,b,J)—manifolds
to be weakly Landsberg metric. Furthermore, we find the conditions under which a
nearly Kéahler Finsler manifold has relatively isotropic Landsberg curvature and rela-
tively isotropic mean Landsberg curvature.
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1. Introduction

Nearly Kéahlerian Finsler manifolds have a wide range of applications in many
fields of study. In particular, their applications extend as new approaches are sug-
gested by these manifolds in the fields of physics and mathematics [15]. This fact
has motivated us to study nearly Finsler manifolds and their properties.

This paper aims to study some properties of Kéhler Finsler manifolds related
to the generalized (a, b, J)—metric. The generalized (a, b, J)—metric was first intro-
duced by Didehkhani and Najafi in [2]. We gain some conditions which determine
whether a generalized (a,b,J)—manifold is weakly Landsberg metric, also when a
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nearly Kéahler Finsler manifold has relatively isotropic Landsberg curvature and
relatively isotropic mean Landsberg curvature.

We first recall a quick description of nearly Kéhlerian Finsler manifolds. For
more details and proves the reader is invited to read [1, 10].

For a smooth manifold M with an almost complex structure J, one may consider
the following tensor field

Ny(X,Y) = [X,Y] + J[JIX, Y]+ I[X,IY] - [IX,TY],

where X,Y € x(M). This tensor field is called Nijenhuis tensor. Recall that an

almost complex structure is a (1, 1)-tensor field, J = J;dﬂ@ aii , where J? = —I1y;.

Then (M, J) is said to be a complex manifold if J is integrable, i.e., Ny = 0.

Now let (M,g) be a Riemannian manifold with an almost structure J on M.
We say the triple (M, g, J) is an almost Hermitian manifold if J is compatible with
the metric g. Means, g(J(X),J(Y)) = g(X,Y).

Let (M,J,g) be an almost Hermitian manifold. Then, following Erich Kéahler
in [9], one can define the fundamental Kéhler form 2 as follows,

(1.1) Q(X,Y) = g(X,JY).

In this case, (M,J, g) is called an almost Kéhler manifold, if dQ2 = 0, and is called
Kéhler manifold, if dQ = 0 and Ny = 0. The conditions for (M,J, g) to be a K&hler
manifold, are equivalent to VJ = 0, for the Levi-Civita connection V with respect
to g.

Studying the nearly Kahler manifolds goes back to the 1970s in the studies of
Alfred Gray [3]. Gray-Hervella classified almost Hermitian manifolds. One of these
classes is known as nearly Kéahlerian manifolds [4]. A nearly K&hler manifold is an
almost Hermitian manifold (M, J,g) such that

(Vxd)X =0,

where X is a vector field on M and V denotes the Levi-Civita connection associated
with the metric g. An example of a nearly Ké&hler manifold that is not Kéhlerian is
5%, We can also consider Gy-holonomy and super-symmetric models as interesting
examples for nearly Kahler structure in six dimension, with regards their relation
with torsion. So far, it is known that every nearly K&hler manifold of dimension
equal to 6 is isomorphic to a finite quotient of G/K of one of the following forms.

G _ SUs x SU(2)

§° SU(23)’ 58 x 5% = 2T
_ Sp(2) __ SU@)

cr = SU(2).U(1)’ R = Ul) xU(1)

In [11] the author introduces a new condition on an almost complex manifold which
is called the Rizza condition. This condition was then developed by Ichijyo on
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Finsler manifolds [6] that was leat to introducing Rizza manifolds. To be more
precise, let (M, F') be a Finsler manifold. Ichijyo showed that for every z € M the
Minkowski space (T, M, F;) is a complex Banach space [6].

Compatibility between J and F is also proposed by Ichijyo to be the following
equation:

(1.2) F(z,ycosf + J,(y)sinf) = F(z,y), VOeR, VyeT,M.

The equation 1.2 is called the Rizza condition. Therefore, a Finsler manifold with
this condition is called almost Hermitian Finsler manifold or a Rizza manifold [5].
One can consider Rizza manifolds as a natural generalization of almost Hermitian
manifolds in the following sense. If F' is Riemannian, then it satisfies condition 1.2
if and only if (M, F,J) is an almost Hermitian manifold. The following equivalent
conditions to the Rizza condition are suggested by Ichijyo.

o gi;Jiykyl =0,
o girJ’fj + ngJTi + ZCijTJSTyS =0.

In the papers [5, 6], Ichijyo studied the Kéahlerian Finsler manifolds. If | is an
h-covariant derivative with respect to the Cartan Finsler connection, we say M is
a Kahlerian Finsler manifold if J;Ik = 0. A Rizza manifold (M, F,J) is called a
nearly Kahlerian Finsler manifold if the following holds

ik + Tk = 0.

Non-Riemannian Rizza manifolds also were studied in [7, 8]. The authors intro-
duced (a, b, J)-manifolds to be this class. To understand this class, let (M, a, J) be
a 2n-dimensional almost Hermitian manifold. The following symmetric quadratic
form is defined for a non-vanishing 1-form b;(x) on M.

(1.3) Bz, y) = (bij(@)y'y?)?,

where b;; = b;b; + J;J; and J; = b, J"; is the local component of the 1-form bo J.
One can easily see that the Finsler metric F' = a + 3 is a typical example of Rizza
manifolds [5]. In this case, following [7], (M, F,J) is called an (a, b, J)-manifold. An
(a,b,J)-manifold is called normal if two conditions Vb; = 0 and VkJJZ: = 0 hold
[7].

Consider two 1-forms b; and J; on a Riemannian manifold (M, ). Then, we say
b; and J; are cross-recurrent if there exists a 1—form A\ satisfying

(1.4) Vib; = A\ J;, Vid; = —Aib;,

where V is the Levi-Civita connection of a [7].

An (a,b, J)-manifold is called nearly normal if b; and J; are cross-recurrent and
VkJ} + V,;Ji = 0. As an example, the class of a normal (a,b,J)-manifold is a
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Kéhlerian Finsler manifold. Also, as it is shown in [8], a nearly normal (a,b,J)-
manifold is a nearly Ké&hlerian Finsler manifold.

As a substitute for 3 = b;(x)dz’, one can consider symmetric quadratic form
B = bijdz’ ® dz?. Then B(J(y)) = B(y), and therefore B(J*(y)) = B(I(y)). The
last result is B(y) = 0. Assume that a = \/a;;(z)y’y’ is a Riemannian metric. In
the paper [2] Didehkhani and Najafi introduce generalized (a, b, J)—metrics. They
consider an (a,b,J)—metric F = a + . Now if ¥ : (=bg,by) — R be a positive
smooth function, then F = aw(g) is said to be the generalized (a, b, J)—metric.
They also proved that this metric defines a Rizza manifold.

In what follows we first recall some concepts of Landsberg curvature and Finsler.
In section 3., we investigate a condition under which the nearly Kéahler Finsler
manifold (M, F,J) is a weakly Landsberg metric. Then, we obtain the condition
under which F has relatively isotropic Landsberg curvature and relatively isotropic
mean Landsberg curvature.

2. Preliminary

In this section, we briefly recall some preliminaries we will be using throughout
this thesis. For the omitted details, we refer the reader to [14, 15].

Let M be an n-dimensional C°° manifold, with the tangent bundle TM =
Uzenr TeM and the slit tangent bundle TMq := TM — {0}. Let (M,F) be a
Finsler manifold. Then the fundamental tensor, g, : T, M x T, M — R, is the
following quadratic form,

R
g, (wv) =555

F2(y+su+tv)} o u,v € Ty M.

s=t=

Let x € M and F, := F|p,p. In this case, one can define an operator C, :
T.M x T, M x T, M — R as follows,

1d
Cy(u,v,w) := 5T [gyﬂw(u,v)} oy WY e T, M.

It is easily seen that C, measures the non-Euclidean feature of F,. The family
C = {Cy}yerm, is called the Cartan torsion. It is well-known that C = 0 if and
only if F'is Riemannian.

Let © € M. We define a family I := {I,},ecrnm,, where for any y € T, My, the
maps L, : T, M — R are defined as follows.

Iy(u) = Z gij (y)cy(uv 81', aj)a
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where {0;} is a basis for T,M at a point € M. The family I := {I,}yerm, is
called the mean Cartan torsion. Then, I,(y) = 0 and I,, = A7'L,, for A > 0.
Therefore, I, (u) := I;(y)u’, where I; := gjkC’ijk.

Let (M, F) be an n-dimensional Finsler manifold. Then F' induces a global
vector field G on T My as follows. Let (z¢,y%) be a standard coordinate for T My.
Then G is given by

; 0

- 0

oyt

The coefficients G* = G(x,y) are called spray coefficients and given by

Gt == zl|:
49

0?°F* | OF?
(%ckayly oxt 1

The vector field G is called the spray associated with F.

The Berwald curvature, B, : T, M x T,M x T, M — T,M, is defined by

B, (u,v,w) := Bijkl(y)ujvkwl aé; «, Where

i PG
B = Gyiagay
The Finsler metric F is called a Berwald metric if B = 0.

The Landsberg curvature, Ly : T, M x T, M x T, M — R, is also defined by

1
(2.1) Ly(u,v,w) := —§gy(By(u,v,w),y), ye T, M.

The Landsberg curvature in local coordinates is of the form Ly, (u, v, w) := Ly (y)uviw®,
where )
Lijk = 7§lelijk'

The quantity L := {L, },ern is called the Landsberg curvature. If L = 0, then F’
is called a Landsberg metric. According to the definition, every Berwald metric is
a Landsberg metric (see [12] and [13]).

The relative rate of change of C along Finslerian geodesics is L/C, by the
definition. In addition, F' is said to be a relatively isotropic Landsberg metric if

L+cFC=0,
where ¢ = ¢(z) is a scalar function on M.
Let x € M and y € T, M. Define J, : T, M — R by J,(u) := J;(y)u’, where

(2.2) Ji = ¢"" Liji.
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The quantity J is called the mean Landsberg curvature. A Finsler metric F' is called
a weakly Landsberg metric if J = 0. It is clear that every Landsberg metric is a
weakly Landsberg metric.

Let © € M and F, := Fi, 5. Put G = g—gj. We denote the Cartan connection
of the Finsler metric F' by CF = (Fj;, G%,C},). Here Fj; and Cj,; are as follows,
1 ir

% 1 ir i
(2.3) Fj = 59 (OkGjr + 05grk — Orgrj);  Cjp = 59 (

5'er 09rk B agkj)
Oyk oyl oyr

where 05, = % -Gt 8213. Indeed, C;k = g”erk, where Cj;, = %gfj,f is the Cartan
tensor of F.

For any Finsler tensor S}(z,y), the h—covariant and v—covariant derivatives with
respect to CT', are defined as follows, respectively

(24) Sy = 5;7% + 8P — Sl Sjy = GT/’J“ + 87 Crope = S, Chi

i oG" ; ; s
Put Gj; = 5#. One may see that Fj; and G7, are positively homogeneous func-

k

tions of degree 0 with respect to y. Also, we have G;'- = F;ky . Furthermore, an

important identity, Fj, = G?% — L%, holds, where L%, = g’*Lg;;. For a Finsler
metric F, we can define the Berwald connection BI' = (G;k, G%,0). Then if S¥(zx,y)
be any Finsler tensor

(2.5) ik T gk + 55" Gk — S Gk

is then the h—covariant with respect to BT.

3. Main Results

Let a = \/a;j(z)y’y? be a Riemannian metric and 8 = B;(z)dz’ be a non-
vanishing 1—form on a differentiable manifold M with ||3]|, < 1. Then F =
a + f is called a Randers metric. In [6] Ichijio generalized Randers metric by
replacing the 1—form 3 with a symmetric quadratic form 8 = b;jdz* ®dz’. Also, he
introduced (a, b, J)— manifolds as a special class of generalized Randers manifold [7].
He showed that a normal (a,b, J)—metric gives a non-trivial example of a Ké&hler
Finsler manifold. In order to extend the class of Rizza manifolds introduced by
Ichijio, one can define a generalized (a, b, J)—metric as follows.

Definition 3.1. ([2]) Consider an (a, b, J)—metric F' = a+ (. Let ¢ : (—bo, b)) —
R be a positive smooth function. Then, a Finsler metric in the form F' = aw(5) is
called a generalized (a, b, J)—metric.

In [6], Ichijyo proved that a Kéhlerian Finsler manifold is a Landsberg manifold.
In the following, Didehkhani and Najafi generalized this fact to nearly Kéahlerian
Finsler manifold. For this, they proved that the Berwald curvature of a nearly
Kéhler Finsler manifold and its almost complex structure has a delicate relation.
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Proposition 3.1. ([2]) Let (M, F,J) be a nearly Kéhler manifold. Then the fol-
lowing holds

(3.1) y*JIBi, =0.

rim

Now, we get the condition under which a nearly Kéhler Finsler manifold (M, F,J)
is a weakly Landsberg metric. Consequently, we need the following lemma. Let us
recall two important identities

(3.2) Gijik = _2Lijk, F;k = G;k - L;k,

where ”;” denote the h—covariant derivative with respect to the Berwald connection
BT = (G;k, G},O).

Lemma 3.1. Let (M, F,J) be a nearly Kahler Finsler manifold. Then the follow-
ing hold

(i) Jh3s + 97 gisy" I LL; =0,
(i) JJm — QQTSgiSJ];L:nj + J03; + g”gisyngBj,jm =0.

where, L, .. denote the vertical derivation of Landsberg curvature L, ; with respect
to y™.

Proof. Part (i): Let (M, F,J) be a nearly Kdhler Finsler manifold. Using relation
(2.5), we rewrite lek + J,i‘j = 0 as follows
(3.3) O} + JT ! + 004 + JiFly — 2J)F)), = 0.
Multiplying relation (3.3) with y* implies that
(3.4) yPORJ] + JTGL+ yr 0, I + P I FY — 200G =0,
where y* F} ; = G7. Taking a vertical derivation of relation (3.4) with respect to y™
yields
i

) _ _ . _ . OF!
(3.5) Omd + 03T}, + JIGL,, — 2JiGY,, + J5Giy — I Li, 4+ yF gy, awa =0.

where F; := G}, — Li.;. By (3.2), we have

%

A A , . AL
(3.6) Jiom + Js = JnLis —y* I BL + g T 63/5 .

By contracting relation (3.6) with g;sg™, one can get

)

g y y A r y r i T”' r aLT 3
(37) g7JgiS(J;;m + J7Z’n,]) = J;’ndS -9 JgisykaBrjm +g Jgisyk‘]k: aymf .
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We multiply relation (3.4) by 4’ and obtain

(BRY OkJ; + 4/ TGl + y*y 0, — 200 TG + Y TGl — Yy T L = 0,

where we have used ku,:j =G7, ij = G;k —L;k. Differentiating (3.8) with respect
to ¢/ and y™, leads us to

(3.9) Om ) + 0300, + J7 G, — 201G + I3 Ghs + Y T B, =0,

where we have used y’ B;kl =0 and y’ Lij = 0. One can rewrite relation (3.9) as
follows _ _ _ _ _

(310) gmgis(‘];;m + J'fn;j) = _grjgisyk‘]l:B:"jm'

Comparing relation (3.7) and relation (3.10) imply that

Tim3s + 9" gisy" . o,

Part (ii): Differentiating relation (3.4) with respect to y° we get
(3.11) YEoRJi 4+ JLGL + 0. T — 201G + yF JEGL, = 0,
by differentiating relation (3.11) with respect to y* we have

(3.12) OJE + JIGE, 4 0, J} — 2JEGT, + JIGL, +y* I BL,, = 0.
Using Fj, = G, — L, we rewrite (3.12), as follows

Omd} + JiFl, — JF, +0;d,, + J5Fl — JIF, +

rtjm m>Tr) regm
: ; i i k i —
JrLi., o~ JiLh. +JnLi— JIL, +y*JiBL, = 0.

According to the relation J;l e T J,i‘ i = 0, the above equation is reduced as follows

(3.13) T Ly = 20015, + T3 Ly + yF Iy Bl = 0.

gm T JImdor; rim
Finally by contracting (3.13), with g;sg™, one can get

(3.14) T} 3m = 29" gis i Ly + T35 + 9" 9isy" Ji Bl = 0.
We get the proof. O

As a direct consequence of the above lemma, the following proposition holds.

Proposition 3.2. Let (M, F,J) be a nearly Kdihler Finsler manifold. Then F is
a weakly Landsberg metric if the following holds

(3.15) I Im = I35



Some geometrical results on nearly kahler finsler manifols 303

Proof. Let (M, F,J) be a nearly Kéhler Finsler manifold so J;‘k + J]ilj = 0. Using
relation (3.15) we get
(3.16) JP

ilm

= TP T — B3 =TT

im”

)

Consider gmgisykJ];Brjm = 0 so the relation (3.1)i4, is reduced to

(3.17) i 3m + I35 = 29" gis L Ly,
Multiplying relation (3.17) with J¥ implies that
k gra k gr ~ TS k

Contracting relation (3.18) with 3/ and using the relation ij;Lj =0and y/J; =0,
we have _

(3.19) Y I 3m = 0.

By differentiating (3.19) with respect to 3’ we have

(3.20) JET 3 = 0.

According to relation (3.20) and (3.1), the proof is complete. [

Proposition 3.3. Let (M, F,J) be a nearly Kihler manifold. Then F has rela-
tively isotropic Landsberg curvature if and only if it is Riemannian or Landsbergian
metric.

Proof. Let F has relatively isotropic Landsberg curvature L = ¢F'C, where ¢ = ¢(x)
is a scalar function on M. We rewrite the relation (3.1) 44, using L;;i = cF'Cyjy,
ykJ,:Bi =0and J; = g“Lt]—k. Therefore, we have

rjm

(3.21) cF(J;C;

m

—2J;C,, + I Cri) = 0.
Multiplying relation (3.21) with y; implies that
(3.22) —2cF J}y:C,, = 0.

By relation (3.22), it follows that C =0 or ¢ = 0. If C =0, then F' is Riemannian.
Nevertheless, ¢ = 0 and F' is reduced to a Landsberg metric. O

Proposition 3.4. Let (M, F,J) be a nearly Kahler manifold. Then F has rela-
tively isotropic mean Landsberg curvature if and only if it is Landsbergian metric
or satisfies the following

(3.23) JiL, = JUI;.
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Proof. Let F' has relatively isotropic mean Landsberg curvature J = cF1I, where
¢ = c¢(x) is a scalar function on M. We rewrite the relation (3.1) 44, using J; = cF1I;
and y*Jr B:. = 0. Multiplying relation (3.1) 4 with g;,, implies that

rjm
(3.24) 9er I} Im — 29" Gis S Limj + ger I35 = 0.
By contracting relation (3.24) whit ¢, one can get
(3.25) ST Jm — 267 J135 + 07 T),35 = 0,
where we have used gitgtj = 6; Replacing J; = c¢F1; in relation (3.25), we have
(3.26) cF (67 J7 Ly, — 267 J3 05 + 677 I, 1) = 0.
We rewrite relation (3.26), as follows
(3.27) cF(Jj L. — J;1;) =0
By relation (3.27), it follows that ¢ = 0 or
(3.28) Jil. = Jr1;.

If ¢ = 0, then the function F' is reduced to a Landsberg metric. [
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