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DIFFERENTIAL CALCULUS ON LIE ALGEBRAS

Valiollah Khalili

Abstract. We state the notion of differential calculus based on derivation for Lie alge-
bras. We also construct graded differential algebra and investigate differential calculus
based on derivation for semi-simple Lie algebra sl(n,C). So, we provide the notion of
matrix geometry of a Lie algebra in noncommutative differential geometry.
Keywords: differential calculus, Lie algebra, differential algebra

1 Introduction

Lie algebras were originally introduced by Sophus Lie, as an algebraic structure used
for the study of linear transformation groups that are now named ”Lie groups”.
Both Lie groups and Lie algebras have become fundamental tools to many branches
of mathematics and theoretical physics. Finite dimensional Lie algebras were inves-
tigated independently by E. Cartan and W. Killing during the period 1800-1900(see
[12]). In 1967 V. G. Kac and R. V. Moody independently discovered a class of infi-
nite dimensional Lie algebras which is called ” Kac-Moody Lie algebras” and includes
finite dimensional simple Lie algebras (see [13]). In 1990 Hoegh-Kron and Torre-
sani [11] initiated "irreducible quasi-simple Lie algebras” which were investigated
systematically in 1997 by Alison, Azam, Berman, Gao and Pianzola in Memoirs
AMS [1]. They called these Lie algebras ”extended affine Lie algebras”. Various
classes of these Lie algebras have been investigated in many articles (for example see
[2, 3, 14, 15, 16, 21, 22, 23]). There are some applications of Lie algebras which are
non-commutative and non-associative algebras in mathematical physics, statistical
physics, conformal field theory, string theory and quantum groups.

As indicated in [5], the generalization of differential calculus from classical differ-
ential geometry to non-commutative differential geometry is not unique. Namely,
according to the various applications in both mathematics and physics, one can
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consider a notion of differential calculus. There are several approaches to non-
commutative generalizations of the construction of the deRham forms on the al-
gebra C°°(M), of smooth functions on a smooth paracompact manifold M as an
abstract commutative x—algebra.

There are two notions of differential calculus on non-commutative algebra.

One approach of differential calculus was given by A. Conns [6] in 1986. He in-
vestigated differential calculus based on the concept of spectral triples. A spectral
triple basically consists of a non-commutative algebra A, a representation of this
algebra on a Hilbert space H on which A is realized as an algebra of bounded oper-
ators, an operator D on H which is responsible for generating differential calculus,
which is named the Dirac operator. This approach is indicated by the term ”non-
commutative Riemannian geometry”, because it emphasizes the metric structure.

The second notion of differential calculus on non-commutative algebra which fo-
cuses on the differential objects, is introduced by Dubois-Violette [7] in 1988. This
non-commutative differential geometry is encoded into a purely algebraic defini-
tion of differential calculus on associative (commutative, non-commutative) algebra
which is called ”derivation based differential calculus”. More precisely, let A be an
associative algebra with a unit. The algebra A is considered as the generalization
of the algebra of smooth functions and the Lie algebra Der(A) of all derivations of
A is considered as the generalization of the Lie algebra of smooth vector fields. The
notions of differential forms can be extracted from the graded differential algebra
C(Der(A), A) of Chevalley- Eilenberg cochains of Lie algebra Der(A) with values
in the Der(A)—module A.

In the present article, we directly use this construction for the graded differ-
ential algebra of Lie algebra. More precisely, we state the notion of differential
calculus based on derivation for Lie algebra in general, which is not necessarily
finite dimensional. We also provide some examples.

To close this introduction, we outline the contents of the paper. In Section 2,
we recall the definition of graded differential algebra and some facts that will be
needed in the sequel. In Section 3, we first review an introduction on Lie algebra
cohomology, which is an essential tool for the concept of graded differential algebra
and differential calculus of Lie algebra. Next, we define differential calculus based on
derivation for Lie algebra. In Section 4, we provide two examples. The first example
indicates the characterization of the differential algebra of Matrix geometry which
is already investigated in [9]. The second example provides the realization of the
concept of differential calculus based on derivation for a semi-simple Lie algebra
sl(n, C).
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2 Preliminaries

All vector spaces and algebras in this note are considered over a fixed field F of
characteristic zero. If otherwise, it will be specified. This section is devoted to
the study of some concepts and definitions that will be extensively used in the last
section.

We first review the definition of graded differential algebra.

Definition 2.1. (Graded vector spaces)

Let V be a vector space (or F-space). By a Z—grading of V we will denote a
family {V?};cz of subspaces of V such that V = Dicz Vi, Given such a grading, we
call V' a degree subspace and an element belonging to a degree subspace V' is said
to be homogeneous of degree 1.

Let ¥V and W be two graded vector spaces. A linear map of degree n between
graded vector spaces is a linear map f : V — W such that f(V') C Wit" for
all i € Z. Define Homg(V,W) to be the F-subspace of Homr(V, W) consisting of
homogeneous elements of degree n. Then

Homg(V,W) = ) Homg (V, W),
nez

is a graded F-space. If f € Homp(V, W) are homogeneous elements of degree zero,
we say that f is a graded homomorphism.

Definition 2.2. (Differential graded vector space) A differential graded vector space
is a graded vector space V together with d € Homi(V,V) such that d> = 0. The ho-
mogeneous element of degree 1 is called a differential of a graded vector space V.

Lemma 2.3. Let (V,dy) and (W,dw) be two differential graded vector spaces.
Then Homgp(V, W) is a differential graded vector space.

Proof. Let f € Homp(V, W). Define
D : Homg(V,W) — Homp " (V, W),
by
D(f)=dwo f—(=1)"fody.
It is clear that D is a homogeneous element of degree 1. Also
D*(f) = D(dwo f—(=1)"fody)
= diyof—(=1)"Tdwo fody—(=1)"(dwo fody
(1) fody)
= 0.
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Definition 2.4. A graded F—algebra A is a graded vector space A = @,,, A™,
together with a multiplication such that A™A™ C A™*", for all m,n € Z. A graded
algebra A is said to be graded commutative if ab = (—=1)™"ba for all a € A™ and
all b e A™.

Definition 2.5. (Differential graded algebras)

A differential graded algebra is a graded algebra A = @, ., A™ together with a
graded derivation d : A — A of degree 1 (anti-derivation) such that d*> = dod = 0.
Thus d satisfies the graded Leibniz rule d(ab) = d(a)b+ (—1)"ad(b), where a € A™
and b € A and also d(A™) C A"T1. The anti-derivation d is called a differential of
differential graded algebra A.

Corollary 2.6. Let (V,d) be a graded vector space. Then (Homgy(V,V), D) with
D(f)=dof—(-1)"fod , [ Homg(V,V),

is differential graded algebra.

Proof. By Lemma 2.3 it is enough to show that D satisfies the Leibniz rule.

D(fog) = dofog—(-1)""fogod)
= dofog—(-1)"fodog+(-1)"fodog
— (=D)""fogod
= D(f)eg+(=1)"foD(g)

Remark 21. The theory of differential operators on associative algebras is not ex-
tended to the non-associative ones [19]. However, there is a notion of differential
operators on the commutative ring and its generalization to noncommutative geom-
etry which is not unique. The definition of differential operator of order k on Lie
algebras can be find in [18]. Although it is an interesting subject to work on, we
shall not discuss it here.

As an example of graded differential algebra, we now state the graded subspace of
differential operators of order < k. Let A be a unital graded differential algebra with
1 € A°. We may consider A as a graded commutative Lie subalgebra of Hom(A, A),
where every element a of A is identified by the operator

a: A— A; a(b) =ab.
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For every integer k we denote, the graded subspace of differential operator of order
<k, by
Dif fi(A) = €D Dif fil(A) C Homi(A, A),

nez
It is defined recursively by Dif fi(A) =0 for k <0 and for k > 0:

Dif fu(A) = { f € Homi(A A) : [f,a] € Dif fi 1(A), Vae A}
We note that f € Dif fo(A) if and only if f(a) = f(1)a and every derivation on A
lies in Dif f1(A).

A simple verification by induction on m + k shows that

Dif fm(A)Dif fi(A) C Dif fmr(A),

and

[Dif fm(A), Dif fi(A)] C Dif frmtr—1(A).
Therefore Dif f(A) =, Dif fi(A) is a graded differential Lie subalgebra of Homj (A, A).

In the study of differential calculus over an algebra (commutative, noncommu-
tative complex) as the generalization of differential forms and the geometry of fiber
bundle through differential forms, the Cartan’s operator is one of the main tools
[4]. This notion can be considered in the graded differential algebra on Lie algebra.

Definition 2.7. (Cartaw s operator)

An operation of a Lie algebra G on a graded differential algebra A is a linear
mapping © — i, of G into the space of anti-derivations of degree —1 of A such
that

o (a) for all z,y € G, we have iyiy + iyiz =0

o (b) for all x,y € G, we have Lyi, — iyLy = i

z,y]»
where L, denotes the derivation of degree 0 of A defined by

L, =izo0od+doi,.

(b) implies that [Ly, L] = Ly, for all z,y € G. Therefore, we have a represen-
tation of Lie algebra G to Lie algebra of graded anti-derivations of degree —1 of A.
That is, the map x — L, is a Lie algebra homomorphism, since L, od = do L,
for all z € G.

We next recall the definition of derivation of a Lie algebra.
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Definition 2.8. (Derivation of Lie algebra)

Let G be a Lie algebra over a field F with center Z(G). A derivation of Lie algebra
G is a linear map 0 : G — G such that

(2.9) Olz,y] = [0(x), yl + [z, 0(y)],
forallz,y € G.

The vector space of all derivations of G denoted by Der(G) is a Lie algebra for
the Lie bracket [0,0] = 0o d — d o0 and also a Z(G)—module for the product
(20)(x) = z0(x) where z € Z(G) and 0 € Der(G). The subspace Inn(G) = {ad, :
y — [x,y] | * € G} C Der(G) which is called the vector space of inner derivations,
is a Lie ideal and also a Z(G)—submodule.

Example 2.10. All derivations of a general linear Lie algebra gl,(F), a special
linear Lie algebra sl (F), and orthogonal Lie algebras oz, (F) and o2n4+1(F) are inner.
Also Z(gl,(F)) = F and all other Lie algebras are centerless. Thus Der(gl,(F)) =

sl (F) and a derivation of other Lie algebras are itself.

3 Differential calculus

The Lie algebras involved in this section are not necessarily finite dimensional.
First of all, we briefly review an introduction to Lie algebra cohomology which is an
essential requirement for the graded differential algebra for Lie algebras. For more
details see the excellent source [10]. Secondly, we define the differential calculus
based on derivation of a Lie algebra.

Definition 3.1. (n-cochains on G)

Let G be a Lie algebra over the field F and M be a G—module with the rep-
resentation p : G — End(M). An M—wvalued n—cochain B, of G on M is the
skew-symmetric F—multilinear mapping

B /\g — M Bua(zr Az A Axp) = Br(z1, 22, .y Tp),

where all x1,x9,...,x, € G. The vector space of these n—cochains which forms
a G—module will be denoted by C™(G, M), and is called the Chevalley-Eilenberg
cochain of G.

Definition 3.2. (Coboundary operator on G)

Let C(G,M) = ,,C™(G, M) be the N—graded vector space of all M —wvalued
cochains of Lie algebra G on M. The coboundary operator d : C™(G, M) — C™1(G, M)
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is a homogeneous endomorphism of degree 1 of C(G, M) defined by its action on the
cochains:

(—1)kp( k) (Br(xoy ooy Ty ooy T)

NIE

d(ﬂn)(%, ,{En) =

>
Il

0
+ Z 1+J6n LL'“,TJ] Ly eeey LT Ai,...,:fj,...,xn),
<i<j

where B, € C™(G, M) and x1,x2,...,x, € G. Notice that the notation """ means
omission.

Using the Jacobi identity and the fact that p is the Lie algebra homomorphism,
p([x1,12]) = [p(z1), p(22)], it may be verified that d* = 0.

Lemma 3.3. Let G be a Lie algebra and A be an algebra which G acts on A by
derivation. Then the N—graded vector space of all A—valued cochains C(G,A) =
@D, C"(G,.A) is a graded differential algebra.

Proof. First, we observe that the multiplication on C'(G, .A) is obtained by taking the
product in A after evaluation. Next, suppose that §,, € C"(G,.A) be an A—valued
n—cochain of G on A and that 3, is an anti-symmetric F—multilinear map. Since
d is a coboundary operator, we have d(C™(G, A)) C C"*1(G, A), and the derivation
property of the action of A on G implies that d is a graded derivation of degree 1
on C(G, A). Therefore (C(G,.A),d) is a graded differential algebra. O

Definition 3.4. (Cochain complex)

Let C™(G, M) be the vector space of all M —valued n—cochains of G on M. Let
Bn € C™(G,M) and d(B,) € C"1(G, M) be as defined in the Definition 3.2, then
we obtain the cochain complex

0— M -2 0V (G, M) 2 C2(G, M) — ... 2 C™(G, M) — ...,

which is called the Chevalley-Eilenberg complex and is denoted by C*(G, M).

Definition 3.5. (Lie algebra n— cocycle, n—coboundary, cohomology)

Let C*(G, M) be the Chevalley-FEilenberg complex with the coefficients in G—module
M. As always, we denote the space of n—cocycles by

ZMG, M) :={ B C™G,M) : dn(B) =0} =kerd,,
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and the space of n—coboundaries by
B"(G,M):={BeC"(G,M) : 38 €C" (G, M), dn1(B) =5}

Then we define the n—th cohomology space of Lie algebra G with a value in M as
the quotient vector space

H"(Q,M) = Zn(gvM>/Bn(gaM)

By the convention B°(G, M) = 0, the zero-cochain is defined as constant from G to
M. Thus, a zero-cochain is a vector in M.

Remark 31. For finite dimensional Lie algebra G, there is an algebraic interpre-
tation of the n—th cohomology space for n =1 which is important. This and more
interpretations may be found in [10]. Suppose that M acts on G by 77, define

Der(G, M) :={f € Homg(G,M) : f([z,y]) == f(y) —y- f(2)},
for all x,y € G, and also
PDer(G,M) :={f € Homp(G,M) : f(x) =z -m},

for all x € G and for some m € M. Then if one-cochain B1 is a one-cocycle, we
have

(3.6) (dip)(zy) = p(@)Bi(y) — p(y)Bi(x) — fi([z,y])
= 0, Vx,yed.

A one-cochain By is a one-coboundary if there is a zero-cochain m € M such that
di m = 1, that is, if

(3.7) Bi(z) =plx)y m=xz-m, Vreg.
Therefore, from (3.6) and (3.7) we have
HY(G,M) = Z"(G,M)/B"(G,M) = Der(G,M)/PDer(G, M).

In case M = G, with the adjoint action, we get Der(G, M) = Der(G) and PDer(G, M) =
Inn(G), thus

HY(G) = Der(G)/Inn(G) = Out(G),
the Lie algebra of outer derivation of G. A case of interest corresponds to taking
M = F with the trivial action. Then B is a coboundary if 8 = 0, and the cocycle
condition gives that B([z,y]) = 0, for all x,y € G. This implies that the one-cocycles
are linear maps vanishing on [G,G|. Thus we have

H'(G,F) = (G/16,9))".
If G is semi-simple we have [G,G] = G, then H*(G) = 0.
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Example 3.8. Consider the finite dimensional complexr semi-simple Lie algebra
sl (C). We have H'(sl,(C)) = {0}, that is, all derivations on sl,(C) are inner,
and H'(sl,(C),C) = {0}. There is a proposition (see below) which implies that
H(sl,(C), M) = {0} for any finite dimensional module M.

Proposition 3.9. (Whitehead Lemma)

Let G be a finite dimensional complex semi-simple Lie algebra and M be a finite
dimensional G—module. Then

H"(G,M)=0 , n=12.
Proof. The proof may be found in Section 3.12 of [20]. O

As mentioned in the introduction, the notion of differential calculus based on
derivation was introduced by M. Dubois-Violette in [7]. He provides a general
and purely algebraic definition of differential calculus based on derivation for any
associative algebra. In [8], a more general systematic study is proposed which uses
the categorical point of view on algebras. Following this, we can also directly use
this construction on Lie algebras as follows:

Let G be any Lie algebra over the field F. Suppose that Der(G) is a Lie algebra of
all derivations of G into itself. Consider C(Der(G),G) = @, , C"(Der(G),G) the
graded differential algebra of all G—valued cochains of Der(G), with a differential
d. Moreover, Der(G) is also a module over the center Z(G) of G. By the derivation
we then have the property [0, z0] = z[0,d] + 0(2)0d, for all 9,6 € Der(G) and all
z € Z(G). Using this property we can extract by Z(G)—multilinearity a graded dif-
ferential subalgebra Qp.,(G) of C(Der(G),G) which consists of Z(G)—multilinear
Chevalley-Eilenberg cochains of Lie algebra Der(G). Notice that Qp.-(G) is in-
variant by the differential d and is therefore a graded differential subalgebra of
C(Der(G),G).

Definition 3.10. (The graded differential algebra Qper(G) )

Let Q%,...(G) be a set of Z(G)—multilinear anti-symmetric maps from Der(G)"
to G, with Q%,.,.(G) = G and let Qper(G) = B,y Vp.,.(G). Then the space Qper(G)
equipped with differential d (see Definition 3.2) is a graded differential algebra of G.

Since Q%_,.(G) = G, it follows that there is a smaller graded differential subal-
gebra of C'(Der(G),G) generated by G. So the graded differential algebra Qp.,(G)
contains a graded differential subalgebra as follows:

Definition 3.11. (The graded differential algebra sQper(G))

We define the sQper(G), as the smallest graded differential subalgebra of Qper(G)
generated in degree zero by G.
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Now we are ready to define differential calculus based on derivation for Lie
algebra G.

Definition 3.12. (Differential calculus on Lie algebra G)

Let G be a Lie algebra over a fized field F with center Z(G). Consider the graded
differential algebra Qper(G) = B, g Ve, (G) or sQUper(G). Then we obtain the
Chevally-Eielinberg subcomplex

0—G¢-2% 0L (¢)-2 0% (G) — .. an. (G) — ...,

which is called differential calculus based on derivation for Lie algebra G. It is
finite if Lie algebra G is finite dimensional.

The notion of the Cartan operation of Lie algebra Der(G) on graded differential
algebra Qp.,(G) can be considered in this case, which we will describe below:

Let (Qper(9),d) be a graded differential algebra on Lie algebra G. We define an
inner product which is a graded derivation of degree —1 on Q%_.(G) by

7;X : Q%er(g) — Q%—Z:(g) ) Zx(ﬂn)(le ---7Xn71) = Bn(X5X15 "'aX’nfl)v

for all x, x; € Der(G) and 8, € Qb.,.(G). By this definition i,, = 0 on Q% (G) = G.
Therefore the associated Lie derivative L, is the graded derivation of degree zero
on Qper(G) which is defined by

(3.13) Ly = iyd + diy.

It is easy to cheek that x — i, is an operation of Der(G) on Qpe,(G), which
satisty

(314) [LX1aiX2] = i[Xh xz]>
for all x1, x2 € Der(G). It follows from (3.13) and (3.14) that
(3.15) [Ly,d] =0, [Lyy, Lys] = Ly, xas

for all x1,x2 € Der(G). Relation (3.15) implies that there is a Lie algebra homo-
morphism of Der(G) into the Lie algebra Q%_ (G) = G of all derivations of degree
zero of Qper(G).
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4 Defferentiall calculus on Matrix Lie algebra

In this section we use the notion of differential calculus based on derivation as stated
in the previous section and we provide two examples relative to it. The first example
investigates the differential calculus and graded differential algebra of the reductive
Lie algebra gl,,(C), which is the Lie algebra of all complex nxn matrices. The second
example describes differential calculus based on derivation and a presentation of the
graded differential algebra of a finite dimensional semi-simple Lie algebra sl,,(C).

Example 4.1. The graded differential algebra of gl,,(C).

The study of this example was initiated in [9]. A complete description can be
found in [17]. The main result can be summarized as bellow:

Proposition 4.2. Suppose that gl,,(C) is the Lie algebra of complex n x n matriz
with n > 2. One has the following:

o Z(gl,(C)) =C.

e Der(gl,(C)) = vInn(gl,,(C) =2 sl,,(C). The explicit isomorphism associates to
any X€ sl, (C) the derivation adx E=[X, E| for any E € gl,(C) and Out(gl,,(C))=
0.

o The differential of Chevaly-Elinberg complex of sl,(C) is represented on
9ln(C) by the adjoint representation. Then

$Qper(9ln(C)) = Qper(gln(C)) = gln(C) ® ) sln(C)".
o There ezists a one-cocycle i0 € Q% (gl,(C)) such that
i0(adp) = E — ~Tr(B)I,
n

for all E € gl,,(C), where Tr(E) is the trace of matriz E. This cocycle makes the
isomorphism

Inn(gl,(C)) = sl,,(C).
e For all E € gl,(C) we have
dE = [i0, E] € Qp,,(91.(C)).

This is not true on Q.. (gl (C)) for large n. O

Example 4.3. The graded differential algebra of s, (C).
We know that sl,(C) = {X € gl,(C) : Tr(X) =0} is a subalgebra of gl,(C).
It is called special linear Lie algebra. The Lie algebra sl,(C) spanned by all E;; for
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i # j together with the diagonal matrices h; = Fy — Fryq 441 for 1 <@ <n— 1.
Recall that E;j; is the complex n x n—matrices with 1 in the (i, j) position and 0
elsewhere. Hence the dimension of sl,,(C) is n> — 1. Here we compute the structure
constant of sl,(C). First of all, we note that

(Eij, Ex] = 0ju Byt — 015 Ey;j.
Secondly, since the h;’s are all diagonal matrices, we have [h;, hj] = 0. Finally,
[hi, Exi] = Cik1 By,

where Ci; = 0,1,2, —1, =2 depending on i,j and k. By convention, we will denote
2
by {ex}?_1", the basis of sl,,(C) and

n
[eiv ej] = Z Cz{gjekv
k=1

where Cikj € C is the structure constant.

First, we describe the differential calculus of sl,(C), n > 2 in a more general
case.

We know that sl,,(C) is a centerless Lie algebra with dimension n? — 1. Any
derivation of sl,(C) is an inner derivation, thus the Lie algebra Der(sl,(C)) identi-
fies canonically with sl,,(C). That is, Der(sl,(C)) = si,,(C) acts on sl,,(C) via inner
deriwation. In this case, sl,(C) is an invariant subalgebra of Der(sl,(C)) and is also
a Der(sl,(C))—module via the adjoint representation. Let C(Der(sl,(C)), sl,(C)
be the graded differential algebra of all sl,,(C)—valued n—cochains on sl,(C). An ele-
ment 3, € C"(Der(sl,(C)), sl,(C) is an n—linear anti-symmetric map of Der(sl,,(C))™
to slp(C) defined by

(01 ey On) > Bn(01, ..., On) € sly(C).
Note that C™(Der(sl,(C)), sl,(C)) is a Der(sl,(C))—module via the adjoint ac-

tion. Since sl,(C) is centerless and all derivations of it are inner, the graded
differential algebra Qper(sln(C)), which is equal to sQper(sln(C)), coincides with
C(Der(sl,(C)), sl (C)) dtself. Then we obtain the subcomplex

dy

0 — s1,(C) 25 Qb (s1,(C)) & ... I Q' ~1(s1,(C)),

as the differential calculus based on derivation for sl,(C), where the coboundary
operator is defined by

(=1)"[04, Br (Do, -, Diy vy O]

[
E

dr(Br) (0o, .., Ok)

0
(4.4) + > (—D™B((05,05], 00, - Ory s Dy ey D).
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Let us describe the one-coboundary and one-cocycle on sl,(C). By (4.4) a one-
cochain By is one-coboundary if there exists a zero-cochain E € sl,(C) such that
dQE = 61. That iS,

(4.5) (doE)(0) = [0, E] = —adgd, for all 0 € Der(sl,(C)).
If one-cochain By is a one-cocycle, then

(4.6) (d181)(9,6)) = [0, B1(9)] — [0, B1(9)] — B1([9, 6]) = 0.

It follows from (4.5) that any one-coboundary is an inner derivation on sl,(C).
Also, (4.6) implies that any one-cocycle on sl,(C) satisfies

B1((0,0]) = [81(9), 0] + [0, 51 (9)]-

Neat, as in the general case, there is a Cartan operation of the Lie algebra Der(sl,,(C))
in the graded differential algebra Qper(sl,(C)), which will be defined as follows:

For any 0 € Der(sl,(C)) we can define an anti-derivation ig of degree —1 on
Qper(sin(C)) by

0Bk (01, -, Op—1) = Br(0,01, ..., 0k—1), k=>1

for B € Q% (s1,(C)) and 61,02, ..., 65—1 € Der(sl,(C). In this case the Lie deriva-
tive is defined by
Ly = dy oig +ip o dg,

which is a derivation of degree zero on Qper(sl,(C)). One may verify that
i61i62 + i62i81 =0, [L617L(92] = i[81,82]7

and also [La,, La,] = Lo, 5,), for all 01,02 € Der(sl,(C)).

Finally, we give a presentation in terms of generators and relations in our in-
vestigation of the differential calculus and graded differential algebra of sl,,(C).

Let {ek}Zizl be the basis of sl,(C) and Oy = adey, k € {1,2,...,n%> — 1} be the
basis element of Der(sl,(C)). Then {Bk}}:izl forms a basis of Der(sl,(C)) and
Ok, 0] = C}}Om. Let {9’“}22:;1 be the dual basis of {ak}gigl in sl,(C)*, that is,
0%(8;) = Oy1. Since one-cocycles 8 € N}, (sl (C)) are endomorphisms of sl,(C), so
they can be identified in QL (sl,(C)) to 1® sl,,(C). We then have Qper(sln(C)) =
8ln (C)® 81, (C)* together with {e®0™} as a basis for the graded differential algebra
of sln(C). So, from (4.5), we have

(4.7) do(e)) = CLep @ 0™,
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and from (4.6)

(4.8) dy(ex ® 0™) = CLoer @ (0" AO™) — %c;;;ek ® (0" A6").

Therefore, in the graded differential algebra Qper(sl,(C)) we have

(49) er 0™ =0"® €k,
and
(4.10) 0" AT = —0" ANO™.

Also, the differential d of Qper(sln(C)) is given by
1
(4.11) de; = Ck e, @ 0™, do* = —§c{€m91 AO™.

Note that the Jacobian identity implies that d*> = 0. Relations (4.9), (4.10) and
(4.11), together with the generators {ex®0™}, provide a presentation for Qper (s, (C)).
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