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Ser. Math. Inform. Vol. 32, No 3 (2017), 269–292

DOI:10.22190/FUMI1703269V

FIXED POINT THEOREMS USING (CLCS) PROPERTY IN
COMPLEX VALUED b-METRIC SPACES

Rohit Kumar Verma

Abstract. Various common fixed point theorems have been proved for one or two pairs
of mappings using either (CLR) property ([44]), or by taking one of the range-subspace
closed. In this paper, we introduce the notion of (CLCS)-property i.e., “common limit
converging in the range sub-space”. Using this property, we prove common fixed point
theorems for two pairs of weakly compatible mappings in complex valued b-metric
spaces satisfying a collection of contractive conditions. Our notion is meaningful and
valid because the required common fixed point will always lie on the range-subspace
of the mapping-pair. We give some examples to show that if a mapping pair (f, g) on
a closed complex valued b-metric space X satisfy the (CLRf ) property, then it is also
(CLRg), and vice-versa.
Keywords: Banach contraction principal, common fixed point, complete metric space,
complex valued metric space, complex valued b-metric space, weakly compatible map-
pings

1. Introduction

Banach contraction principal [7] is a fundamental result in fixed point theory. This
theorem has been generalized in many ways. Bakhtin [8] introduced the notion of
b-metric space as a generalization of metric space in which the triangle inequality
is relaxed. Further, Czerwik [13] proved a contraction theorem in this space, which
generalized the Banach contraction principal. Malhotra and Bansal [28] proved
some common coupled fixed point theorems for generalized contraction in b-metric
spaces.

Azam et al. [4] introduced the complex valued metric space which is a gener-
alization of the metric space. They obtained some fixed point results for a pair
of mappings satisfying a rational inequality. Further, Bhatt et al. [5], [6] gener-
alized the result of Azam et al. [4]. In this line, Ahmad et al. [2], Chandok and
Kumar [9], Hakwadia et al. [15], Manro [24] Öztürk [29], Öztürk and Kaplan [30],
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Sharma [41] and Sitthikul and Saejung [48] etc. proved some common fixed point re-
sults for mappings satisfying contractive condition in complex valued metric spaces.

Recently, Mukheimer [27], Rao et al. [35], Dubey et al. [14] and Singh et al.
([46], [47]) etc. proved some common fixed point results in complex valued b-metric
spaces.

On the other hand, Jungck [19] introduced the notion of compatible mappings,
which was defined for a sequence in the metric space X . Along this line, Pant [31]
proved some common fixed point results using non-compatible mappings. The non-
compatibility was further generalized to property (E.A) by Aamri and Moutawakil
[3]. Pathak, Lopez and Verma ([32], [34]) gave various examples on weak compat-
ibility and property (E.A) in a metric space satisfying an implicit relation. Verma
and Pathak [50] also proved a fixed point result using property (E.A) in a com-
plex valued metric space. Further, Sintunavarat and Kumam [44] introduced the
concept of (CLR)-property (i.e., common limit in the range of a mappings). Many
fixed point theorems have been proved using this property, e.g., [44], [45], [48] etc.

In the line of ‘common limit range’ property, Chouhan et al. [10] introduced the
(JCLR) property. Further, Imdad et al. [16] used this property for two hybrid pairs
of non-self mappings and utilized the same to obtain some coincidence and common
fixed point theorems defined on an arbitrary set with values in metric spaces.

Similarly, Chauhan, Khan and Kumar, [12] proved a unified common fixed point
theorem (Theorem 4.1 with the help of Lemma 3) via common limit range prop-
erty in fuzzy metric spaces, for two pairs of weakly compatible mappings satisfying
an implicit relation defined on a set of all continuous functions φ : [0, 1]6 → R.
However, Theorem 4 and Lemma 3, is found incorrect by Rolden, Karapinar and
Kumam [37]. They improved and generalized this theorem and lemma (Ref. The-
orem 11 of [37]) by proposing Axiom (FM-6) in fuzzy metric space.

Pathak et. al. [33] introduced the concept of R-weakly commuting of type (Ag)
in a metric space. Sintunavarat and Kumam [43] used this concept in a fuzzy metric
space and established a common fixed point theorem by using the common limit in
the range property.

X. Q. Hu [51] proved common coupled fixed point theorems for contractive
mappings in a fuzzy metric spaces. Jain et al. [18] extend the notion of (EA) and
(CLRg) properties for coupled mappings and generalized the result of X. Q. Hu [51].

We will show below, by an example, that if a mapping pair (f, g) of a space X

satisfy the (CLRf ) property, then under some conditions it is (CLRg), and vice-
versa. Thus we may unify the (CLRf ) and (CLRg) properties for these conditions.
We hint here that the common fixed point will always lie on the intersection of
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the range-subset of the mapping pair. We will call this a (CLCS)-property, (or,
“common limit converging in the range sub-space”). The (CLCS)-property unifies
both (CLRf ) and (CLRg) properties, in which the fixed point will necessarily lie,
if it exist.

Furthermore, in 2014, Ahmad et. al [2] obtained a common fixed point result for
a pair of mappings satisfying rational expressions on a closed ball in a complex val-
ued metric space. In this paper, we will unify the (CLRf ) and (CLRg) properties,
which is defined in the range subspace f(X)

⋂

g(X). If this is a closed subset, then
we need not to take the closed ball, unlike [2], in which the contractive condition
satisfy.

A further generalization of compatible mappings, namely weakly compatible
mappings, was introduced by Jungck [20]. More results on complex valued metric
spaces using weak compatibility can be found in [9], [21], [23], [26], [29], [30], [39],
[40], [41], [44], [45], [48] and [50] etc.

In this paper, we introduce the notion of (CLCS)-property and prove a common
fixed point theorem for two pairs of weakly compatible mappings in complex valued
b-metric spaces satisfying a collection of contractive conditions.

2. Preliminaries

Definition 2.1. ([28]) Let X be a nonempty set and let s ≥ 1 be a real number.
The mapping d : X ×X → [0,∞) is called b-metric space if for all x, y, z ∈ X :
(B1) 0 ≤ d(x, y) and d(x, y) = 0 if and only if x = y,
(B2) d(x, y) = d(y, x),
(B3) d(x, y) ≤ s[d(x, z) + d(z, y)],
satisfy. The number s is called the coefficient or parameter of the b-metric space.

Example 2.1. ([1], [28]) Let (X, d) be a metric space and ρ(x, y) =
(

d(x, y)
)p
, where

p > 1 is a real number. Then (X, ρ) is a b-metric space with s = 2p−1.

Every b-metric is a metric, but there may exist b-metric which is not a metric,
as shown in the following example:

Example 2.2. ([1], [36]) If X = R is the set of real numbers and d(x, y) = |x− y| is the

usual Euclidean metric, then ρ(x, y) =
(

d(x, y)
)2

= |x− y|2 is a b-metric on R with s = 2;
but is not a metric on R (see Ex.1.1 of [36]).

Let C is the set of complex numbers z = a + ib. Here a, b, are real numbers, a
is called Re(z) and b is called Im(z). A complex valued metric d is a function from
a set X ×X into C. Let z1, z2 ∈ C; define a partial order - on C as follows:

(2.1) z1 - z2 ifandonlyif Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).
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It follows that z1 - z2 if one of the following conditions is satisfied:
(i) Re(z1) = Re(z2), Im(z1) < Im(z2),
(ii) Re(z1) < Re(z2), Im(z1 = Im(z2),
(iii) Re(z1) < Re(z2), Im(z1) < Im(z2),
(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).

In (i), (ii) and (iii), we have |z1| < |z2|. In (iv), we have |z1| = |z2|. So
|z1| ≤ |z2|, whenever z1 - z2. In particular, z1 � z2 if z1 6= z2 and one of (i), (ii),
(iii) satisfy. In this case |z1| < |z2|. We will write z1 ≺ z2 if only (iii) satisfy. Hence
z1 ≺ z2 ⇒ |z1| < |z2|.

Remark 2.1. ([21]) We note that the following statements hold:
(i) a, b ∈ R and a ≤ b ⇒ az - bz, ∀z ∈ C;
(ii) 0 - z1 � z2 ⇒ |z1| < |z2|, ∀z1, z2 ∈ C;
(iii) z1 - z2 and z2 ≺ z3 ⇒ z1 ≺ z3, ∀z1, z2, z3 ∈ C.

Azam et al. [4] defined complex-valued metric space (X, d) in the following way:

Definition 2.2. [4] Let X be a nonempty set. Suppose that the mapping d :
X ×X → C satisfies the following conditions:
(A1) 0 - d(x, y), and d(x, y) = 0 if and only if x = y, ∀x, y ∈ X ,
(A2) d(x, y) = d(y, x), ∀x, y ∈ X ,
(A3) d(x, y) - d(x, z) + d(z, y), ∀x, y, z ∈ X ,
then d is called complex-valued metric, and (X, d) is called a complex-valued
metric space.

On generalizing (A3) above, i.e., the triangle inequality, in the following way,
complex valued b-metric space is defined:

Definition 2.3. ([27], [28], [35]) Let X be a nonempty set. Suppose that the
mapping d : X ×X → C satisfy the following conditions:
(C1) 0 - d(x, y), and d(x, y) = 0 if and only if x = y, for all x, y ∈ X ,
(C2) d(x, y) = d(y, x) for all x, y ∈ X ,
(C3) d(x, y) - s[d(x, z) + d(z, y)], ∀x, y, z ∈ X , where s ≥ 1 is a real number,
then d is called a complex valued b-metric on X , and (X, d) is called complex
valued b-metric space.

Example 2.3. Let X = C and d : X × X → C be defined by: d(z1, z2) = 5i|z1 − z2|
2.

To show that (X, d) is a complex valued b-metric space with s = 2, it is enough to verify
the triangular inequality condition. For, let z1, z2, z3 ∈ C, then

d(z1, z3) = 5i|z1 − z3|
2 = 5i

(

|(z1 − z2) + (z2 − z3)|
)2

- 5i
(

|z1 − z2|+ |z2 − z3|
)2

- 5i
(

|z1 − z2|
2 + |z2 − z3|

2 + 2|z1 − z2|.|z2 − z3|
)

- 5i
(

|z1 − z2|
2 + |z2 − z3|

2 + 2. 1
2

{

|z1 − z2|
2 + |z2 − z3|

2
})

, (AM ≥ GM)

= 5i
(

2|z1 − z2|
2 + 2|z2 − z3|

2
)

= 2
(

d(z1, z2) + d(z2, z3)
)

.

Thus (X, d) is a complex valued b-metric space with s = 2.
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Example 2.4. ([35]) Let X = [0, 1]. Define a complex valued metric d : X ×X → C by:
d(x, y) = |x − y|2 + i|x − y|2, ∀x, y ∈ X; then (X, d) is a complex valued b-metric space
with s=2.

Remark 2.2. Note that, if s = 1 then the complex valued b-metric space reduces to a
complex valued metric space. Thus every complex valued metric space is a complex
valued b-metric space, but not conversely. This generalizes the concept of a complex
valued b-metric space over the complex valued metric space.

Definition 2.4. ([35]) Let (X, d) be a complex valued b-metric space, then
(1) A point x ∈ X is called interior point of a set A ⊆ X whenever ∃0 ≺ r ∈ C :
B(x, r) = {y ∈ X : d(x, y) ≺ r} ⊆ A.
(2) A point x ∈ X is called the limit point of a set A ⊆ X whenever for every
0 ≺ r ∈ C : B(x, r)

⋂

(X −A) 6= φ.
(3) A subset B ⊆ X is called open whenever each element of B is an interior point
of B.
(4) A subset B ⊆ X is called closed whenever each limit point of B belongs to B.
(5) The family F := {B(x, r) : x ∈ X, 0 ≺ r} is a sub-basis for a topology on X .
We denote this complex topology by τC . Indeed the topology τC is Hausdorff.

Definition 2.5. [35] Let (X, d) be a complex valued b-metric space, and let {xn}
be a sequence in X and x ∈ X .
(1) If for every c ∈ C with 0 ≺ c ∃n0 ∈ N : ∀n > n0, d(xn, x) ≺ c, then {xn} is said
to be convergent to x, and x is limit point of {xn}. We denote this by xn → x as
n → ∞, or limn→∞xn = x.
(2) If for every c ∈ C with 0 ≺ c there is n0 ∈ N : ∀n > n0, d(xn, xm) ≺ c, where
m ∈ N, then {xn} is said to be Cauchy sequence.
(3) If every Cauchy sequence of X converges in X , then X is called the complete
complex valued b-metric space.

Definition 2.6. [19] Let f, g : X → X . Suppose {xn} be a sequence in X such
that limn→∞ fxn = limn→∞ gxn = t, for some t ∈ X . Then f, g : X → X is called
compatible mappings if limn→∞ d(fgxn, gfxn) = 0.

Definition 2.7. [31] Let f, g : X → X . Suppose {xn} be a sequence in X such
that limn→∞ fxn = limn→∞ gxn = t, for some t ∈ X . Then f, g : X → X is called
noncompatible mappings if the limit limn→∞ d(fgxn, gfxn) is either nonzero, or
nonexistent.

Definition 2.8. [3] Let f, g : X → X . Then pair (f, g) is said to satisfy property
(E.A), if there exist a sequence {xn} in X such that limn→∞ fxn = limn→∞ gxn =
t, for some t ∈ X .

Definition 2.9. [44] Let f, g : X → X . Suppose {xn} be a sequence in X . Then
the pair (f, g) is said to satisfy property (CLRf), if limn→∞ fxn = limn→∞ gxn =
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fu, for some u ∈ X . Similarly, the pair (f, g) is said to satisfy property (CLRg),
if limn→∞ fxn = limn→∞ gxn = gv, for some v ∈ X . The “common limit in the
range of f” is called (CLRf ) and the “common limit in the range of g” is called
(CLRg) property, respectively.

See Ex. 2.4 for CLR (common limit in the range) property, and Ex. 2.5 for JCLR
(jointly common limit in the range) property in Manro [24].

Remark 2.3. Let (X, d) be a closed, complex valued b-metric space. Define f, g : X →
X. Let {xn} ⊆ X be a sequence such that limn→∞ fxn = limn→∞ gxn = gu = t (say).
Then (f, g) satisfy the (E.A) property ([3]) and (CLRg) property at u ([44]-[45]). Since
X is closed so there exist some u ∈ X such that t = fu. In this case, (f, g) is (CLRf ) at
u. Thus (f, g) satisfy both (CLRf ) and (CLRg) properties.

Following example shows that under some conditions, if the pair of self-mappings
f, g : X → X satisfy (CLRf )-property, then it will also satisfy the (CLRg)-
property; and vice-versa. This will happen because the value of “common limit”
(say t = gv ∈ X , in case of (CLRg)-property); and the value of “common limit”
(say t = fu ∈ X , in case of (CLRf ) property) always belongs to X , for some u, v

necessarily belongs to X .

Example 2.5. Let X = C and d be any complex valued metric on X. Define f, g :
X → X by: fz = z + 2i, gz = 3z, ∀z ∈ X. Consider a sequence {zn} = {i + 1

n
} in X,

then limn→∞ fzn = limn→∞(zn + 2i) = limn→∞(i + 1
n
) + 2i = 3i, and limn→∞ gzn =

limn→∞ 3(i+ 1
n
) = 3i = g(i). So that limn→∞ fzn = limn→∞ gzn = g(i). Hence, the pair

(f, g) satisfy property (CLRg) with v = i ∈ X.
On the other hand, limn→∞ fzn = limn→∞ gzn = 3i = f(i); hence the pair (f, g) also

satisfy property (CLRf ) in X with u = i ∈ X.

Example 2.6. Let X = C and d(z1, z2) = (cosα + i sinα)|z1 − z2|, ∀α ∈ [0, π
2
), be any

complex valued metric on X. Define f, g : X → X by: fz = 2z − 4, gz = z + 2i, ∀z ∈ X.
Consider a sequence {zn} = {4+2i+ 1

n
} in X, then limn→∞ fzn = limn→∞ gzn = (4+4i).

Observe that 4 + 4i = f(4 + 2i); hence, the pair (f, g) satisfy (CLRf )-property in X with
u = 4 + 2i ∈ X.

Further, observe that 4 + 4i = g(4 + 2i), hence (f, g) satisfy (CLRg) property with
v = 4 + 2i ∈ X. Thus if (f, g) satisfy property (CLRf ) then so is (CLRg).

Example 2.7. Let X = C and d be any complex valued b-metric on X. Define
f, g : X → X by: fz = z2 − i

3
, gz = −z+1, ∀z ∈ X. Consider a sequence {zn} ⊆ X; then

for the “common limit” t in the pair (f, g), we must have
limn→∞ fzn = limn→∞ gzn ⇔ limn→∞(z2n − i

3
) = limn→∞(−zn + 1)

⇔ limn→∞(z2n + zn − 1− i
3
) = 0 ⇔ limn→∞ zn = −1

2
± 1

2

√

(

5 + 4i
3

)

.

So, if we take a sequence {zn}
n=∞
n=1 :=

{

1
n
+

(

−1
2

+ 1
2

√

(

5 + 4i
3

)

)}n=∞

n=1
then

limn→∞ fzn=limn→∞(z2n−
i
3
)=limn→∞(1−zn)=limn→∞

[

1−
{

1
n
+
(

−1
2
+ 1

2

√

(

5+ 4i
3

)

)}]

=

3
2
− 1

2

√

(

5 + 4i
3

)

= t = limn→∞ gzn = gv=g
(

−1
2

+ 1
2

√

(

5+ 4i
3

)

)

.
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Hence, the pair (f, g) satisfy property (CLRg) with v = −1
2

+ 1
2

√

(

5 + 4i
3

)

∈ X.

On the other hand, limn→∞ fzn = limn→∞ gzn = t = fu = u2 − i
3
⇒ u = ±

√

[t+ i
3
] =

±

√

[

{

3
2
− 1

2

√

(

5 + 4i
3

)}

+ i
3

]

; both the value of u gives for (CLRf ).

Hence the pair (f, g) also satisfy property (CLRf ) in X with

u1 =

√

[

{

3
2
− 1

2

√

(

5 + 4i
3

)}

+ i
3

]

∈ X;

u2 =

√

[

{

3
2
− 1

2

√

(

5 + 4i
3

)}

+ i
3

]

∈ X.

For another sequence wn = −1
2

− 1
2

√

(

5 + 4i
3

)

, the pair (f, g) satisfy property (CLRg);

and thus will satisfy (CLRf ). Finally, we conclude that if the pair of self-mappings f, g :
X → X satisfy property (CLRg) then so is (CLRf ), and vice-versa.

Now, we introduce the notion of (CLCS) property:

Definition 2.10. Suppose that (X, d) be a complex valued b-metric space and
f, g : X → X . Let Y ⊆ X . The mappings f, g are said to satisfy the property of
“common limit converging in the range sub-space Y ”, in brief (CLCS) property
in Y , if there exist a sequence {zn} in X such that

(2.2) lim
n→∞

fzn = lim
n→∞

gzn ∈ Y

for some sequence {zn} in X .

Remark 2.4. The (CLRg) and (CLRf ) properties unify if Y = f(X) ∩ g(X).

Lemma 2.1. The continuity of one mapping with (CLR) property of another map-
ping implies the (CLCS) property.

Proof. Let f, g : X → X and f is continuous. Let (f, g) is (CLRg) in X . Assume
{zn} be a sequence in X . Then for {zn} ⊆ X we have limn→∞ fzn = fu =
limn→∞ gzn = gv, for some u, v ∈ X . Hence (f, g) is (CLRf ). So that (f, g) is
(CLCS) in f(X)

⋂

g(X). Similar argument applies if g is continuous and (f, g) is
(CLRf ). This proves the Lemma with above Remark.

Following are some examples of (CLCS) property in metric spaces, complex-
valued metric spaces and complex-valued b-metric spaces:

Example 2.8. Let (X, d), X = C be any complex valued metric space and f, g :
X → X be defined as fz = z

4
, gz = 3z

4
, ∀z ∈ X. Then for the sequence {zn} = { 1+i

n
},

we have limn→∞ fzn = limn→∞ gzn = 0 ∈ Y = f(X) ∩ g(X). Hence (f, g) is (CLCS) in
the subspace Y = f(X) ∩ g(X) = C.
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Example 2.9. Let (X, d) be any complex valued metric space and f, g : X → X
be defined as fz = z + 1, gz = 2z,∀z ∈ X. Then for the sequence {zn} = {1 + 1

n
}, we

have limn→∞ fzn = limn→∞ gzn = 2 ∈ Y = f(X) ∩ g(X). Hence (f, g) is (CLCS) in the
subspace Y = f(X) ∩ g(X).

Example 2.10. Let (X, d) be a usual metric space and f, g : X → X = [0,∞) be
defined by: fx = x2 + 2, gx = 2x + 10, ∀x ∈ X. Then f(X) = [2,∞), g(X) = [10,∞).
Take a sequence {xn} = {4 − 1

n
}, then we have limn→∞ fxn = limn→∞ gxn = 18 ∈

f(X) ∩ g(X) = [10,∞) = Y . Hence (f, g) is (CLCS) in Y .

Example 2.11. Let (X, d) be a metric space with d(x, y) = 1
4
|x − y|. Define f, g :

X → X = [5, 50] by: fx = 1
2
(x + 5), gx = 1

3
(x + 15), ∀x ∈ X. So that f(X) = [5, 55

2
],

g(X) = [ 20
3
, 65

3
). Then for the sequence {xn} = {15 + 1

n
}, we have limn→∞ fxn =

limn→∞ gxn = 10 ∈ f(X) ∩ g(X) = [ 20
3
, 65

3
) = Y . Hence (f, g) is (CLCS) in Y .

Example 2.12. Let X = C. Define complex valued b-metric d : X × X → C by:
d(x, y) = |x− y|2 + i|x− y|2, ∀x, y ∈ X. Define mappings f, g : X → X by: fx = x

4
, gx =

x
5
,∀x ∈ X. Then f(X) = C = g(X) = f(X) ∩ g(X) = Y (say). Let {zn} = { 2+3i

5n
} be a

sequence in X. Then limn→∞ fzn = limn→∞ gxn = 0 ∈ Y . Hence (f, g) is (CLCS) in Y .

Definition 2.11. [20] A pair of self-mappings A,S : X → X is called weakly
compatible if they commute at their coincidence points. That is, if there be a
point u ∈ X such that Au = Su, then ASu = SAu, for each u ∈ X .

Example 2.13. Let X = [0, 1]. Define complex valued b-metric d : X × X → C by:
d(x, y) = |x− y|2 + i|x− y|2,∀x, y ∈ X. Define mappings f, g : X → X by: fx = x

4
; gx =

x
5
, ∀x ∈ X. Then f and g have coincidence point at x = 0. Now at this point, fg0 = gf0.

Thus (f, g) is weakly compatible at 0.

3. Main Results

Here is the main results:

3.1. First main Theorem

Theorem 3.1. Let A,B, S, T : X → X be four self-mappings of a complex valued
b-metric space (X, d) satisfying:
(i) The pair (A,S) satisfy the (CLCS) property in T (X), or B(X); and another
pair (B, T ) satisfy the (CLCS) property in S(X) or A(X),
(ii) points x, y satisfy a set of rational inequalities

(3.1) d(Ax,By) - q ∪x,y (A,B, S, T ), ∀x, y ∈ X
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where q is a non-negative real number such that 0 ≤ q < 1
s2+s

, with s ≥ 1, and

∪x,y(A,B, S, T ) ∈
{

d(Sx, T y),
d(Ax, Sx)d(By, Ty)

d(Sx, T y) + d(Ax,By)
,

d(By, Sx)d(Ax, Ty)

d(Sx, T y) + d(Ax,By)
,
d(Ax, Sx)d(By, Sx)

1 + d(Sx, T y)
,

d(Ax, Ty)d(By, Ty)

1 + d(Sx, T y)
,
d(Ax, Sx)d(By, Ty)

1 + d(Ax,By)
,
d(Sx,By)d(Ax,By)

1 + d(Ax,By)
,

d(By, Sx)d(Sx, T y)

1 + d(Sx, T y)
,
d(Ax, Sx)d(Sx, T y)

1 + d(Sx, T y)
,

d(Sx, T y)d(By, Ty)

d(Ax,By) + d(Sx, T y)

}

,

(iii) both the pairs (A,S) and (B, T ) are weakly compatible.
Then mappings A,B, S and T have a unique common fixed point in X.

Proof. We take condition (i) one by one.
Case I. First suppose that the pair (A,S) satisfy (CLCS) property in T (X).
Then, according to Definition 2.10, there exist a sequence {xn} in X such that
limn→∞ Axn = limn→∞ Sxn = t ∈ TX . So, there exist t ∈ T (X) such that t = Tv

for some v ∈ X . We claim that Bv = t, i.e., d(Bv, t) = 0. If not, then putting
x = xn, y = v in (ii) we have

(3.2) d(Axn, Bv) - q ∪xn,v (A,B, S, T ),

where q is a non-negative real number such that 0 ≤ q < 1
s2+s

, s ≥ 1, and

∪xn,v(A,B, S, T ) ∈
{

d(Sxn, T v),
d(Axn, Sxn)d(Bv, T v)

d(Sxn, T v) + d(Axn, Bv)
,

d(Bv, Sxn)d(Axn, T v)

d(Sxn, T v) + d(Axn, Bv)
,
d(Axn, Sxn)d(Bv, Sxn)

1 + d(Sxn, T v)
,

d(Axn, T v)d(Bv, T v)

1 + d(Sxn, T v)
,
d(Axn, Sxn)d(Bv, T v)

1 + d(Axn, Bv)
,

d(Sxn, Bv)d(Axn, Bv)

1 + d(Axn, Bv)
,
d(Bv, Sxn)d(Sxn, T v)

1 + d(Sxn, T v)
,
d(Axn, Sxn)d(Sxn, T v)

1 + d(Sxn, T v)
,

d(Sxn, T v)d(Bv, T v)

d(Axn, Bv) + d(Sxn, T v)

}

,

We have following cases to consider:
sub-case 1. If d(Sxn, T v) is chosen in (3.2), then we have

d(Axn, Bv) - q.d(Sxn, T v) ⇒ |d(Axn, Bv)| ≤ q.|d(Sxn, T v)|.

Letting n → ∞ it yields:
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lim
n→∞

|d(t, Bv)| = lim
n→∞

q.|d(t, t)| = 0 ⇒ Bv = t.

sub-case 2. If d(Axn,Sxn)d(Bv,Tv)
d(Sxn,Tv)+d(Axn,Bv) is chosen in (3.2), then we have

d(Axn, Bv) - q.
d(Axn, Sxn)d(Bv, T v)

d(Sxn, T v) + d(Axn, Bv)

⇒ |d(Axn, Bv)| ≤ q.
|d(Axn, Sxn)|.|d(Bv, T v)

|d(Sxn, T v) + d(Axn, Bv)|

Letting n → ∞ it yields:

|d(t, Bv)| ≤ q.
|d(t, t)|.|d(Bv, t)

|d(t, t) + d(t, Bv)|
= 0 ⇒ Bv = t.

sub-cases 3,4,5,6. If
d(Bv,Sxn)d(Axn,Tv)
d(Sxn,Tv)+d(Axn,Bv) , or

d(Axn,Sxn)d(Bv,Sxn)
1+d(Sxn,Tv) , or d(Axn,Tv)d(Bv,Tv)

1+d(Sxn,Tv) , or
d(Axn,Sxn)d(Bv,Tv)

1+d(Axn,Bv) , is chosen in (3.2), then as in subcases 2, on letting n → ∞, we

have

lim
n→∞

|d(Axn, Bv)| = q.0 = 0 ⇒ Bv = t.

sub-case 7. If d(Sxn,Bv)d(Axn,Bv)
1+d(Axn,Bv) is chosen in (3.2), then we have

d(Axn, Bv) - q.
d(Sxn, Bv)d(Axn, Bv)

1 + d(Axn, Bv)

⇒ |d(Axn, Bv)| ≤ q.
|d(Sxn, Bv)|.|d(Axn, Bv)|

|1 + d(Axn, Bv)|
.

Letting n → ∞, and using |1 + d(t, Bv)| < |d(t, Bv)| it yields:

|d(t, Bv)| ≤ q.
|d(t, Bv)|.|d(t, Bv)|

|1 + d(t, Bv)|

< q.
|d(t, Bv)|.|d(t, Bv)|

|d(t, Bv)|
= q.|d(t, Bv)| < |d(t, Bv)|,

a contradiction. Thus Bv = t.
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sub-case 8. If d(Bv,Sxn)d(Sxn,Tv)
1+d(Sxn,Tv) is chosen in (3.2), then we have

d(Axn, Bv) - q.
d(Bv, Sxn)d(Sxn, T v)

1 + d(Sxn, T v)

⇒ |d(Axn, Bv)| ≤ q
|d(Bv, Sxn)|.|d(Sxn, T v)|

|1 + d(Sxn, T v)|
.

Letting n → ∞ it yields

lim
n→∞

|d(Axn, Bv)| = |d(t, Bv)| ≤ q. lim
n→∞

|d(Bv, t)|.|d(t, t)|

|1 + d(t, t)|
= q.0 ⇒ Bv = t.

sub-case 9. If d(Axn,Sxn)d(Sxn,Tv)
1+d(Sxn,Tv) is chosen in (3.2), then we have

d(Axn, Bv) - q.
d(Axn, Sxn)d(Sxn, T v)

1 + d(Sxn, T v)

⇒ |d(Axn, Bv)| ≤ q.
|d(Axn, Sxn)|.|d(Sxn, T v)|

|1 + d(Sxn, T v)|
.

Letting n → ∞, and since limn→∞ Axn = limn→∞ Sxn = t = Tv it yields:

lim
n→∞

|d(Axn, Bv)| = |d(t, Bv)| ≤ q. lim
n→∞

|d(Axn, Sxn)|.|d(Sxn, T v)|

|1 + d(Sxn, T v)|

= q.
|d(t, t)|.|d(t, t)|

|1 + d(t, t)|
= q.0

.

Thus Bv = t.

sub-case 10. If d(Sxn,Tv)d(Bv,Tv)
d(Axn,Bv)+d(Sxn,Tv) is chosen in (3.2), then we have

d(Axn, Bv) - q.
d(Sxn, T v)d(Bv, T v)

d(Axn, Bv) + d(Sxn, T v)

⇒ |d(Axn, Bv)| ≤ q.
|d(Sxn, T v)|.|d(Bv, T v)|

|d(Axn, Bv) + d(Sxn, T v)|
.

Letting n → ∞ it yields:

lim
n→∞

|d(Axn, Bv)| = |d(t, Bv)| = q. lim
n→∞

|d(Sxn, T v)|.|d(Bv, T v)|

|d(Axn, Bv) + d(Sxn, T v)|

= q.
|d(t, t)|.|d(Bv, t)|

|d(t, Bv) + d(t, t)|
= q.0 ⇒ Bv = t.
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Therefore, in all cases, we obtain Bv = t. Hence

(3.3) lim
n→∞

Axn = lim
n→∞

Sxn = Bv = Tv = t.

Hence v is a coincidence point of (B, T ). Now, the weakly compatibility of pair
(B, T ) implies that TBv = BTv = T t = Bt. Next, we claim that t is a common
fixed point of (B, T ), i.e., Bt = T t = t. For, putting x = xn, y = t in condition (ii)
and using limn→∞ Axn = t = limn→∞Sxn, T t = Bt, we have

(3.4) d(Axn, Bt) - q ∪xn,t (A,B, S, T ),

where q is a non-negative real number such that 0 ≤ q < 1
s2+s

, s ≥ 1, and

∪xn,t(A,B, S, T ) ∈
{

d(Sxn, T t),
d(Axn, Sxn)d(Bt, T t)

d(Sxn, T t) + d(Axn, Bt)
,

d(Bt, Sxn)d(Axn, T t)

d(Sxn, T t) + d(Axn, Bt)
,
d(Axn, Sxn)d(Bt, Sxn)

1 + d(Sxn, T t)
,
d(Axn, T t)d(Bt, T t)

1 + d(Sxn, T t)
,

d(Axn, Sxn)d(Bt, T t)

1 + d(Axn, Bt)
,
d(Sxn, Bt)d(Axn, Bt)

1 + d(Axn, Bt)
,

d(Bt, Sxn)d(Sxn, T t)

1 + d(Sxn, T t)
,
d(Axn, Sxn)d(Sxn, T t)

1 + d(Sxn, T t)
,

d(Sxn, T t)d(Bt, T t)

d(Axn, Bt) + d(Sxn, T t)

}

,

We have the following cases to consider:

sub-case 1. If d(Sxn, T t) is chosen in (3.4), then we have

d(Axn, Bt) - q.d(Sxn, T t) ⇒ |d(Axn, Bt)| ≤ q.|d(Sxn, T t)| = q.|d(Sxn, Bt)|.

Letting n → ∞, it yields

lim
n→∞

|d(Axn, Bt)| = |d(t, Bt)| ≤ q. lim
n→∞

|d(Sxn, Bt)| < |d(t, Bt)|,

a contradiction. Thus Bt = t.

sub-case 2,5,6,10. If

d(Axn, Sxn)d(Bt, T t)

d(Sxn, T t) + d(Axn, Bt)
= 0 =

d(Axn, T t)d(Bt, T t)

1 + d(Sxn, T t)
=

d(Axn, Sxn)d(Bt, T t)

1 + d(Axn, Bt)

=
d(Sxn, T t)d(Bt, T t)

d(Axn, Bt) + d(Sxn, T t)



Fixed Point Theorems Using (Clcs) Property in Complex Valued B-Metric Spaces 281

is chosen in (3.4), then it follows that

d(Axn, Bt) - q.0 ⇒ |d(Axn, Bt)| ≤ 0.

Letting n → ∞, it yields

lim
n→∞

|d(Axn, Bt)| = |d(t, Bt)| ≤ 0.

Thus Bt = t.

sub-case 3. If d(Bt,Sxn)d(Axn,T t)
d(Sxn,T t)+d(Axn,Bt) is chosen in (3.4), then we have

d(Axn, Bt) - q.
d(Bt, Sxn)d(Axn, T t)

d(Sxn, T t) + d(Axn, Bt)
⇒ |d(Axn, Bt)|

≤ q.
|d(Bt, Sxn)|.|d(Axn, T t)|

|d(Sxn, T t) + d(Axn, Bt)|
.

Letting n → ∞, it yields

lim
n→∞

|d(Axn, Bt)| = |d(t, Bt)| ≤ q. lim
n→∞

|d(Bt, Sxn)|.|d(Axn, T t)|

|d(Sxn, T t) + d(Axn, Bt)|

=
q

2
|d(t, Bt)|,

a contradiction. Thus Bt = t.

sub-case 4. If d(Axn,Sxn)d(Bt,Sxn)
1+d(Sxn,T t) is chosen in (3.4), then we have

d(Axn, Bt) - q.
d(Axn, Sxn)d(Bt, Sxn)

1 + d(Sxn, T t)

⇒ |d(Axn, Bt)| ≤ q.
|d(Axn, Sxn)|.|d(Bt, Sxn)|

|1 + d(Sxn, T t)|
.

Letting n → ∞, it yields

lim
n→∞

|d(Axn, Bt)| = |d(t, Bt)| ≤ q. lim
n→∞

|d(Axn, Sxn)|.|d(Bt, Sxn)|

|1 + d(Sxn, T t)|

= q.
|d(t, t)|.|d(Bt, t)|

|1 + d(t, T t)|
= q.0 = 0.

Thus Bt = t.
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sub-case 7. If d(Sxn,Bt)d(Axn,Bt)
1+d(Axn,Bt) is chosen in (3.4), then we have

d(Axn, Bt) - q.
d(Sxn, Bt)d(Axn, Bt)

1 + d(Axn, Bt)

⇒ |d(Axn, Bt)| ≤ q.
|d(Sxn, Bt)|.|d(Axn, Bt)|

|1 + d(Axn, Bt)|
.

Letting n → ∞, it yields

lim
n→∞

|d(Axn, Bt)| = |d(t, Bt)| ≤

q. lim
n→∞

|d(Sxn, Bt)|.|d(Axn, Bt)|

|1 + d(Axn, Bt)|
=

|d(t, Bt)|.|d(t, Bt)|

|1 + d(t, Bt)|
.

But |1 + d(t, Bt)| > |d(t, Bt)|, so that

|d(t, Bt)| ≤ q.
|d(t,Bt)|.|d(t,Bt)|

|1+d(t,Bt)| < |d(t, Bt)|,

a contradiction. Thus Bt = t.

sub-case 8. If d(Bt,Sxn)d(Sxn,T t)
1+d(Sxn,T t) is chosen in (3.4), then we have

d(Axn, Bt) - q.
d(Bt, Sxn)d(Sxn, T t)

1 + d(Sxn, T t)

⇒ |d(Axn, Bt)| ≤ q.
|d(Bt, Sxn)|.|d(Sxn, T t)|

|1 + d(Sxn, T t)|
.

Letting n → ∞, it yields

lim
n→∞

|d(Axn, Bt)| = |d(t, Bt)| ≤ q. lim
n→∞

|d(Bt, Sxn)|.|d(Sxn, T t)|

|1 + d(Sxn, T t)|

= q.
|d(Bt, t)|.|d(t, T t)|

|1 + d(t, T t)|
.

But |1 + d(t, T t)| > |d(t, T t)|; so above yields

|d(t, Bt)| ≤ q.
|d(Bt, t)|.|d(t, T t)|

|1 + d(t, T t)|
< |d(Bt, t)|,

a contradiction. Thus Bt = t.
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sub-case 9. If d(Axn,Sxn)d(Sxn,T t)
1+d(Sxn,T t) is chosen in (3.4), then we have

d(Axn, Bt) - q.
d(Axn, Sxn)d(Sxn, T t)

1 + d(Sxn, T t)

⇒ |d(Axn, Bt)| ≤ q.
|d(Axn, Sxn)|.|d(Sxn, T t)|

|1 + d(Sxn, T t)|
.

Letting n → ∞, it yields

lim
n→∞

|d(Axn, Bt)| = |d(t, Bt)| ≤ q. lim
n→∞

|d(Axn, Sxn)|.|d(Sxn, T t)|

|1 + d(Sxn, T t)|
= q.0 = 0.

Thus Bt = t. Hence in all cases, Bt = T t = t. It shows that t ∈ T (X) is a
common fixed point of (B, T ).

Case II. A similar argument arises if the same pair (A,S) as in Case I, satisfies
(CLCS) property in another range subspace B(X). In this case t ∈ B(X) is a
common fixed point of (B, T ).

Case III. Next, suppose that the second pair (B, T ) satisfies (CLCS) property in
a subspace S(X). Then, according to Definition 2.10, there exists a sequence {yn}
in X such that limn→∞ Byn = limn→∞ Tyn ∈ S(X). So, there exist t′ ∈ S(X)
such that t′ = Su for some u ∈ X , where t′ = limn→∞ Byn = limn→∞ Tyn. The
claim Au = t′ follows exactly as in Case I. It shows that u is a coincidence point of
(A,S). The weakly compatibility of (A,S) implies that ASu = SAu = At′ = St′.
It shows that t′ is a coincidence point of (A,S) and t ∈ S(X).

Now, we claim that t′ is a common fixed point of (A,S). This follows exactly as
in Case I, by putting x = t′, y = yn in condition (ii), making n → ∞, and using
At′ = St′. Hence At′ = t′. It shows that t′ ∈ S(X) is a common fixed point of
(A,S).

Case IV. A similar argument arises if the second pair (B, T ) satisfy the (CLCS)
property in range subspace A(X). In this case t′ ∈ A(X) is a common fixed point
of (A,S).

Further, we claim that the common fixed point t′ of (A,S), and t of (B, T ) are
same, i.e., t = t′. If not, then putting x = t′, y = t in condition (ii), and using
At′ = St′ = t′, Bt = T t = t, we have

(3.5) d(At′, Bt) = d(t′, t) - q ∪t′,t (A,B, S, T ),

where q is a non-negative real number such that 0 ≤ q < 1
s2+s

, s ≥ 1, and
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∪t′,t(A,B, S, T ) ∈
{

d(St′, T t),
d(At′, St′)d(Bt, T t)

d(St′, T t) + d(At′, Bt)
,

d(Bt, St′)d(At′, T t)

d(St′, T t) + d(At′, Bt)
,

d(At′, St′)d(Bt, St′)

1 + d(St′, T t)
,
d(At′, T t)d(Bt, T t)

1 + d(St′, T t)
,

d(At′, St′)d(Bt, T t)

1 + d(At′, Bt′)
,
d(St′, Bt)d(At′, Bt)

1 + d(At′, Bt)
,

d(Bt, St′)d(St′, T t)

1 + d(St′, T t)
,
d(At′, St′)d(St′, T t)

1 + d(St′, T t)
,

d(St′, T t)d(Bt, T t)

d(At′, Bt) + d(St′, T t)

}

,

=
{

d(t′, t), 0,
1

2
d(t, t′), 0, 0, 0,

d(t′, t)d(t′, t)

1 + d(t′, t)
,
d(t, t′)d(t′, t)

1 + d(t′, t)
, 0, 0

}

.

Here arises following cases:

sub-case-1. If d(t′, t) is chosen, then from (3.5), we have

d(t′, t) - q.d(t′, t) ⇒ |d(t′, t)| < q|d(t′, t)| < |d(t′, t)|,

a contradiction. Thus t = t′.

sub-case-2,4,5,6,9,10. If 0 is chosen, then from (3.5), we have

d(t′, t) - q.0 ⇒ |d(t′, t)| ≤ 0. Thus t = t′.

sub-case-3. If 1
2d(t

′, t) is chosen, then from (3.5), we have

d(t′, t) -
q

2
.d(t′, t) ⇒ |d(t′, t)| ≤

q

2
|d(t′, t)| < |d(t′, t)|,

a contradiction. Thus t = t′.

sub-case-7,8. If d(t′,t)d(t′,t)
1+d(t′,t) is chosen, then from (3.5), we have

d(t′, t) - q.
d(t′, t)d(t′, t)

1 + d(t′, t)

⇒ |d(t′, t)| ≤ q.
|d(t′, t)|.|d(t′, t)|

|1 + d(t′, t)|
< q.|d(t′, t)|,

a contradiction, as |1 + d(t′, t)| > |d(t′, t)|. Thus t = t′.

Hence in all cases t = t′. This shows that t is a common fixed point of A,B, S, T .
Uniqueness of common fixed point follows easily. This completes the proof.
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Remark 3.1. The condition (i) can be written as:
“the pair (A,S) satisfy (CLRT ), or (CLRT ); and the pair (B, T ) satisfy (CLRA), or
(CLRS)”.
So, taking this condition with condition (ii) and (iii), we get the fixed point result in terms
of (CLR) property.

Remark 3.2. From case-I, II, III and IV, we observe that the unique common fixed
point belongs to that range-subset in which the common converging point lies.

3.2. Second main Theorem

If one pair of mappings satisfy the (CLCS) property in the common range-subset
of the second pair, and the second pair of mappings satisfy the (CLCS) property in
the common range-subset of the first pair, then we have the following result:

Theorem 3.2. Let A,B, S, T : X → X be four self-mappings of a complex valued
b-metric space (X, d) satisfying:
(i) The first pair (A,S) satisfy (CLCS) property in T (X)

⋂

B(X); and the second
pair (B, T ) satisfy (CLCS) property in S(X)

⋂

A(X),
(ii) x, y satisfy a set of rational inequalities

(3.6) d(Ax,By) - q ∪x,y (A,B, S, T ), ∀x, y ∈ X

where q is a non-negative real number such that 0 ≤ q < 1
s2+s

, with s ≥ 1, and

∪x,y(A,B, S, T ) ∈
{

d(Sx, T y),
d(Ax, Sx)d(By, Ty)

d(Sx, T y) + d(Ax,By)
,

d(By, Sx)d(Ax, Ty)

d(Sx, T y) + d(Ax,By)
,

d(Ax, Sx)d(By, Sx)

1 + d(Sx, T y)
,
d(Ax, Ty)d(By, Ty)

1 + d(Sx, T y)
,

d(Ax, Sx)d(By, Ty)

1 + d(Ax,By)
,
d(Sx,By)d(Ax,By)

1 + d(Ax,By)
,

d(By, Sx)d(Sx, T y)

1 + d(Sx, T y)
,
d(Ax, Sx)d(Sx, T y)

1 + d(Sx, T y)
,

d(Sx, T y)d(By, Ty)

d(Ax,By) + d(Sx, T y)

}

,

(iii) both the pairs (A,S) and (B, T ) are weakly compatible,
Then mappings A,B, S and T have a unique common fixed point in X.

Proof. The proof runs exactly as Theorem 3.1. Case I and Case II are merged, so
the point t′ ∈ B(X) ∩ T (X). Similarly, Case III and Case IV are merged, so the
point t ∈ A(X) ∩ S(X). Uniqueness follows easily. This completes the proof.

3.3. Third Theorem
If the (E.A) property is taken into consideration and the range subspaces are closed
then we have the following result:
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Theorem 3.3. Let A,B, S, T : X → X be four self-mappings of a complex valued
b-metric space (X, d) satisfying:
(i) The pair (A,S) satisfy (E.A) property and T (X) is closed, or B(X) is closed;
and
the pair (B, T ) satisfy the (E.A) property and S(X) is closed, or A(X) is closed,
(ii) x, y satisfy a set of rational inequalities

(3.7) d(Ax,By) - q ∪x,y (A,B, S, T ), ∀x, y ∈ X

where q is a non-negative real number such that 0 ≤ q < 1
s2+s

, with s ≥ 1, and

∪x,y(A,B, S, T ) ∈
{

d(Sx, T y),
d(Ax, Sx)d(By, Ty)

d(Sx, T y) + d(Ax,By)
,

d(By, Sx)d(Ax, Ty)

d(Sx, T y) + d(Ax,By)
,

d(Ax, Sx)d(By, Sx)

1 + d(Sx, T y)
,
d(Ax, Ty)d(By, Ty)

1 + d(Sx, T y)
,

d(Ax, Sx)d(By, Ty)

1 + d(Ax,By)
,
d(Sx,By)d(Ax,By)

1 + d(Ax,By)
,

d(By, Sx)d(Sx, T y)

1 + d(Sx, T y)
,
d(Ax, Sx)d(Sx, T y)

1 + d(Sx, T y)
,

d(Sx, T y)d(By, Ty)

d(Ax,By) + d(Sx, T y)

}

,

(iii) both the pairs (A,S) and (B, T ) are weakly compatible.
Then mappings A,B, S and T have a unique common fixed point in X.

Proof. The theorem exactly runs as Theorem 3.1. The point of common convergence
belongs to the range subspaces, as in Case-I, II, III and IV. Rest part is same. This
completes the proof.

If A = B = f and S = T = g in Theorem 3.1, we have the following result:

Corollary 3.1. Let f, g : X → X be two self-mappings of a complex valued b-
metric space (X, d) such that:
(i) The pair (f, g) satisfy the (CLCS) property in g(X), or f(X)
(ii)

(3.8) d(fx, fy) - q ∪x,y (f, g), ∀x, y ∈ X

where q is a non-negative real number such that 0 ≤ q < 1
s2+s

, s ≥ 1, and
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∪x,y(f, g) ∈
{

d(gx, gy),
d(fx, gx)d(fy, gy)

d(gx, gy) + d(fx, fy)
,

d(fy, gx)d(fx, gy)

d(gx, gy) + d(fx, fy)
,

d(fx, gx)d(fy, gx)

1 + d(gx, gy)
,
d(fx, gy)d(fy, gy)

1 + d(gx, gy)
,

d(fx, gx)d(fy, gy)

1 + d(fx, fy)
,
d(gx, fy)d(fx, fy)

1 + d(fx, fy)
,
d(fy, gx)d(gx, gy)

1 + d(gx, gy)
,

d(fx, gx)d(gx, gy)

1 + d(gx, gy)
,

d(gx, gy)d(fy, gy)

d(fx, fy) + d(gx, gy)

}

.

If the pair (f, g) is weakly compatible and satisfy property (E.A), then mappings
f, g have a unique common fixed point in X.

Remark 3.3. The Corollary 3.1 is true for both condition, (CLRg) and (CLRf ).

3.4. Examples
Following example validates our first main theorem:

Example 3.1. Let X = C is the set of complex numbers. Define b-metric d : X×X → C
with the parameter s = 2, by d(z1, z2) = (1 + ι)|z1 − z2|

2, for all z1, z2 ∈ C. Obviously,
(X, d) is a complex-valued b-metric space. Define self-mappings A,B,S, T : X → X by:

Az =
z

6
, Bz =

z

5
, Sz =

−z

2
, T z =

z

2
, ∀z ∈ C.

Observe that A(X) = B(X) = S(X) = T (X) = C. Take a sequence {zn} =
{

2+3ι
5n

}

in X.
Then limn→∞ Azn = limn→∞ Szn = 0 ∈ T (X) = C, and also the limit 0 ∈ B(X) = C.
Hence the pair (A,S) satisfy the (CLCS) property in T (X),B(X). Also, the pair (A,S)
and (B,T ) are weakly compatible at z = 0 ∈ C. Now, we discuss the inequality in following
cases:
Case-1. x = 0, y 6= 0 then
d(Sx,By) = (1+ι)|y|2/25, d(Ax,Ty) = (1+ι)|y|2/4, d(Ax,Sx) = 0, d(By,Ty) =
9(1 + ι)|y|2/100, d(Ax,By) = (1 + ι)|y|2/25 and d(Sx, Ty) = (1 + ι)|y|2/4. Thus, the
given inequality (3.1): d(Ax,By) - q ∪x,y (A,B, S, T ), where

∪x,y(A,B, S, T ) ∈
{

d(Sx, Ty),
d(Ax,Sx)d(By,Ty)

d(Sx, Ty) + d(Ax,By)
,

d(By,Sx)d(Ax,Ty)

d(Sx, Ty) + d(Ax,By)
,
d(Ax,Sx)d(By,Sx)

1 + d(Sx, Ty)
,

d(Ax,Ty)d(By,Ty)

1 + d(Sx, Ty)
,
d(Ax,Sx)d(By,Ty)

1 + d(Ax,By)
,
d(Sx,By)d(Ax,By)

1 + d(Ax,By)
,

d(By,Sx)d(Sx, Ty)

1 + d(Sx, Ty)
,
d(Ax,Sx)d(Sx, Ty)

1 + d(Sx, Ty)
,

d(Sx, Ty)d(By,Ty)

d(Ax,By) + d(Sx, Ty)

}

.

reduces to:
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(1 + ι)|y|2

25
- q

{ (1 + ι)|y|2

4
, 0,

(1 + ι)|y|2

41
, 0,

9(1 + ι)2|y|4

400
[

1 + (1 + ι)|y|2/4
] , 0,

25(1 + ι)2|y|4
[

1 + (1 + ι)|y|2
] ,

(1 + ι)2|y|4

25
[

4 + (1 + ι)|y|2
] , 0,

9(1 + ι)|y|2

116

}

,

This may be valid for at least one q, for which 0 ≤ q < 1
s2+s

= 1
6
. For instance,

1
6
> q ≥ 4

25
.

Case-2. y = 0, x 6= 0. In this case, By = Ty = 0 and Ax = x
6
, Sx = −x

2
, so that

d(Ax,By) = (1+ι)|x|2

36
= d(Ax,Ty), d(Sx, Ty) = (1+ι)|x|2

4
= d(By,Sx),

d(Ax,Sx) = 4(1+ι)|x|2

9
, d(By,Ty) = 0.

Thus, the given inequality (3.1): d(Ax,By) - q ∪x,y (A,B, S, T ), where

∪x,y(A,B, S, T )∈
{

d(Sx, Ty),
d(Ax,Sx)d(By,Ty)

d(Sx, Ty) + d(Ax,By)
,

d(By,Sx)d(Ax,Ty)

d(Sx, Ty) + d(Ax,By)
,

d(Ax,Sx)d(By,Sx)

1 + d(Sx, Ty)
,
d(Ax,Ty)d(By,Ty)

1 + d(Sx, Ty)
,

d(Ax,Sx)d(By,Ty)

1 + d(Ax,By)
,
d(Sx,By)d(Ax,By)

1 + d(Ax,By)
,

d(By,Sx)d(Sx, Ty)

1 + d(Sx, Ty)
,
d(Ax,Sx)d(Sx, Ty)

1 + d(Sx, Ty)
,

d(Sx, Ty)d(By,Ty)

d(Ax,By) + d(Sx, Ty)

}

,

reduces to:

(1 + ι)|x|2

36
- q

{ (1 + ι)|x|2

4
, 0,

(1 + ι)|x|2

40
,

4(1 + ι)2|x|4

9
[

4 + (1 + ι)|x|2
] , 0, 0,

(1 + ι)2|x|4

4
[

36 + (1 + ι)|x|2
] ,

(1 + ι)2|x|4

4
[

4 + (1 + ι)|x|2
] ,

4(1 + ι)2|x|4

9
[

4 + (1 + ι)|x|2
] , 0

}

.

This may be valid for at least one q, for which 0 ≤ q < 1
s2+s

= 1
6
. For instance,

1
9
≤ q < 1

6
.

Case-3. x = y = 0. In this case Ax = By = Sx = Ty = 0 and all metric values are
zero. This, by definition (B2) of ‘complex-valued b-metric space’, is zero.

Hence, all conditions satisfy, and “zero” is the unique common fixed point of A,B, S, T .
This validates our main Theorem 3.1.

The following example validates our second main theorem 3.2.
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Example 3.2. Let (X, d) be a complex valued b metric space, where X = [0, 1] and
d : X ×X → C by: d(x, y) = (1 + ι)|x − y|2. Define A,B, S, T : X → X by: Ax = x

24
,

Bx = x2

32
, Sx = x

3
and Tx = x2

4
. Then for all x, y ∈ X, we evaluate

d(Ax,By) = (1 + ι)|Ax−By|2 = 1+ι
64

∣

∣

x
3
− y2

4

∣

∣

2
,

d(Sx, Ty) = (1 + ι)|Sx− Ty|2 = (1 + ι)
∣

∣

x
3
− y2

4

∣

∣

2
,

d(Ax,Sx) = (1 + ι)|Ax− Sx|2 = 49(1+ι)
576

|x|2,

d(By,Ty) = (1 + ι)|Sx − Ty|2 = 49(1+ι)
1032

|y|4,

d(By,Sx) = (1 + ι)|Sx−By|2 = (1 + ι)
∣

∣

x
3
− y2

32

∣

∣

2
,

d(Ax,Ty) = (1 + ι)|Ax−By|2 = 1+ι
16

∣

∣

x2

6
− y2

∣

∣

2
.

Observe that:
If {zn} = { 1

n
} and {wn} = {−1

n
} be two sequences in X then:

limn→∞ Azn = limn→∞ Szn = 0 ∈ B(X)
⋂

T (X) = C. Similarly,
limn→∞ Bwn = limn→∞ Twn = 0 ∈ A(X)

⋂

S(X) = C. Thus (A,S) satisfy the (CLCS)
property in B(X)

⋂

T (X) = C, and (B, T ) satisfy the same property in A(X)
⋂

S(X) = C.
So the condition (i) satisfy. The inequality (ii) will satisfy as in Ex.3.1 of [46].Further,
mappings (A,S) and (B, T ) are weakly compatible at x = 0 and y = 0 respectively.
Observe that 0 is the unique common fixed point of A,B, S, T . This validates Theorem
3.2.
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