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ON COMMUTATIVE HYPER BE-ALGEBRAS

Akbar Rezaei, Akefe Radfar and Arsham Borumand Saeid

Abstract. In this paper, we introduce commutative hyper BE-algebra and study it in
detail. We show that every commutative (row diagonal, column row, very thin) hyper
BE-algebra is a BE-algebra.

1. Introduction and Preliminaries

H. S. Kim and Y. H. Kim introduced the notion of a BE-algebra as a general-
ization of a dual BCK-algebra [4]. S. S. Ahn and et al. introduced the notions of
terminal sections of a BE-algebras and gave some characterization of commutative
BE-algebras in terms of lattices order relations and terminal sections [1]. A. Rezaei
and et al. show that a commutative implicativeBE-algebra is equivalent to the com-
mutative self-distributive BE-algebra. Also, they proved that every Hilbert algebra
is a self-distributive BE-algebra and commutative self-distributive BE-algebra is a
Hilbert algebra and show that cannot remove the conditions commutativity and
self-distributivity [7].

The hyper algebraic structure theory was introduced in 1934, by F. Marty at
the 8th congress of ScandinavianMathematicians [5]. Hyper-structures havemany
applications to several sectors of both pure and applied sciences. Y. B. Jun and
et al. applied the hyper-structures to BCK-algebras and introduced the notion of
a hyper BCK-algebra which is a generalization of BCK-algebra and investigated
some related properties [3].

Recently, A. Radfar and et al. introduced the notion of hyper BE-algebra and
defined some types of hyper-filters in hyper BE-algebras. They showed that under
special condition hyper BE-algebras are equivalent to dual hyper K-algebras [6].

In this paper we characterize the relation between dual hyper K-algebras and
commutative hyperBE-algebras and some types of commutative hyperBE-algebras
and characterization of RD/CR/V-hypercommutative BE-algebras are state. We
show that every commutative RD-hyper BE-algebra of order 3 is a commutative
BE-algebra.
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Definition 1.1. [2] Let H be a nonempty set and ◦ : H × H → P∗(H) be a hyper-
operation. Then (H; ◦, 0) is called a hyper K-algebra, if it satisfies the following
axioms:

(HK1) (x ◦ z) ◦ (y ◦ z) < x ◦ y,
(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(HK3) x < x,

(HK4) x < y and y < x imply that x = y,

(HK5) 0 < x, for all x, y, z ∈ H.

Where x < y is defined by 0 ∈ x ◦ y.

Theorem 1.1. [2] Let H be a hyper K-algebra. Then

(i) x ∈ x ◦ 0,
(ii) 0 ∈ 0 ◦ x, for all x ∈ H.

Definition 1.2. [6] Let H be a nonempty set and ◦ : H × H → P∗(H) be a hyper-
operation. Then (H; ◦, 1) is called a hyper BE-algebra, if it satisfies the following
axioms:

(HBE1) x < 1 and x < x,

(HBE2) x ◦ (y ◦ z) = y ◦ (x ◦ z),
(HBE3) x ∈ 1 ◦ x,
(HBE4) 1 < x implies x = 1, for all x, y, z ∈ H.

A hyper-BE-algebra is said to be

(i) row hyper BE-algebra (for short, R-hyper BE-algebra), if 1 ◦ x = {x}, for all
x ∈ H,

(ii) column hyper BE-algebra (for short, C-hyper BE-algebra), if x ◦ 1 = {1}, for
all x ∈ H,

(iii) diagonal hyper BE-algebra (for short, D-hyper BE-algebra), if x ◦ x = {1}, for
all x ∈ H,

(iv) thin hyper BE-algebra (for short, T-hyper BE-algebra), if that is RC-hyper
BE-algebra,

(v) very thin hyper BE-algebra (for short, V-hyper BE-algebra), if that is RCD-
hyper BE-algebra,
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(H; ◦, 1) is called a dual hyperK-algebra if satisfies (HBE1), (HBE2) and the following
axioms:

(DHK1) x ◦ y < (y ◦ z) ◦ (x ◦ z),
(DHK4) x < y and y < x imply that x = y, for all x, y, z ∈ H.

Where the relation “ < ” is defined by x < y ⇔ 1 ∈ x ◦ y. For any two nonempty
subsetsA and B ofH, we define A < B if and only if there exist a ∈ A and b ∈ B such
that a < b and

A ◦ B =
⋃

a∈A,b∈B
a ◦ b.

Theorem 1.2. [6] Let H be a hyper BE-algebra. Then

(i) A ◦ (B ◦ C) = B ◦ (A ◦ C),
(ii) A < A,

(iii) 1 < A implies 1 ∈ A,
(iv) x < y ◦ x,
(v) x < y ◦ z implies y < x ◦ z,
(vi) x < (x ◦ y) ◦ y,
(vii) z ∈ x ◦ y implies x < z ◦ y,
(viii) y ∈ 1 ◦ x implies y < x, for all x, y, z ∈ H and A,B,C ⊆ H.

Corollary 1.1. [6] Every dual hyper K-algebra is a hyper BE-algebra.

Theorem 1.3. [6] Let H be a CD-hyper BE-algebra. Then

(i) x ◦ (y ◦ x) = {1},
(ii) z ∈ x ◦ y implies y ◦ z = {1},

for all x, y, z ∈ H.

Theorem 1.4. [8] Let X be a commutative BE-algebra. Then x ≤ y and y ≤ x implies
x = y, for all x, y ∈ X.
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2. On commutative hyper BE-algebras

Definition 2.1. A hyper BE-algebra (dual hyper K-algebra) H is said to be com-
mutative if (x ◦ y) ◦ y = (y ◦ x) ◦ x, for all x, y ∈ H.

Example 2.1. (i). Let H = {1, a, b}. Define the hyper-operations “ ◦1 ” as follows:

◦1 1 a b

1 {1} {a} {b}
a {1, b} {1, a, b} {1, a}
b {1, a, b} {a} {1, a, b}

Then (H, ◦1) is a commutative hyper BE-algebra.

(ii). Define the hyper operation “ ◦ ” on R as follows:

x ◦ y =
{ {y} if x = 1
R otherwise

Then (R; ◦, 1) is a commutative hyper BE-algebra.

Lemma 2.1. Let H be a commutative hyper BE-algebra. Then H satisfies in (DHK1).

Proof. Let H be a commutative hyper BE-algebra and x, y, z ∈ H. Then

(x ◦ y) ◦ ((y ◦ z) ◦ (x ◦ z)) = (x ◦ y) ◦ (x ◦ ((y ◦ z) ◦ z)
= (x ◦ y) ◦ (x ◦ ((z ◦ y) ◦ y))
= (x ◦ y) ◦ ((z ◦ y) ◦ (x ◦ y))
= (z ◦ y) ◦ ((x ◦ y) ◦ (x ◦ y)).

Now, using (HBE1), we have 1 ∈ (x ◦ y) ◦ (x ◦ y).
Also, by (HBE2),

1 ∈ (z ◦ y) ◦ ((x ◦ y) ◦ (x ◦ y)).
Thus

1 ∈ (x ◦ y) ◦ ((y ◦ z) ◦ (x ◦ z)).
Therefore (DHK1) holds.

Theorem 2.1. H is a commutative dual hyper K-algebra if and only if H is a commutative
hyper BE-algebra and satisfies in (DHK2).

Proof. Let H be a commutative dual hyper K-algebra. Using Corollary 1.1, H is a
commutative hyper BE-algebra.

Conversely, let H be a commutative hyper BE-algebra, satisfies in condition
(DHK2) and x, y, z ∈ H. Then by Lemma 2.1, (DHK1) holds. Therefore H is a dual
hyper K-algebra.
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The following example show that condition (DHK2) in Theorem 2.1, is necessary.

Example 2.2. Let H = {1, a, b}. Define the hyper-operation “ ◦ ” as follows:

◦ 1 a b

1 {1} {a} {b}
a {1} {1} {1, a, b}
b {1, a, b} {1, b} {1, a, b}

ThenH is a commutative hyperBE-algebra. Since a < b and b < a,H is not a hyperK-algebra.

Proposition 2.1. Let H be a commutative R-hyper BE-algebra. Then x ◦ y = y ◦ x = {1}
implies x = y.

Proof. Let x ◦ y = y ◦ x = {1}. Since H is a commutative R-hyper BE-algebra,

{x} = 1 ◦ x = (y ◦ x) ◦ x = (x ◦ y) ◦ y = 1 ◦ y = {y}.
Therefore x = y.

Lemma 2.2. Let H be a commutative C-hyper BE-algebra. Then

(i) H is a commutative CD-hyper BE-algebra,

(ii) y ∈ 1 ◦ x implies 1 ◦ x ⊆ 1 ◦ y,
(iii) y ∈ 1 ◦ x if and only if x ∈ 1 ◦ y,
for all x, y ∈ H.

Proof. (i). Let x ∈ H. Then by commutativity, x◦x ⊆ (1◦x)◦x = (x◦1)◦1 = 1◦1 = {1}.
Thus H is a commutative D-hyper BE–algebra.

(ii). Let y ∈ 1 ◦ x. Using Theorem 1.2 (viii), y < x and so 1 ∈ y ◦ x. Since y ∈ 1 ◦ x,
by Theorem 1.3(ii), x ◦ y = {1} and by commutativity,

1 ◦ x ⊆ (y ◦ x) ◦ x = (x ◦ y) ◦ y = 1 ◦ y.
Hence 1 ◦ x ⊆ 1 ◦ y.

(iii). Let y ∈ 1◦x. By (ii), 1◦x ⊆ 1◦ y. By (HBE3), x ∈ 1◦x ⊆ 1◦ y. Thus x ∈ 1◦ y.
Similarly, x ∈ 1 ◦ y implies y ∈ 1 ◦ x.

Corollary 2.1. H is a commutative C-hyper BE-algebra if and only if H is a commutative
CD-hyper BE-algebra.

Lemma 2.3. Let H be a commutative CR-hyper BE-algebra. Then

(i) H is a commutative V-hyper BE-algebra,
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(ii) If x ◦ y = {1}, then (y ◦ x) ◦ x = {y},
(iii) If x ◦ y = {1}, then y ◦ x = {z} and y ◦ z = {y}, for some z ∈ H,

for all x, y ∈ H.

Proof. (i). By Corollary 2.1, H is a commutative CRD-hyper BE-algebra and so it is
a commutative V-hyper BE-algebra.

(ii). If x ◦ y = {1}, then (y ◦ x) ◦ x = (x ◦ y) ◦ y = {1} ◦ y = {y}.
(iii). Let x ◦ y = {1}. At first we prove that y ◦ x is a singleton set. Let a, b ∈ y ◦ x.

By (ii), a◦x ⊆ (y◦x)◦x = {y}. Thus a◦x = {y}. By a similar way, b◦x = {y}. By (i),H
is a V-hyper BE-algebra and so it is a CD-hyper BE-algebra. Now, using Theorem
1.3 (ii) and since a ∈ y ◦ x, we have x ◦ a = x ◦ b = {1}. By (ii), (a ◦ x) ◦ x = {a}. Thus

{a, b} ⊆ y ◦ x = (a ◦ x) ◦ x = {a}.
Hence a = b and y ◦ x is a singleton set. Now, let y ◦ x = {z}. By using (ii),
y ◦ z = y ◦ (y ◦ x) = {y}.

Theorem 2.2. Every commutative CR-hyper BE-algebra is a commutative BE-algebra.

Proof. Let H be a commutative CR-hyper BE-algebra. Let a, b ∈ x ◦ y. By Lemma
2.3 (i),H is a V-hyper BE-algebra and so is a CD-hyper BE-algebra. By Theorem 1.3
(ii) and since a, b ∈ x ◦ y, we can see that y ◦ a = y ◦ b = {1}. Now, using Lemma 2.3
(iii),

a ◦ y = {c}, c ◦ y = {a}, b ◦ y = {d}, and d ◦ y = {b} for some c, d ∈ H.
Since d = b◦y ⊆ (x◦y)◦y = (y◦x)◦x, there is t1 ∈ y◦x, such that d ∈ t1◦x. By Theorem
1.3 (ii), we imply that x ◦ d = {1}. In a similar way, c = a ◦ y ⊆ (x ◦ y) ◦ y = (y ◦ x) ◦ x,
there is t2 ∈ y ◦ x, such that c ∈ t2 ◦ x. By Theorem 1.3 (ii), we get x ◦ c = {1}. By
(HBE2),

b ◦ a ⊆ b ◦ (x ◦ y) = x ◦ (b ◦ y) = x ◦ d = {1}.
a ◦ b ⊆ a ◦ (x ◦ y) = x ◦ (a ◦ y) = x ◦ c = {1}.

Thus a ◦ b = b ◦ a = {1}. Now, using Proposition 2.1, a = b. Therefore x ◦ y is a
singleton set for every x, y ∈ H and so H is a commutative BE-algebra.

3. Characterization of commutative hyper BE-algebra of order 3

From now on, H is a commutative hyper BE-algebra of order 3.

Lemma 3.1. Let H be a hyper BE-algebra. Then

(i) 1 � 1 ◦ x, for all 1 � x ∈ H,
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(ii) 1 ∈ x ◦ 1, for all x ∈ H.

Proof. (i). Let x � 1 and x ∈ H. 1 ∈ 1 ◦ x implies 1 < x. By (HBE4), x = 1, which is a
contradiction.

(ii). The proof is clear by using (HBE1).

Theorem 3.1. Let H be a commutative D-hyper BE-algebra of order 3. Then H is a
commutative CD-hyper BE-algebra of order 3.

Proof. LetH = {1, a, b} be a commutativeD-hyperBE-algebra and it is not aC-hyper
BE-algebra. Then a ◦ 1 � {1} or b ◦ 1 � {1}. Without loss of generality, let a ◦ 1 � {1}.
By (HBE1), 1 ∈ a ◦ 1. Thus a ◦ 1 = {1, a}, {1, b} or {1, a, b} and so we have three cases:

Case 1: If a ◦ 1 = {1, a}, then
1 ◦ a ⊆ 1 ◦ (a ◦ 1) = a ◦ (1 ◦ 1) = a ◦ 1 = {1, a}.

By Lemma 3.1, 1 � 1 ◦ a and so 1 ◦ a = {a}. Now, by commutativity,

{1} = a ◦ a = (1 ◦ a) ◦ a = (a ◦ 1) ◦ 1 = {1, a} ◦ 1 = {1, a},
which is a contradiction. Thus a ◦ 1 � {1, a}.

Case 2: If a ◦ 1 = {1, b}, then by Lemma 3.1(ii) and (HBE2),

{1, b} = a ◦ 1 ⊆ a ◦ (b ◦ 1) = b ◦ (a ◦ 1) = b ◦ {1, b} = b ◦ 1 ∪ b ◦ b = 1 ∪ b ◦ 1.
Hence b ◦ 1 = {1, b}. Which is a contradiction.

Case 3: If a ◦ 1 = {1, a, b}, then by commutativity,

(1 ◦ a) ◦ a = (a ◦ 1) ◦ 1 = {1, a, b} ◦ 1 ⊇ a ◦ 1 = {1, a, b}.
Now, by Lemma 3.1, 1 ◦ a = {a} or {a, b}. Since 1 ◦ a = {a}, we have

(1 ◦ a) ◦ a = a ◦ a = {1}.
Thus 1 ◦ a � {a} and so 1 ◦ a = {a, b}. Also,

{1, a, b} = (1 ◦ a) ◦ a = {a, b} ◦ a = a ◦ a ∪ b ◦ a = 1 ∪ b ◦ a.
Thus {a, b} ⊆ b ◦ a. Also, since 1 ◦ a = {a, b}, by Theorem 1.2 (viii), b < a and so
1 ∈ b ◦ a. Hence b ◦ a = {1, a, b}. Also, by 1 ◦ a = {a, b} and Lemma 2.2(iii), we imply
that a ∈ 1 ◦ b and so 1 ◦ b = {a, b}. Now, sinceH is aD—-hyper BE—-algebra and by
(HBE2),

b ◦ a ⊆ b ◦ (1 ◦ b) = 1 ◦ (b ◦ b) = 1 ◦ 1 = {1}.
Thus b ◦ a = {1}, which is a contradiction.

Corollary 3.1. Three concepts - commutative C-hyper BE-algebra, commutativeD-hyper
BE-algebra and commutative CD-hyper BE-algebra - coincide.
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Corollary 3.2. Every commutative RD-hyper BE-algebra of order 3 is a commutative
BE-algebra.

Theorem 3.2. There exist two commutative V-hyper BE-algebra of order 3 up to isomor-
phism.

Proof. Let H = {1, a, b} be a commutative V-hyper BE-algebra. Then by Theorem
2.2, H is a BE-algebra and so,

1 ◦ 1 = {1}, 1 ◦ a = {a}, 1 ◦ b = {b}
and

a ◦ 1 = b ◦ 1 = a ◦ a = b ◦ b = {1}.
By Theorem 1.4, a and b are comparable, hence a < b or b < a. Case a < b and case
b < a are isomorphic. So, without lose of generality let a < b. Then a ◦ b = {1}. By
commutativity, we have,

(b ◦ a) ◦ a = (a ◦ b) ◦ b = 1 ◦ b = {b}.
If b ◦ a = {1}, then (b ◦ a) ◦ a = 1 ◦ a = {a}, which is a contradiction.
If b ◦ a = {a}, then (b ◦ a) ◦ a = a ◦ a = {1}, which is a contradiction.
Since H is a BE-algebra, b ◦ a = {b}. Therefore H is a commutative V-hyper BE-
algebra.

◦ 1 a b

1 {1} {a} {b}
a {1} {1} {1}
b {1} {b} {1}

Now, if a and b are comparable, then a ◦ b = {a} or {b}. If a ◦ b = {a}, then by
Theorem 1.3(ii), b ◦ a = {1} and so b < a, which is a contradiction. Hence a ◦ b = {b}.
By a similar way b ◦ a = {a}. So, H is a commutative V-algebra.

◦ 1 a b

1 {1} {a} {b}
a {1} {1} {b}
b {1} {a} {1}

Theorem 3.3. There exist three commutative D-hyper BE-algebra of order 3 up to iso-
morphism.
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Proof. By Theorem 3.1, H is a CD-hyper BE-algebra and so,

1 ◦ 1 = 1 ◦ a = a ◦ a = b ◦ 1 = b ◦ b = {1}.

By Lemma 3.1(i), 1 � 1 ◦ a. Also, by (HBE3), a ∈ 1 ◦ a. Thus 1 ◦ a = {a} or {a, b}. By
a similar way, 1 ◦ b = {b} or {a, b}. If 1 ◦ a = {a}, then 1 ◦ b = {b} (Since 1 ◦ b = {a, b}
we have b ∈ 1 ◦ a, which is a contradiction). Thus H is a commutative V-hyper
BE-algebra. By Theorem 3.2, two commutative V-hyper BE-algebra exist.

Now, if 1 ◦ a = {a, b}, then by Lemma 2.2(iii), a ∈ 1 ◦ b and so 1 ◦ b = {a, b}. By
Theorem 1.3 (ii), 1 ◦ a = {a, b} implies b ◦ a = {1} and 1 ◦ b = {a, b} implies a ◦ b = {1}.
ThereforeH is a commutative hyper BE-algebra in the following table.

◦ 1 a b

1 {1} {a, b} {a, b}
a {1} {1} {1}
b {1} {1} {1}

Theorem 3.4. (i). There exist 889 commutative hyper BE-algebras of order 3 up to
isomorphism.

(ii). There exist 68 commutative R-hyper BE-algebras of order 3 up to isomorphism.

4. Conclusion and future work

Now, in the following table we summarize the results of this paper and show that
the number of all kinds of commutative hyper BE-algebras of order 3. We note
that by Corollary 3.1, the three concepts - commutative D-hyper BE-algebra, com-
mutative C-hyper BE-algebra and commutative CD-hyper BE-algebra - coincide.
Also, by Theorem 2.2, Corollaries 3.1 and 3.2, every commutative RD/CR/V-hyper
BE-algebra is a BE-algebra.
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Type Condition Number

commutative hyper BE-algebra a < b and b ≮ a 325
commutative hyper BE-algebra a < b and b < a 495
commutative hyper BE-algebra a ≮ b and b ≮ a 69
commutative hyper BE-algebra 889

commutative R-hyper BE-algebra a < b and b ≮ a 30
commutative R-hyper BE-algebra a < b and b < a 24
commutative R-hyper BE-algebra a ≮ b and b ≮ a 14
commutative R-hyper BE-algebra 68

commutative D-hyper BE-algebra a < b and b ≮ a 1
commutative D-hyper BE-algebra a < b and b < a 1
commutative D-hyper BE-algebra a ≮ b and b ≮ a 1
commutative D-hyper BE-algebra 3

(commutative RD-hyer)commutative BE-algebra a < b and b ≮ a 1
(commutative RD-hyer)commutative BE-algebra a < b and b < a 0
(commutative RD-hyer)commutative BE-algebra a ≮ b and b ≮ a 1
(commutative RD-hyer)commutative BE-algebra 2

In the futureworkwewill try toget some results onanother type of commutative
hyper BE-algebras and state some properties on this structure and investigate some
relationships between them.
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