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Abstract. In the paper we study some comparative growth properties of composite en-
tire functions on the basis of generalized relative order, generalized relative type and
generalized relative weak type with respect to other entire functions.
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1. Introduction, Definitions and Notations

Let f be an entire function defined in the open complex plane C. For entire f =

o0
Y. anz" on [z| = r, the maximum term denoted as ¢ (r) and the maximum modulus
n=0

symbolized as M (r) are respectively defined as maox (Jan| ) and max|f (z)). If fis
nx Z|=r

non-constant entire then Mg (r) is strictly increasing and continuous and therefore
there exists its inverse function M;* : ()f 0) ,oo) — (0,00) with limM:* (s) = co.
S—00

Similarly, y;l (r) is also a increasing function of r. Moreover for another entire

. . . . M¢(r)
function g, M, (r) along with y, (r) are too defined and the ratios @ whenr — oo
as well as M as'r — oo are called the comparative growth of f with respect to

g (r)
g in terms of their maximum moduli and the maximum term, respectively. This

study of comparative growth properties of entire functions under some different
directions is the prime concern of the paper. Our notations are standard within
the theory of Nevanlinna’s value distribution of entire functions and therefore we
do not explain those in detail as available in [14]. In the sequel the following two
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notations are used:

logMx = log (Iog[k‘” x) fork=1,2,3,--;
log%x = x

and
explx = exp (exp[k‘” x) fork=1,2,3,---;
exp@x = x

To start our paper we just recall the following definitions.

Definition 1.1. [10] The generalized order p! (respectively, generalized lower order
M) of an entire function f is defined as

ooy log! M+ (1) y log!"! M ()
=limsup—— = limsup————
pf r—oo p IOg Iog Mexpz (r) r—oo p Iog r
log" M () log" M ()
. M _ yimn: — limi
respectively AY" = "mlo”f—mg l0g Moz (1) |Imgonf—log .

where | > 1.

These definitions extend the definitions of order p; and lower order A; of an
entire function f which are classical in complex analysis for integer | = 2 since these

correspond to the particular cases p'! = p¢ (2,1) = pr and AT = A4 (2,1) = Ay
Using the inequality

R
R-r

pr () < Mg (r) < pe(R) {cf.[12]} forO<r<R,

the growth marker p+ ( respectively A¢) and consequently p[fI] (respectively /\[f']) are
reformulated as:

. log s (1) . . log® s (n)
Pt = Ilrp_)soin “loar respectively A; = |ImlonfT
and [ [n
. log™ w5 (r) . . log™ g (n)
m_ m_
Py = Ilrlsoin loaT respectively A{ Ilm!onf logr ,

where | > 1.
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Definition 1.2. The generalized type o1 and generalized lower type 3 of an entire
function f are defined as

log"~ Mi¢(r log!'= M(r
g™ M0 4nd 1 = lim inf— 2 0

m_
=1m
Gf Sup re r—oo rP

r—oo

L 0<pl <o,

where | > 1. Moreover, when | = 2 then o' and %! are correspondingly denoted
as ot and ¢+ which are respectively known as type and lower type of entire f.

Similarly, extending the notion of weak type as introduced by Datta and Jha
[4], one can define generalized weak type to determine the relative growth of two
entire functions having same non zero finite generalized lower order in the following
manner:

Definition 1.3. The generalized weak type T[fl] for | > 1 of an entire function f of finite
positive generalized lower order A[f'] are defined by

log!= M(r
g £(r) 0

W = liminf ,0< Al < oo

r—oo rAf
Also one may define the growth indicator 7" of an entire function f in the following
way :
log"* M (r)

{1
e , 0 <A < oo

—I1 .
’L'[f] = limsup

r—oo
For | = 2, the above definition reduces to the classical definition as established by
Datta and Jha [4]. Also 7+ and 7 are stand for 7' and 7.

For any two entire functions f and g, Bernal [1], [2] initiated the definition of
relative order of f with respect to g, indicated by p, (f) as follows:

py () = inf{y >0: M (r) <M, (rt) forall r > ro (u) > 0}
log M;le (r)
= limsup———,
00 logr

which keeps away from comparing growth just with exp z to find out order of entire
functions as we see in the earlier and of course this definition corresponds with the
classical one [13] for g = exp z.

Analogously, one may define the relative lower order of f with respect to g
denoted by A, (f) as
log M1 M (1)
Ag (f) = liminf————~

r—oo logr

In the case of relative order, it therefore seems reasonable to state suitably an
alternative definition of relative order of entire function in terms of its maximum
terms. Datta and Maji [6] introduced such a definition in the following approach:
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Definition 1.4. [5] The relative order p, (f) and the relative lower order A, (f) of
an entire function f with respect to another entire function g are defined as follows:

log 5t (1) log 5t (1)

py (f) = limsup and A, (f) = |I£T_1)(I}0nf og T

r—oo I

To compare the relative growth of two entire functions having same non zero
finite relative order with respect to another entire function, Roy [9] recently intro-
duced the notion of relative type of two entire functions in the following manner:

Definition 1.5. [9] Let f and g be any two entire functions such that 0 < p, (f) < co.
Then the relative type o, (f) of f with respect to g is defined as:

o,(f) = inf{k >0: Mt (r) <M, (krpﬂ(f)) for all sufficiently large values of r}

: M, "M ()
= limsup——=—

r—oo rPﬂ(f)
Likewise one can define the relative lower type of an entire function f with respect
to an entire function g denoted by G, (f) as follows :

(0 =m0 o )
[5; =liminf————, 0< <00,
g r—oo rpg(f) pg

Analogously to determine the relative growth of two entire functions having
same non zero finite relative lower order with respect to another entire function,
Datta and Biswas [6] introduced the definition of relative weak type of an entire
function f with respect to another entire function g of finite positive relative lower

order A, (f) in the following way:

Definition 1.6. [6] The relative weak type 7, (f) of an entire function f with respect
to another entire function g having finite positive relative lower order A, (f) is
defined as: 1M, (1)

M~*Mgs (r

7, (f) = liminf—L——= .
9( ) r—oco r/\_,i(f)

Also one may define the growth indicator 7, (f) of an entire function f with respect
to an entire function g in the following way :

M- 1M (1)
T,(f) = Iimsupg)\if

,0<A,(f)<o0.
r—oo I’ﬂ(f) .‘7()

Considering g = expz one may easily verify that Definition 1.4 and Definition
1.5 coincide with the classical type (lower type) and weak type respectively.

Lahiri and Banerjee [8] gave a more generalized concept of relative order in the
following way:
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Definition 1.7. [8] If | > 1 is a positive integer, then the I- th generalized relative
order of f with respect to g, denoted by pll! (f) is defined by

P (f) = inf{u>0:M;(r) <M, (exp!r#) forall r > ro (1) > 0}

) log™" MM (1)
limsup————
r—oo Iog r

Clearly pl!! () = p, (f) and &, (f) = pr .

Likewise one can define the generalized relative lower order of f with respect to g
denoted by Al () as

log!" M-M; (1)
[1 — limi g
Ay (f) = Ilchlxpf og T

In terms of maximum terms of entire functions Definition 1.2 can be reformu-
lated as:

Definition 1.8. For any positive integer | > 1, the growth indicators pg] (f) and

ALY (F) for an entire function f are defined as:
log™ ;¢ (r) log™ 7 e (1)

[n — 1i
py (f) = limsup logT

r—oo I r

and A (f) = lim inf

In fact, Lemma 2.7 states the equivalence of Definition 1.7 and
Definition 1.8.

Now to compare the relative growth of two entire functions having same non
zero finite generalized relative order with respect to another entire function, we intend
to give the definition of generalized relative type and generalized relative lower type of
an entire function with respect to another entire function which are as follows :
Definition 1.9. The generalized relative type o and generalized relative lower type G\
of an entire function f are defined as

log!"1 MM (r)

[1 — i

o' (f) = limsu and

7 ( ) r—oo p rPB](f)

_ __log" MM (1)

ag] (fy = Ilm!onf rpgl(gf) ,0< pg] (f) < oo.

For | = 2, Definition 1.9 reduces to Definition 1.5.

Similarly, to determine the relative growth of two entire functions having same
non zero finite generalized relative lower order with respect to another entire function,
one may introduce the concepts of generalized relative weak type of an entire function
with respect to another entire function in the following manner:
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Definition 1.10. The generalized relative weak type TB] (f) of an entire function f with
respect to another entire function g having finite positive generalized relative lower
order A} (f) is defined as:

log" Y M-1M¢ (r)
[ —limi 9
7y () = |Imlonf BTG

Further one may define the growth indicator 7, (f) of an entire function f with
respect to an entire function g in the following way :

logt=t M-1M; (r)
%g](f)=limsup 2 g

[n
bR A

Definition 1.10 also reduces to Definition 1.6 for particular | = 2.

The notions of the growth indicators of entire functions such as order, type and
weak type are classical in complex analysis and during the past decades, several
researchers have already been exploring their research in the area of comparative
growth properties of composite entire functions in different directions using the
classical growth indicators. But at that time, the concepts of relative orders as well as
generalized relative orders and consequently the generalized relative type and generalized
relative weak type of entire functions are not at all known to the researchers of this
area. In this paper, we establish some newly developed results related to the
growth properties of composite entire functions on the basis of their generalized
relative orders, generalized relative type and generalized relative weak type.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma2.1. [3] If f and g are any two entire functions then for all sufficiently large
values of r,

My (%Mg (g) ~|g (0)|) < Miog(r) < My (M, ().

Lemma2.2. [11] Let f and g be any two entire functions Then for every a« > 1 and

0<r<R, R
a a
Ltog () < ﬂ#f (ﬁ‘ug (R))-

Lemma2.3. [11] If f and g are any two entire functions with g (0) = 0, then for all
sufficiently large values of r,

Htog(r) = %#f (%Mg(g) ~lg (O)))-
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Lemma 2.4. [2] Suppose f is an entire function and @ > 1, 0 < < a. Then for all
sufficiently large r,
Mg (ar) > ﬁMf(l’).

Lemma2.5. [5] If f be an entire function and @ > 1, 0 < B < a, then for all sufficiently
larger,

uiar) = Bur(r) .

Lemma2.6. [7] Let f and h be any two entire functions Then for any a > 1,

) MM ()

IA

[T [(a 1)yf(ar)] and

IA

(i) e (1) aMgl[ Mf(r)].

_a
(@-1)

Lemma 2.7. Definition 1.7 and Definition 1.8 are equivalent.

Proof. Forany « > 1and | > 1, we get from Lemma 2.5 and the first part of Lemma

2.6 that
_ _ 20 -1«
MM (1) < p b [ﬁr} )
Thus from above we get that
_ | 2a-1)a
log™ MM () . log" 1y [ G|
logr - Iogr
~ log" MztM¢ (r) log" u~ [(Z(z g“r]
ie., < > m
logr log | &=3r] + 0(2)
e (1 i sug 20 Mg M ()
ie (f) = wp_}s;mT
[ 2a—-1)a
< limsu log” i, [((“ 1; r]
< limsup—ye [r] +0(D)
log™ u-tie (1)
(1 i _th 7YY
(2.1) ie., pg (f) < Ilrlsoin logT
and accordingly
[n
. log™ p g (r)
1 +
(2.2) Ag (f) < Ilmmf log .
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Similarly, in view of Lemma 2.4 it follows from the second part of Lemma 2.5 that

2 1
it () < aM e (S )]
and from above we obtain that

log™" gyt () . log™" aMEle [(%) r]

logr - logr
log™" -t () 3 log" M-tM¢ [(2“ 1) ]+O(1)
e, —Iogl’ = log [(Za l) ]+O(l)

log" M- 1M [( )r] +0(1)

[11 — i
i.e. (f) = limsup
P r—oo log [(2"‘ 1) ]+O(l)
log™" =y (r
> lim supw
00 logr
log™ u-tie (1)
(1 ; h
(2.3) ie., pg (f) = Ilrp_)soin logr
and consequently
[n
. log™ p g (r)
1 +
(2.4) Ag () 2 Ilmmf log :

Combining (2.1), (2.3) and (2.2), (2.4) we obtain that

log™ ;s ()

log™ i e (1)
] =i g - 7
py (f) = limsup an logr

M (f) = liminf
r—co logr dAg (F) ma

This proves the lemma. O
3. Theorems

In this section we present the main results of the paper.

Theorem 3.1. Let f, g and h be any three entire functions such that
M 0< AP (1) < ol () < oo,
(i) ol (1) = py,
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(iii) 0, < o0, and

(iv) EED] (f) > 0 where p is any positive integer. Then

[r] -2
(i) “minfw <
= oglP ety (1)
I N QLN QLN UL
ey o Pl

[°]
where A = (yacﬁ)Php () for anyp>landy(a-1)>a>1

and

[P] pp-2 [r] [Pl ¢y=  4[P]
(ii) iming g M Mreg () )P (f)gg,p“ (f)gg,Ah (Do
= oglP I MM (1) oty " Peny "

Proof. As yﬁl (r) is an increasing function of r, taking R = Br (8 > 1) in Lemma 2.2
and in view of Lemma 2.5 we have for all sufficiently large values of r that

Hiog () < (ail)yf((;_ﬁl)ug(ﬁr))
2aa—-1
i, Uog () < ,Llf((a(_aT(‘B)c_Y‘Bl)Hy(ﬁr))-
2aa—-1
(3.1) logl®] i ey (1) < Iog[”]#f“f(%”g(ﬁ r))
i.e., Iog[p]yglyfog(r) < (pEp](f)+e)logyg(ﬁr)+0(1).

Now we get from above and in view of the inequality p (r, f) < M(r, f) {cf. [12] }
and the condition (ii) for all sufficiently large values of r that

(32) logl"] 1 1o, (1)

IA

(pr[]p] (f) + e) log M, (Br) + O(1)
(PP (1) +¢) (o0 + €) 187D + 01

IA

33) e, logll ulus, (1)

Also in view of the inequality 1, (r) < M, (r) {cf. [12] } and the condition (ii) we
obtain from (3.1) for a sequence of values of r tending to infinity that

(3.4) Iog[p] 1y ifog (1) < (/\Ep] (f) + e) (ag + e) [/Br]PEP](f) +0(1)
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and
(3.5) logl® 12y (1) < (pEp] (f) + e) (6, + &) 181" + 0().

Again in view of Lemma 2.5, Lemma 2.6 and the definition of generalized relative
type we get for any y > ﬁ and for a sequence of values of r tending to infinity
that

o

ut [m[vlf (ar)] > MM (r)

i.e., ‘lal‘llf (yar) = Mgle (n

ie, 1oglP ity () > toglP MMy (yLa)

] . oP1(1)

; -1] -1 P

(3.6) ie., loglP -ty (r) > (oh (f) - g) [V_a] .

Further from the definition of generalized relative lower type, we obtain for any
y(a¢—1) > a > 1land in view of Lemma 2.5 and Lemma 2.6 for all sufficiently large
values of r that

. o)
3.7) gl ity (1) > (EED] (f) - g) [V_a] .

Now from (3.3) and (3.6), it follows for a sequence of values of r tending to infinity
that

[r]
oGl iy 10 (1) (pEp](f)”)(%”) [pr]™" () + 0(2)

logl? Tty ) (o1 (h-e) [

Since ¢ (> 0) is arbitrary, it follows from above that

gl et ()
3.8 | f——————— < Ph _
e P logP it (1) 0af) oL (f)

Similarly from (3.4) and (3.7), we obtain for a sequence of values of r tending to
infinity that

[l
g g ) (W (D +2) (o +)pr1™ )+ 0t

|0g[P—l] P‘El‘uf (n B (Egp] (f) - e) [yLa]pEP](f)
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i.e.,

a0 M (D

loglfl ;-1 .
(3.9) liminfod _Hn e @ o e
o, ()

r—oo Iog[p—l] [Llal‘uf (r) =

Likewise from (3.5) and (3.7), it follows that

[r] 2 ; [Pl £\=
(3.10) fimin gt #1er @ oyl o (D0
r—oo Iog[P—l] [Llﬁlluf (r) E[p] (f)

Thus the first part of the theorem follows from (3.8), (3.9) and (3.10).

Since Mal (r) is an increasing function of r, by similar reasoning as above the
second part of the theorem follows from the second part of Lemma 2.1 and therefore
its proof is omitted. O

In view of Theorem 3.1, the following theorem can be carried out and therefore
its proof is omitted:

Theorem 3.2. Let f, g and h be any three entire functions with
(i) 0< pll (1) < o,

(i) 1 () = py,

(iii) 04 < oo, and

(iv) EEp] (f) > 0 where p is any positive integer > 1. Then

YL

[],,-1
(|) lim Supw < (‘)/ ﬁ) [p]
o, ()

roeo loglP ety ()

whereg>landy(a—-1)>a>1

and . ,
loglPl MM, I
(i) limsup 0g™" M, "Mie, (1) < P (f)ag
r—oo Iog[P‘l] MEle (r) EEP] (f)

Using the notion of generalized relative weak type, we may state the following
two theorems without their proofs as those can be carried out in the line of Theorem
3.1 and Theorem 3.2 respectively.

Theorem 3.3. Let f, g and h be any three entire functions such that
(i) 0 < Al (1) < P (1) < oo,
iy ALY (1) = A,
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(iii) T, < o0, and

(iv) ’L’Ep] (f) > 0 where p is any positive integer. Then

[r] -1
(i) liminf o9 Fa Hre ()
= joglPt -t ()
- BpE”](f)@/BpE’)](f)fngAE"](f)@
Wy Ll Ll

AP ()
where B = (yaB)™ V/ forg>landy(a—-1)>a>1

and

(i) Iiminflog[p] MEleog(r) < min pgp](f)?g p'Ep](f)Tg AEp](f)?g .
= oglP I MM (1) CUGEE ORI

Theorem 3.4. Let f, g and h be any three entire functions with
i) 0 < AP () < ol (1) < oo,
i) AL (1) =2,

(iii) T, < 00, and (iv) TIEP] (f) > 0 where p is any positive integer > 1. Then

(i) lim supw < (Wﬁ)ﬂpl(f) m
r—oco |og[P—1] Hal[,lf r) TEp] (f)
whereg>landy(a—-1)>a>1
and
(ii) lim suplog[p] MM () Pl (17,

e loglPIMtMe () P (r)

Theorem 3.5. Let f, g and h be any three entire functions such that
(i) 0< Al (1) <l (1) < oo,

(i) o1 () = p,,
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(iii) o, > 0, and (iv) aEp] (f) < oo where p is any positive integer > 1. Then

[],,—1
@) lim Supw—mw >
roo0 loglP™ -t (r)
.. CAE’)](f)ag CAEp](f)ag CpEp](f)Eg
ey ol T o)

1 P»Ep](f)
WhereC=(w) forp>1, y(@a-1)>a>1
and
(i) lim suplog[p] MEle"“’ () > max Ar[lp] (f)gg/ /\rEp] (f)ffg’ PrEp] (f)a, .
e logl T MMy () ol " o

Proof. Since y;l (r) is an increasing function of r, it follows from Lemma 2.3 and
Lemma 2.5 for all sufficiently large values of r that

Hiog(r) 2 %#f (%Mg(g) ~|g (0))) :

v

(1 9(0)
(3.11) logl?l i uiep(r) = 1oglPl (ﬂ#g(%) - %J

(A,[p] (f)- e) Iog(%yg (2) B @)

(AEp] (f) - e) log g (2) +0(1) .

v

ie., logl’] 1y og (1)

\%

ie., logl’] 1y og (1)

Using the condition pEp] (f) = py and in view of the inequality M, (r) < %yg (R)
{cf.[12] } for R = Br (B > 1), we get from above for all sufficiently large values of r
that

(3.12) logl") it 10g(1) (AEP] (f) - e) log M, (#) +0(1)
. oFl(1)
(3.13) ie, logll ity (n) > (AE"] (f)—g)(ag—g)[ﬁ] +0() .

Also, in view of the inequality M, (r) < £, (R) {cf. [12] } for R = pr(g > 1) and
the condition (ii),it follows from (3.11) for a sequence of values of r tending to
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infinity that
. - 100
(3.14) Iog[p] y;llufog (N> (Ahp (f) - e) (ag - e) [E] +0(1)
and
0] . o1
(3.15) logl i, (1) = (php (f) - g) (3, - ¢) [@] +0(1).

Again in view of Lemma 2.4 and for any y (@« — 1) > a > 1, we get from Lemma 2.6
for a sequence of values of r tending to infinity that

loglP~ aM; M (yr)
(7 (1) + €)' + o

IA

loglP~1 2 ()
(3.16) i.e., loglP~t utus ()

IN

Also for any y (o« — 1) > a > 1, we obtain from the definition of generalized relative
type and in view of Lemma 2.4 and Lemma 2.6 for all sufficiently large values of r
that

(3.17) loglP1 121 (1) < (GE"] (f) + g) L0 4 o).

Now from (3.13) and (3.16), it follows for a sequence of values of r tending to
infinity that

[°]
logl 5 a1 () (A'Ep] (- f) G-l +ow

loglP~1 ity (1) (Egp] (f)+ 8) 0 4 o)

As ¢ (> 0) is arbitrary, it follows from above that

(3.18) limsup

|Og[p] U oy (1) >( 1 )PEP](f) ArEp](f)Eg
e logl iy )

4yp al(ry

Similarly from (3.14) and (3.17), we obtain for a sequence of values of r tending to
infinity that

[r]
I O oq)

|og[p] [vlﬁllufog (r) N (}LEP] (f)— E) (Gg — é‘) [#

gl e () (‘erp] (f)+ 8) [Vr]pgp](f) +0(1)
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ie.,

(3.19) limsup

logl” 1 ey () ( 1 )PE”]“) W (1)o,
—_— 2
r—oo |og[p_l] [ual‘uf(r)

4y Llry

Likewise from (3.15) and (3.17), it follows that

(3.20) limsup

|og[P] fuﬁl.ufog ) >( 1 )P;Ep](f) pEP] (f)a,
oo loglP ety (1)

4y oLl(ry

Thus the first part of the theorem follows from (3.18), (3.19) and (3.20).

Since Mgl (r) is an increasing function of r, by similar reasoning as above the
second part of the theorem follows from the first part of Lemma 2.1 and therefore
its proof is omitted.

In view of Theorem 3.5 the following theorem can be carried out and therefore
its proof is omitted: O

Theorem 3.6. Let f, g and h be any three entire functions with
i) 0 < AP (1) < ol (1) < oo,

(i) pP1 () = p,,
(iii) o, > 0 and

(iv) GED] (f) < co where p is any positive integer > 1. Then

(i) liminf

|Og[P] [ual[ufog () >( 1 )PEp](f) AEP] (f)ag
== oglPt -ty (1)

4yp oL (f)

where>1, y(a-1)>a>1

and

[P] pm-1 [l (\=
(ii) Iiminflog My Mic () > A (f)%.
= logl Mt () o)

Now using the notion of generalized relative weak type, one may state the
following two theorems without their proofs as those can be carried out in the line
of Theorem 3.5 and Theorem 3.6 respectively.

Theorem 3.7. Let f, g and h be any three entire functions such that
(i) 0< Al (1) < P (1) < oo,
iy ALY (1) = A,
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(iii) 7, > 0, and
(iv) ?Ep] (f) < oo where p is any positive integer > 1. Then

[r] 1
(@) lim Supw—mw >
rooo loglP™ -t (r)
.. DAW(nngAW(Ua,DAﬂu)W
Fy D T A

L W
WhereD=(w) forp>1, y(@a-1)>a>1
and
[] p-2 [F] [l ez [Pl
(i) limsup 2% M Mreg ) A (DT A (0T oy (D7 |
= logl MM () 1 Ao A

Theorem 3.8. Let f, g and h be any three entire functions with
i) 0 < Al () < oo,
(i) AP () = 2,

(iii) 7, > 0, and (iv) %Ep] (f) < oo where p is any positive integer > 1. Then

(i) liminf

mdﬂuﬁme)>(1)4wko(”W
e ogle-i] prtue ()

4y @ (1)

where>1, y(a-1)>a>1

and

[r] pp-2 [°]
(i timinf 2 M Misn @) A (D7
== ogl MMy ()~ 71

Theorem 3.9. Let f, g, hand k be any four entire functions such that
()0 <5l (1) <ol (f) < oo,
(i) 0 <5 ( 0 g) < ol ( 0 ) < co and
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(iii) pEp] (fog)= qu] (f) where p, g are any two positive integers > 1. Then

09l 0oy O _ oy 7 (o)

A0 5P (1o
0 () 2 (T09)

< liminf d

E ol (1) = ogltt yty (r) 5l (1)
l)qu](f) Pl (10 g) i SUIO|og[p—1] Hatiteeg ) _ Equ](f)GEP] (fog)
g sy e togl ) Gl (1)

where E = y%afory(a—1)>a > 1
and
sl (to loglP~11 M-1m !l (to
(ii) % (f09) < liminf o9 n Mieg (1) < n (fog)

ATty 7 toglIMamin T Gl ()

_ loglP~ M- "M, (r) o*Ep] (foyg)
< limsup — <
r—co |og[q ] |\/|k—1|\/|f ) EEQ] (f)
Proof. Foranyy (@ — 1) > a > 1 we obtain from the definition of generalized relative

type and in view of Lemma 2.5 and Lemma 2.6 for all sufficiently large values of r
that

loglP ey (1) = ol MMy (VL“)

oP(120)
@321 e, loglP ity ) > (ErEp](fog)—e)(VLa) .
and
Iog[q‘l],u;lyf(r) < logle-1l [aMk‘l(ﬁMf(r))]
i, loglt wlps () < logle-] M. M (yr) + O(1)
(3.22) ie, logl yutu () < (aEq](f)+e)(yr)qu](f)+O(1).

Now from (3.21), (3.22) and in view of the condition pEp] (fog)= qu] (), itfollows
for all sufficiently large values of r that

Pl(so
logle ) tare (1) (EEp] (fog)- e)(}L)” (fer)

logl' ]t () (GP] ()+ 8) (Vr)pEQ](f) +oQ)
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As ¢ (> 0) is arbitrary , we obtain from above that

|Og[p‘1] xuﬁl.ufog () N ( 1 )qu](f) EEP] (f og)

(3.23) lim inf 1
logl it () ol ()

r—oo

e
Again we obtain for a sequence of values of r tending to infinity that
(3.24) 1ogl" 1 it gy (1) < (EEP] (fog)+ g) oo (=) 4 o)
and for all sufficiently large values of r that

VA0
(325) logl ity () > (31 () - f)(y_a) '

Combining the condition pl*l (f o g) = pl (f), (3.24) and (3.25) we get for a se-
guence of values of r tending to infinity that

logl it pueey () _ [t o9+ e)on™() + o)
|Og[Q—1] y;lyf (n a (EI[q] (f)— g) (L)pgq](f)
ya

Since ¢ (> 0) is arbitrary, it follows from above that

loglP] 12 eg (1) < (2P0 M

(3.26) lim inf < .
logl™1 -2 (r) ot (t)

r—o0
Also for a sequence of values of r tending to infinity that
[a]
(3.27) loglt 1ty (1) < (EEq] (f) + g) o () 1 o).

Now from (3.21), (3.27) and the condition pEp] (fog) = qu] (f), we obtain for a
sequence of values of r tending to infinity that

] 0
|Og[p—1] .Uﬂlfufog (r) N (GED] (fog)- 8)<7’L‘¥)p (fog)
ot T iiue @ (5l 1)+ ¢) o0 + o)

As ¢ (> 0) is arbitrary, we get from above that

(3.28) limsup
r—oo Iog[q—l] Hglluf (I’)

loglP1 it srey (0 ( 1 )PEQ](f) ¥l (foyg)
) 5l (1)

y2a
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Also for all sufficiently large values of r,
[r]
(3.29) loglP ] 210, (1) < (GED] (fog)+ g) G (9 4 o).

As the condition "l (f o g) = pl (), it follows from (3.25) and (3.29) for all
sufficiently large values of r that

[°]
logl 1 1 tw1ey () (F(1 0 9)+ €)™+ + o)

|0g[q—1] y;lyf (n B (EEq] (f) _ E)(VLH)PEq](f)

Since ¢ (> 0) is arbitrary, we obtain that

p-1] -1 [r]
(3.30) lim sup Iog[[qj]”“_ff"g ® Ya Al W .
roeo logt ™t (r) g " (f)
Thus the first part of the theorem follows from (3.23), (3.26), (3.28) and (3.30).
Similarly, the second part of the theorem can be established. O

The following theorem can be proved in the line of Theorem 3.9 and so its proof
is omitted.
Theorem 3.10. Let f, g, hand k be any four entire functions with
)0 <3 (9) <ol (9) < o,
(i) 0 <5l ( 0 g) < ol (£ 0 ) < 00 and
(iii) pEp] (fog)= qu] (g) where p, g are any positive integers > 1. Then

L1 o(s) Er[]p] (foyg) |0g[p_l:I 1y tigog (1) _Ep] (foyg) .

< EPEq] (9) (j

0] ————— < liminf nd
Mg e, o 5l @)
(l)pyl(g) _G_'Ep] (fog) <lim suplog[p_l] by e ) < M) Lp] (fog9)
B g e gl Ty 7 ()
where E = y?afory(a—1)>a > 1
and
(i) _G—Ep] (fo9) <lim inflog[p_l] Maleog ) < EEp] (fog)

gy~ gl Imim, ) 5l

<lim SupIOg[p_l] MEleOg n < GrEp] (foyg)
r—oo |og[q—l] M;l M, () EEQ] )
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Using the notion of generalized relative weak type, we may state the following
two theorems without their proofs because those can be carried out in the line of
Theorem 3.9 and Theorem 3.10 respectively.

Theorem 3.11. Let f, g, hand k be any four entire functions such that
()0 <l (f) <7 () < o,

(i) 0 < 7" (f 0 g) <7 (F 0 g) < o and

(iii) /\Ep] (fog)= AEq] (f) where p, q are any positive integers > 1. Then

1 () TrEp] (fog)

loglP ] Lo (0 - EMQM

0 (= S Ciminf < and
E ey e gl e (n 49 1)
ORIt loglP11 -1 7l 5 o
(é) o [q(] g_) < limsup > [H]Hh :lfog 0 <5 [q(] -
70 (f) roeo logt™H p Fu (r) 7,0 (f)
where E = y2afory (@ -1)>a>1
and

TEp] (foyg) < lim infIog[p‘l] Mgleog () - TEP] (foyg)

(il <
Al 7 gl MM T )

[p-1] pr-1 = 5 o
<timsupod M Moo T (T29)
e loglt MM, (1) TEq](f)

Theorem 3.12. Let f, g, hand k be any four entire functions with
M0 <Y (g) <7 (g) < oo,
(i) 0 < 71 (f 0 g) < 7l (£ 0 g) < 0 and

(iii) /\Ep] (fog) = AEq] (g) where p, g are any two positive integers > 1.
Then

loglP ity (1) < EW@)M a

1 )AF] (9) TEp] (foyg)

0 (= < liminf nd
: g 7 togl iy, o 0
CPE 1] PO [p-1] - o LI
(%)Ak (@) 7 (f o g) L ”msupmg p ! TTE () <) T (fog)
Ay~ e 1ogl i, () AL19)

where E = y2afory(@-1)>a>1



Growth Analysis of Entire Functions Concerning ... 315

and

[] (5
(i) 7, (fog)

[_1] - [p] o
liminf® MM O (Fog)
A~ g Ivem 0 T )

[p-1] pp-1 7l (£ o
<timsup2 M M ) Ty (o9
r—oo |Og[q_1] Mk_lMg (r) TEq] (g)

Theorem 3.13. Let f, g and h be any three entire functions such that

()0 < AP (1) < ol (1) < oo,

(i) 0 <5 < ol < oo,

(i) 0 < E_Ep] (f) < oEp] (f) < oo and (iv) pEp] (f) = pgq] where p,q are any positive
integers with g > 2. Then

0} FPEP](f)ﬂ < Iiminflog[p+q_2] byt (1)

th (f) r—oco |Og[p—l] ,Uﬁl.uf (r)

[e] —[q]
< min GPEP](f)L,G”Ep](f)L and
ol (1) ¥ (1)

[o] 50l
max  FPR () % , ey _ <
o (1) (1)
[p+a-2] , -1 [a]
lim supIog Ty e () <ol
o loglP sty () EE"] (f)
where F = 4F%yandG =apyforp>landy(a-1)>a>1
and
sl log[P+a-2] M Mo, (1)

i I <liminf
(”) GEP] (f) I[[T_])!on Iog[p—l] Mﬁle (r)

Smin{ Ggq] , qu] }smax{ Ggq] , qu] }
o (n) () o (1) 5 (1)

loglP+a-2] MM, (1) Ggq]

<l < .
P o T (0 pEons
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Proof. Forany g > 1, it follows from (3.2) and in view of the condition pEp] (f) = pgq]
for all sufficiently large values of r that

loglP+a-2] Ut eg () < logle-] M, (Br) + O(1)
(3.31) ie, logl* 2 -ty (1) < (ag“] + e) (8" () + o)
and for a sequence of values of r that

(3.32) loglP* 2 -y, (1) < (55‘] + g) 51"+ o).

Further in view of the condition pEp] (f)= pgq], it follows from (3.12) for a sequence
of values of r that

loglP**2l 1t tisgp(r) > logl*~] Mﬂ(#)ﬁ)m

o)
(3.33) ie, loglr o2 -ty (1) > (ggql_g)[#] +0(1)

and for all sufficiently large values of r that
]
Ph (f)
(3.34) loglP* 2 =21 p0(r) > (55‘] - g) [#] +0(1).

Therefore from (3.7) and (3.31), we obtain for any y (o — 1) > « > 1 and all suffi-
ciently large values of r that

Iog[’”q‘2] Ut og (1) (agq] + e) [ﬁr]pgp](f) +0(1)

logl-1 e (1) - (EEp] ()= e) [L]pgul(f)
ya
[p+a-2] -1 ; [e]
(3.35) e, lim supIog — Hn H1og (1) < (aﬁy)pp(f) L.
r—oo |Og[p ] ‘Ll;lflf (r) EEP] (f)

Similarly, from (3.31) and (3.6) we have for a sequence of values of r tending to
infinity that

1]
logl*+2 1 Lo, (1) (05“] + e) [6r1™ () + o)

IOg[p_l] luﬁl[lf (r) a (GEp] (f) _ g) [L]pgp](f)
ya
logl"* 2 110, (1) 65‘]

(3.36) i.e., liminf

r—oo

< (apyy )

loglP~1 -ty () oIy
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Analogously we get from (3.32) and (3.7) for a sequence of values of r tending to
infinity that

loglP* 2] 1y, (1) (a0 + 8) ") + o)

oglP -ty (EED](f)_g)[L]pEP](f)
[p+a-2] , -1 []
(3.37) ||mmfIog - th t1eg () (apyyh (0 20
= JoglP -ty (n) —[”](f)
Now from (3.36) and (3.37), it follows that
[p+a-2] -1
T— th tteg (1)
= JoglP -ty ()
[] . [q]
(3.38) < min{(apy)y™ . [p] (apy)™ ) — _[p]
oy~ () (f)

Further from (3.33) and (3.17), we get for a sequence of values of r tending to
infinity that

P]
loglP 2] 5 ey () (‘qu] )[4ﬁ] Yiow
loglP~ ity () ((;IEP] (f) + g) GO 4 oq)

ie.,

(3.39) limsup
r—oo |og[p_l] Auﬁl/”lf )

loglP* 421 -y 1,,(1) >(i)pgpl(f) GE‘]
~\4py OEP](f)

Likewise from (3.34) and (3.16), we obtain for a sequence of values of r tending to
infinity that

P]
loglP+-2] ) (Eg“] )[4/3] O roq

loglP e () (EEP] () + g) GO 4 oq)

(3.40) limsup
r—oo Iog[p—l] lual[,[f (r)

loglP*4=21 111, (1) >(i)pgpl(f) qu]
~\4py EE’)](f)
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Thus from (3.39) and (3.40), it follows that

gl ey ()
limsup

r—oo Iog[p—l] lual['lf (r)
[°] [a] Pl —[q]
1 Pp (f) o 1 Pp () 0y
3.41 > — — | — .
o4 : max{(4ﬁy) pope (7] G

Also from (3.34) and (3.17), we obtain for all sufficiently large values of r that

_ 1eP)
log[P+a-2] {1 i 0g(r) S (‘qu] - 8) [@]p +0 (1)

oyt (o (1) + ) ort D+ 000

(3.42) liminf

r—oo

|0g[p] [vlﬁllvlf (rA) “\4py ng] 0 .

Therefore the first part of the theorem follows from (3.35), (3.38), (3.41) and (3.42).
Using the similar technique as above, the second part of the theorem follows from
Lemma 2.1 and therefore its proof is omitted. O

In the line of Theorem 3.9, one can easily verify the following theorem and
therefore its proof is omitted.

Theorem 3.14. Let f, g and h be any three entire functions with

()0 < AP (1) < ol (1) < oo,

(i) 0 < oY <7l < o,

[F] =[r]

(i) 0 < 77 (f) <77 (f) < 0 and

(iv) /\Ep] (f)= qu] where p, q are any two positive integers with g > 2.
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Then

(i) FAED](f)iqu] <lim inflog[p+q_2] H " Hteq (1)

Wy = togl Mt ()

=[d] [a]
< mindcW() L, (" and
(1) 1 (1)

max { FAT (1) ?gq] E() qu] <
@l (1) (1)

loglP* 2 =1y (r ' ]
lim sup g — Hn ey (1) < GAE](f)L
r—oo Iog[p ] Halluf (r) Trl.:lp] (f)

whereF:“%yandG:aﬁyforﬁ>1andy(a—1)>a>l
and

[q] I [p+q_2] 1
(i) i < liminf o9 M;, " Moy (1)
Wl 7 logl MM ()

=[q] [a] =[q] [a]
< min i , i < max i , i
ORI W (r) L)

loglP+a-2] MMy, (r) ?gq]
<

<li < .
< n;njin Iog[p—l] MM (1) TEP] (f)

Theorem 3.15. Let f,g and h be any three entire functions such that 0 < /\Ep] (f) <

pEp] (f) < coand g, < co where p is any positive integer. Then for any g > 1,

[r] ;-1 [l (=
(i) liminf 109 ity #to9 (1) < min P (f)gg/(fy ,
== loglPl i (exp (pr)™) APty

[r] 1 [r]
(ii) lim sup [";g _1”h B _ ph[gf)%/
r—e  |ogtP p i (exp(ﬁr)Pg) Ahp (f)

[P] p-2 [P] i\ =
(i) liminf log™” My M, (0 < min Ph (f)%/gg
r—oo Iog[P] MEle (expre7) Ar[1p] (f)
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and 0]
[r] pp-1 P
(iv) limsup 10977 My, Micy (1) <P (f)gg.
r—oo |og[p] Male (exp rP_q) AEp] (f)

Proof. In view of Definition 1.8, we get for a sequence of values of r tending to
infinity that

(343) 1097 i us (exp () = (ol (1) - ¢) r1

and for all sufficiently large values of r that

(3.44) toglP] 7 (exp (Br)”) > (AE"] (f) - g) [Br]” .

Now from (3.3) and (3.43), it follows for a sequence of values of r tending to infinity
that

|og[p] U g (1) (prEp] (f)y+ 8) (ag + 8) [Br]” + O(1)
<
logl7] 171y (exp (pr)”) CHOERIEIE

Since ¢ (> 0) is arbitrary it follows from above that

[] -1
(3.45) liminf logt™ 1~ pitoq (1) <0y
= 1oglPl Ly (exp (pr)”)

Likewise from (3.5) and (3.44), it follows for a sequence of values of r tending to
infinity that

0ol ity (oF1 (D +e) (@ + )17 + o)
<
logl?] 1t (exp (pr)”) (A () - e) 1prr

i.e.,

[] -1 [Pl /¢y =
(3.46) liminf l0g™ iy 1o (1) < P (f)a,
r—oco IOQ[P] [ual#f (exp (ﬁr)Pg) Ar[]p] (f)

Similarly from (3.3) and (3.44), we obtain for all sufficiently large values of r that

logl’] U o (1) (pEp] (f)+ e) (ag + 8) [Br]” + O(1)
<
logll i tue (exp ) (W0~ e) g
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ie.,

[] -1 [r]
(3.47) lim sup [I(;g l”“ freg (1) < p“[ﬁf)%
e logll e (exp (pry) AP ()

Thus the first and second part of the theorem follows from (3.45), (3.46) and
(3.47). O

Theorem 3.16. Let f, gand h be any three entire functions with 0 < /\Ep] (f) < pEp] ()<
oo and g, > 0 where p is any positive integer. Then for any g > 1,

[] 1 ] o —
(i) liminf log™ gy e (1) > Ay (f)Gyl
e ogl] #ﬁl#f(eXp(ﬁ) ) prEp](f)

[r],,-1 [r]
(ii) limsup 1097 iy 19 (1) o 2 max M,Eg ,
= 1ogll it (exp (5)”) ol (1)

[p] M2 [Pl /ey =
(iii) liminf log™ My Mo, (1) 5 Ay~ (F)ag
r—oo |og[p] Male (exp rPg) pEp] (f)

and

(iv) limsup
r—e logl’] MMy (exprfs)

i
P] s

ol (h)

Proof. In view of Definition 1.8, we obtain for a sequence of values of r tending to
infinity that

Iog[P] Mgleog (r) . max{Af[‘p] (fog _ }

Py [+ 1P
(3.48) loglP! ;s (exp(#) ) < (/\Ep] (f) + e) #
Also for all sufficiently large values of r that

Py [ 1P
(3.49) logl®] i (exp (#) ) <(pF e 5

Now from (3.13) and (3.48), it follows for a sequence of values of r tending to
infinity that

1097 ity () (W H-¢)@-e)[5]" +ow
g itu (o (8)) - (P +)[]”
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As ¢ (> 0) is arbitrary, it follows from above that

loglPl =2y, (r
(3.50) limsup 9"ty Hites () B
" oo 5 oo (5]

Similarly from (3.14) and (3.49), we obtain for a sequence of values of r tending to
infinity that

>0

g-

[r]
loglPl ity (1) (AEp] (f) - e)(ag ~)[a]" " +ow
log 2w (exp (1)) - (B ) 5]

logl?l =tipo, (r APl (H) o
(3.51) ie., limsup [p]g flh tieg ) > “[p]( )%
— r 9
e logl it (exp (3)7) g ()
Likewise from (3.13) and (3.49), we have for all sufficiently large values of r that
— r 1P
0P i, ) (W0 -¢)(@-9)[5]" 0@
>
_ Pg\ —
1091 iyt (exp (45)) (PP (1) +) 5]

i.e.,

[],,-1 [r] _
(3.52) lim inf l0g™ ty Htey (1) —> Ay~ (o,
r—oo Iog[p] -t (exp(#) ) prEp] )

Thus the first part of the theorem follows from (3.50), (3.51) and (3.52) .

Since Mal (r) is an increasing function of r, by similar reasoning as above the
second part of the theorem follows from the first part of Lemma 2.1 and therefore
its proof is omitted.

Using the same technique as above, the third and fourth part of the theorem fol-
lows from the second part of Lemma 2.1 and therefore their proofs are omitted. O

Using the notion of weak type, we may state the following theorem without its
proof because it can be carried out in the line of Theorem 3.15 and Theorem 3.16
respectively.

Theorem 3.17. Let f,g and h be any three entire functions such that 0 < AEp] (f) <

pEp] (f) < coand 7, < co where p is any positive integer. Then for any g > 1,

[r] -1 [F]
(i) liminf 109" i ”f"“’(r)A < min mﬁg ,
= 1ogll s (exp (Br)™) APty
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|Og[p] ,UEl[ufog (r) < PED] (f)?g

(i) limsup < ,
= ogll it (e sn) — ()
[r] pp-1 [r]
(iii) liminf g My Mieg ) _ i ]P0 (D9

Th 27
= |oglP] Mgle(exprAﬂ) )\E’)](f) !

and

loglPl MM, )] £y =
(iv) limsup ‘Eg I\fh M g(f)A S ph[§ )T
r—oo |Og ME M; (expr _q) Ahp (f)

Theorem 3.18. Let f, gand h be any three entire functions with 0 < /\Ep] (f) < pEp] (f) <
oo and 7, > 0 where p is any positive integer. Then for any g > 1,

[] 2 [r]
0) "mio”f log™™ 11, "4 (1) - S A [p](f)Tg,
logl?] #glﬂf(eXp(ﬁ) ) Pl (1)

Iog[p:I 1 g (1) . /\Ep](f)%g .
> —— Ty,
ol (1)

(ii) limsup <
" e oo 4]

|og[p] Maleog (n . /\Ep] (f)’l'g

(l”) Imlon Iog[p] Mgle (exp r/\_,;) pEp] (f)

and

[] pm-1 [Pl ()=
(iv) limsup 10g™" My Mty (1) > W'% .
o (F)

r—eo logl?] MMy (exp rM)
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