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DUALITY IN INVEX PROGRAMMING PROBLEM IN HILBERT SPACE

Sandip Chatterjee and R.N.Mukherjee

Abstract. In this paper the concept of duality is introduced for the invex programming
problem in infinite dimensional Hilbert spaces. A generalization of the concept of Wolfe-
duality is proposed for such class of problems. Some important theorems regarding the
characterization of the dual problems are also discussed.
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1. Introduction

In the last few decades, generalized monotonicity, duality and optimality condi-
tions in the theory of invex optimization have been discussed rigorously by sev-
eral authors. In most of the cases, such problems have been characterized in Rn

[1, 2, 3, 4, 5, 6, 7, 12, 14, 16, 18, 19, 22]. Chatterjee and Mukherjee [16] very recently
generalized the concept of invex optimization from Rn to an arbitrary Hilbert Space.
Such problems are known as the invex programming problem (IPP). This paper
generalizes the concept of Wolf-duality for such class of infinite dimensional op-
timization problems. Some important theorems regarding the characterization of
the dual problems, e.g., weak duality, strong duality and strict converse duality,
have been proved in this generalized structure. This generalization allows us to
study a wider class of infinite dimensional optimization problems and their duals.

2. Prerequisites

Definition 2.1. A subset C of Rn is convex [11] if for every pair of points x1, x2 in C,
the line segment

[x1, x2] = {x : x = αx1 + βx2, α ≥ 0, β ≥ 0, α + β = 1}
belongs to C.

The set C is said to be invex [18] if there is a vector function η : C × C → Rn such
that
Received March 30, 2015; Accepted April 19, 2015
2010 Mathematics Subject Classification. Primary 49; Secondary J50, J52

255



256 Sandip Chatterjee, R.N.Mukherjee

x1 + λη(x1, x2) ∈ C ∀ x1, x2 ∈ C and ∀λ ∈ [0, 1]

Definition 2.2. Let C be an open convex set in Rn and let f be real valued and
differentiable on C. Then, f is convex [11] if

f (x) − f (y) ≥ 〈∇ f (y), x − y〉 , ∀ x, y ∈ C.

The function f is said to be invex [18] if there is a vector function η : C × C→ Rn

f (x) − f (y) ≥ 〈∇ f (y), η(x, y)〉 , ∀ x, y ∈ C.

Definition 2.4. Let X and Y be two normed vector spaces. A continuous linear
transformation A: X → Y is said to be the Fréchet (Strong) derivative [23] of
f : X→ Y at x, if for every ε > 0, ∃ δ > 0 such that,

‖ f (x + h) − f (x) − Ah ‖Y≤ ε ‖ h ‖X, for all h with ‖ h ‖X≤ δ
When the derivative exists it is denoted by D f (x).

Proposition 2.1. [23] Let X be a vector space and Y be a normed space. Let S be
a transformation, mapping an open set D ⊂ X into an open set E ⊂ Y and let P
be a transformation, mapping E into a normed space Z. Let T = PS, S is Fréchet
differentiable at x ∈ D and P is Fréchet differentiable at y = S(x) ∈ E. Then, T is
Fréchet Differentiable at x and DT(x) = DP(y)DS(x).

Remark. [11] It is to be noted that in Rn, D f (x) = ∇ f (x).

Let H1 and H2 be two Hilbert spaces with some archimedean ordering “ ≥ ”
and X ⊆ H1 is an open set. Let f : X → H2 be a differentiable(Fréchet) function,
η : X × X→ H2 be a vector function and e ∈ H2 such that ‖e‖H2 = 1.

Definition 2.5. [16] The function f is said to be (η, e) − invex if

(2.1) f (x) − f (y) ≥ 〈D f (y) , η(x, y)〉e, ∀ x, y ∈ X,

where D f (y) stands for the Fréchet derivative of f at y.
The function f is said to be strictly (η, e)-invex if there exists e ∈ H2 with ‖e‖H2 = 1,

such that
f (x) − f (y) > 〈D( f (y), η(x, y)〉e, ∀x, y ∈ X, x � y.

Remark. It is to be noted that, if H1=H2=R
n, e = (1, 1, 1, . . . , 1) and η(x, y) = (x− y),

then f becomes a convex function in Rn. The norm in this case can be taken as
(n)− 1

2 -multiple of the usual Euclidean norm.

Let H1 and H2 be two real Archimedean ordered Hilbert spaces. Letφ : H1 → H2

and f : H1 → H2 be (η, e) − invex functions (i.e., both the functions are invex with
respect to the same η and e) such that

f (x) = f (y)⇒ (x − y) ∈ Ker f .

Let us consider the following program:
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Min φ(x)
s.t. f (x) = y x ∈ H1 , y ∈ H2

x ≥ θH1 .

Let us denote the program by IP(H1,H2,φ, f ) or simply by IP(if there is no confusion).
In our further discussion, we shall refer this problem as invex primal.

Example 2.1. Detection Filter Problem (Fortmann, Athans) [20]. Following is an
example of an IP:

Min{−〈u, x〉 : u ∈ L2[0,T]}
s.t. 〈u, st〉 − ε〈u, s〉 ≤ 0 δ ≤ |t| ≤ T
−〈u, st〉 − ε〈u, s〉 ≤ 0 δ ≤ |t| ≤ T

‖u‖ ≤ 1

Where ‖ · ‖ and 〈·, ·〉 denotes the usual norm and inner product in L2-space, and s is
a signal function with the assumption that the energy of s equals to 1, i.e., ‖s‖2 = 1.

KKT Conditions. x∗ ∈ H1 is a solution of IP iff there exist a scalar λ∗ ≥ 0 such that
i) λ∗ f (x∗) = θ
ii)D(φ(x∗) + λ∗ f (x∗)) = θ
iii)λ∗ ≥ 0

3. Fritz-John Condition

Let H1 and H2 be two real Archimedean ordered Hilbert spaces and I be an open
invex set in H1. Let f , �, h : I→ H2 be differentiable (Fréchet) (η, e) − invex functions
with respect to same η(·, ·) and e. Let us consider the following IPP:

Min f (x)
s.t. �(x) ≤ θH2

h(x) = θH2

x ≥ θH1 .(3.1)

The following theorem is a generalization of the very well known Fritz-John
conditions. Under the assumption of invexity, the conditions are not only necessary
but also sufficient. The proof of the necessity of the conditions is motivated by
McShane [11]. In our discussion, whenever we consider topology we mean weak
topology.

Theorem 3.1. x∗ ∈ I is a solution of IPP (3.1) iff there exist non-zero scalars λ, μ and
ν such that
(i) λ�(x∗) = θ
(ii)λD f (x∗) + μD�(x∗) + νDh(x∗) = θ.

Proof. Let K be a strictly increasing differentiable real valued function defined on
H2 such that, K(x) > 0 whenever x > θ and K(x) = 0 elsewhere. It is to be noted
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that, DK(x) > 0 for x > θ. Since � is continuous and I is open , there exist an ε0 > 0
such that B(θ, ε0) ⊂ I and �(x) ≤ θ for x ∈ B(θ, ε0). Now, let us define a function

(3.2) F(x, p) = ‖ f (x)‖ + ‖x‖2 + p{K(�(x))+ ‖h(x)‖2}, x ∈ I and p ∈ Z+.
We assert that, for each ε satisfying 0 < ε < ε0, there exist a positive integer

p(ε) such that, for x with ‖x‖ = ε, F(x, p(ε)) > θ. If not, then there would exist an ε′
with 0 < ε′ < ε0 such that, for each positive integer p, there exist a vector xp with
‖xp‖ = ε′ and F(xp, p) ≤ θ. Hence form (3.2),

(3.3) ‖ f (x)‖ ≤ −{‖x‖2 + p{K�(xp) + ‖h(xp)‖2}}
Now since ‖xp‖ = ε′ and since S(0, ε′) = {y : ‖y‖ = ε′} is weakly compact, then there
exist sub-sequences, which we relabel as xp and p ,and a point x0 with ‖x0‖ = ε′,
such that, xp �→ x0. Since f , � and h are continuous, f (xp) �→ f (x0); �(xp) �→
�(x0); h(xp) �→ h(x0). Therefore, dividing (3.3) by −p and letting p → ∞ we get,
K(�(x0)) + ‖h(x0)‖2 = 0. Hence by definition of K(·, ·), �(x0) ≤ θ and h(x0) = θ.
Thus x0 is a feasible vector. Now, by a suitable affine transformation x∗ can be
assumed as θ and f (x∗) = f (θ) = 0. Therefore, f (x0) ≥ f (θ) = 0. Now, from (3.3),
‖ f (xp)‖ ≤ −(ε′)2 < 0, which is a contradiction. Hence the assertion is true.

Again, for each ε ∈ (0, ε0), the function F(·, p(ε)) is continuous on the closed ball
B(0, ε). Since B(0, ε) is weakly compact, F(·, p(ε)) attains its minimum on B(0, ε) at
an interior point xε of B(0, ε). Hence

(3.4) DF(xε, p(ε)) = 0

Now let us assume that

L(ε) = 1 + (p(ε)DK(�(xε)))2 + (p(ε)D(‖h(xε)‖))2(3.5)

λ(ε) =
D(‖ f (x)‖)
√

L(ε)
(3.6)

μ(ε) =

⎧
⎪⎪⎨
⎪⎪⎩

p(ε)DK(�(xε))√
L(ε)

if �(θ) = θ

0 else
(3.7)

ν(ε) =
p(ε)D(‖h(xε‖)
√

L(ε)
.(3.8)

It is to be noted that λ(ε) ≥ 0,and μ(ε), ν(ε) ≥ θ.
Now, from (3.2), (3.4) and (3.5), we get

(3.9) λ(ε)D f (xε) +
D(‖xε‖2)
√

L(ε)
+ μ(ε)D�(xε) + ν(ε)Dh(xε) = 0.

Let ε→ 0 through a sequence of values εk. Then since ‖xε‖ < ε, we have

(3.10) xεk → θ, λ(εk)→ λ, μ(εk)→ μ, ν(εk)→ ν.
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Therefore from (6) and (7) we get λD f (θ) + μD�(θ) + νDh(θ) = θ and from the
definition of μ, μ�(θ) = θ. This proves the necessity of the conditions.
Let us now consider on the sufficiency of the conditions. Since f is (η, e) − invex,
f (x) − f (x∗) ≥ 〈D f (x∗), η(x, x∗)〉e

= −〈μD�(x∗) + νDh(x∗), η(x, x∗〉e
= −{μ〈D�(x∗), η(x, x∗〉e + ν〈Dh(x∗), η(x, x∗〉e}
≥ −{μ(�(x)− �(x∗)) + ν(h(x) − h(x∗))}
= −μ�(x)
≥ θ

which proves the sufficiency of the conditions.

It is quite obvious that using any constraint qualification assuring the positivity
of λ, we can obtain the generalization of the very popular Karush-Kuhn-Tucker
conditions stated earlier.

4. Duality in IPP

Definition 4.1. The generalized Wolfe dual for the invex primal is defined as

Maxu,λ( f (u) + λ�(u))
subject to D( f (u) + λ�(u)) = θ

λ ≥ 0
u ∈ H1 and λ is a scalar.

This problem will be referred to as invex dual denoted by ID in further discussion.

Theorem 4.1. Strong Duality. Under the condition of a suitable constraint qualifi-
cation [18] for IP, if x◦ is minimal for IP, then (x◦,λ◦) is minimal for ID, where λ◦ is
given by the KKT Conditions and f and � are (η, e) − invex.

Proof: Let (u,λ) be any vector feasible for ID. Then,
( f (x◦) + λ◦�(x◦)) − ( f (u) + λ�(u))
= f (x◦) − ( f (u) + λ�(u))
≥ 〈D f (u) , η(x◦, u)〉e − λ�(u)
=−〈λD�(u) , η(x◦, u)〉e − λ�(u)
=λ{−〈D�(u) , η(x◦, u)〉e} − λ�(u)
≥ λ{�(u) − �(x◦)} − λ�(u)
=−λ�(x◦)
≥ θ

Therefore, (x◦, λ◦) is maximal in the dual problem and since λ◦�(x0)=0, the
extreme of the two problems are same.

Theorem 4.2. Weak Duality. Let x be feasible for IP and (u, λ) be feasible for ID,
then we have f (x) ≥ f (u) + λ�(u).

Proof. From the invexity assumption, we have

( f (x) − f (u) − 〈D f (u), η(x, u)〉e)+ λ(�(x)− �(u) − 〈D�(u), η(x, u)〉e) ≥ θ
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which further implies
( f (x) − ( f (u) + λ�(u))) ≥ 〈D f (u), η(x, u)〉e+ λ〈D�(u), η(x, u)〉e− λ�(u)

= 〈D f (u) + λD�(u), η(x, u)〉e− λ�(u)
= −λ�(u)
≥ θ.

Theorem 4.3. Strict Converse Duality. Let f and � are (η, e) − invex. Let x ∗ be
optimal for IP and (x̄, λ̄) be optimal for ID. If a suitable constraint qualification[18]
is satisfied for IP and f is strictly invex at x̄, then x∗ = x̄.

Proof. Let x∗ � x̄. By the strong duality theorem, there exists λ∗ such that (x∗, λ∗) is
optimal for ID.
Hence,

f (x∗) = f (x∗) + λ∗�(x∗) = f (x̄) + λ̄�(x̄)(4.1)

Now by strict invexity of f we get,

f (x∗) − f (x̄) > 〈D f (x̄, η(x∗, x̄)〉e(4.2)

And by invexity of g with λ̄ ≥ 0 we get,

λ̄�(x∗) − λ̄�(x̄) ≥ 〈λ̄D�(x̄), η(x∗, x̄)〉e.(4.3)

Adding 4.2 and 4.3 we get,

( f (x∗) − f (x̄)) + (λ̄�(x∗) − λ̄�(x̄)) ≥ θ.
But, since λ̄�(x∗) ≤ θ, we have f (x∗) − f (x̄) − λ̄�(x̄) > θ, i.e. f (x∗) − f (x̄) > λ̄�(x̄),
which contradicts 3.1. Therefore x∗ = x̄.
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