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Abstract. The recently developed firefly algorithm has become one of the prominent
population-based metaheuristics due to its efficiency in solving a wide range of diverse
real-world problems. In this paper an enhanced firefly algorithm to solve mixed variable
structural optimization problems is presented. Two modifications related to the con-
straint handling method based on Deb’s rules and the geometric progression reduction
schememechanism are introduced in order to improve its performance in the constrained
search space. The proposed algorithm is tested on four classical structural optimization
problems taken from literature. The obtained results show that the proposed approach
was very competitive in the considered problems, mostly outperforming the original
firefly algorithm.

1. Introduction

Most structural optimization problems have nonlinear objective functions and
nonlinear constraints. The solution complexity is additionally increased since these
problems often include continuous variables and discrete variables. Generally,
structural optimization problems can be considered as constrained optimization
problems.

A general constrained optimization problem is to find x so as to:

(1.1) minimize f (x), x = (x1, x2, . . . , xD) ∈ RD

subject to:

� j(x) ≤ 0, j = 1, . . . , q
hj(x) = 0, j = q + 1, . . . ,m

(1.2)
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where q is the number of inequality constraints andm− q is the number of equality
constraints for a given problem. Each parameter xi, i = 1, 2, ...,D is limited by its
lower and upper bounds li ≤ xi ≤ ui which define the search space S ⊆ RD. A
solution is feasible if it satisfies all constraints, while an infeasible solution does not
satisfy at least one constraint.

Solvingmixedvariable structural optimizationproblemsusually requiresglobal
search techniques that are problem-specific [8]. The main lacks of the classical op-
timization algorithms are their inefficiency in solving highly non-linear problems
and their inflexibility to adapt the solution algorithm to a given problem [2]. On
the other hand metaheuristic optimization algorithms can be successfully applied
to solve these types of problems.

Metaheuristic techniques are global optimization methods which can be mod-
ified to suit specific problem requirements [20]. Population-based metaheuristics
are the important class of metaheuristics which find good solutions by iteratively
selecting and then combining existing solutions from a set, usually called the pop-
ulation. In these metaheuristic algorithms exploration and exploitation represent
the two cornerstones of problem solving [19]. Exploration refers to visiting new
regions of the search space, while exploitation refers to moves that focus search-
ing those regions of a search space within the neighborhood of previously visited
solutions. Strong exploration increases the probability of discovering the global
optimum, while too much exploitation tends to make the algorithm being trapped
in a local optimum [23]. For a search algorithm good ratio between exploration
and exploitation is essentially important in order to achieve good optimization
performance.

The most prominent members of this class are evolutionary algorithms and
swarm intelligence algorithms. The evolutionary algorithms employ iterative
progress of a population of solutions based on some mechanisms inspired by
biological evolution, such as reproduction, mutation, recombination and selection.
Examples of themost popular evolutionary algorithms are genetic algorithms (GA)
[11], differential evolution (DE) [17] and evolution strategies (ES) [3]. Swarm in-
telligence techniques are based on mimicking the so-called swarm intelligence
characteristics of biological agents such as birds, fish, humans and others. Some
of the most prominent swarm intelligence optimization methods include particle
swarm optimization (PSO) [13], artificial bee colony (ABC) [12, 4], firefly algorithm
(FA) [22, 8], cuckoo search (CS) [25, 10] and bat algorithm (BA) [24, 9].

The FA is one of the recent swarm intelligence algorithms inspired by the
flashing behavior of fireflies which has been shown as very efficient in dealing
with global optimization problems. The FA results for unconstrained optimization
problems indicated that it was superior to PSO and GA in terms of efficiency and
success rate [22]. As the most basic variants of the metaheuristics, the original FA
also lacks a mechanism to deal with the constraints of a numerical optimization
problem. In [8] itwas extended to solve structural optimizationproblemsbyadding
a constraint handling technique based on penalty approach. The optimization
results showed that FA is more efficient than other metaheuristic approaches such
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as PSO, GA, DE and simulated annealing (SA).

In the last five years the number of researchers being interested in the FA
algorithm have increased rapidly [23]. Although the FA was originally proposed
for solving numerical problems, the modified versions have been also described
for the discrete and combinatorial types of problems. Nowadays, the FA and its
variants has been used in many applications in several different areas, such as
image processing [5, 28], industrial optimization [26], antenna design [27], civil
engineering [18], robotics [16] etc.

In this paper an enhanced firefly algorithm (E-FA) is proposed with the goal
to improve the performance of the FA in solving mixed variable structural op-
timization problems. In order to reduce diversity in the population faster and
hence increase the exploitation ability of the FA, the proposed approach employs
Deb’s rules as constraint handling method and introduces geometric progression
reduction scheme similar to the cooling schedule of simulated annealing. The E-
FA is tested on the four mixed variable structural optimization problems and the
obtained results are compared to the same of the FA and to those from several
state-of-the-art algorithms.

The rest of the paper is organized as follows. The detailed description of the
firefly algorithm is in section “The firefly algorithm”. The proposed enhanced
firefly algorithm is described in section “The proposed approach: E-FA”. Section
“Benchmark problems” presents the four structural optimization problems. The
parameter settings and analysis of the obtained results are presented in section
“Experimental analysis”.

2. The firefly algorithm

The FA formulated by Yang [22] is a swarm intelligence algorithm inspired by the
flashing behavior of fireflies. Fireflies are characterized by their flashing light. The
production of these lights is performed by a complicated set of chemical reactions.
Their fundamental functions are attractingmatingpartners or for protection against
predators. The intensity of a firefly lights decreasewhen the distance from the light
source increases [7]. Also, air absorbs the light as the distance from the source
increases. This firefly behavior is modeled into the FA so that the light intensity is
proportional to the objective function of the problem to be optimized.

Considering the fact that an adaptation of the natural behavior of the fireflies in
an algorithm is very complex, the next idealized rules are assumed by constructing
of the FA [7]:

• All fireflies are unisex.

• Their attractiveness is proportional to their brightness.

• The brightness of a firefly is associated with the objective function.
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The main steps of the FA [21] are presented as follows.

Step 1. (Generate the initial population of solutions)
The FA generates randomly initial population of solutions, xik, i = 1, 2, . . . , SP,
k = 1, 2, . . . ,D:

(2.1) xik = lk + rand(0, 1) · (uk − lk)

where SP is the size of population, D is dimension of the problem, k ∈ 1, 2, . . . ,D,
lk and uk are the lower and upper bound of the parameter xik and rand(0, 1) is an
uniformly distributed random number between 0 and 1. After the generation of
initial population, the objective function values for all solutions xi are calculated
and variable t is set to 1.

Step 2. (Calculate the new population)
Each solution of the new population is created from the appropriate solution xi in
the following way:

For each solution xi, algorithm examines every solution xj, j = 1, 2, ..., i, itera-
tively, starting from j = 1. If solution xj has higher objective function value than xi
(xj is brighter than xi), the parameter values xik, k = 1, 2, ...,D, are updated by:

(2.2) xik = xik + β · (xik − xjk) + α · Sk · (randk − 1
2
)

where the second term is due to the attraction and the third term is randomization
term.

In the second term of Eq. 2.2, parameter β is the attractiveness of fireflies
and in [21] the selected monotonically decreasing function which describes firefly
attractiveness is the exponential function:

(2.3) β = β0 · e−γ·r2i j

where rij is the distance between firefly i and firefly j, while β0 and γ are prede-
termined algorithm parameters: maximum attractiveness value and absorption
coefficient, respectively.
Distance rij between fireflies i and j is obtained by Cartesian distance by:

(2.4) rij =

√√√
D∑
k=1

(xik − xjk)2

Control parameter β0 describes attractiveness when two fireflies are found at the
same point of search space, i.e. at r = 0. The variation of attractiveness with
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increasing distance from a communicated firefly is determined by the control pa-
rameter γ. The value of parameter γ is essentially important in determining the
speed of the convergence and how the FA algorithm behaves.

In the third term of Eq. 2.2, α ∈ [0, 1] is randomization parameter, Sk are the
scaling parameters and randk is a random number uniformly distributed between
0 and 1. The scaling parameters Sk are calculated by:

(2.5) Sk = |uk − lk|

In addition, whenever the values of the solution xi are changed, the FA controls
the boundary conditions of the created solution and memorizes the new objective
function value instead of the old one. The boundary constraint-handling mecha-
nism used in the FA is given by:

(2.6) xik =

⎧⎪⎪⎨⎪⎪⎩lk , if xik < lk
uk , if xik > uk

Last solution obtained by Eq. 2.2 is the final solution of the new population
which will be transfered in the next iteration of the FA.
Step 3. (Reduce the randomization parameter)

In [21] it was found that the solution quality can be enhanced by reducing the
randomization parameter αwith a geometric progression reduction scheme which
can be described by:

(2.7) α(t) = α(t − 1) · θ 1
MCN

where MCN is maximum cycle number, t is the current iteration number, θ is the
parameter calculated by:

(2.8) θ =
10.0−4.0

0.9

However, this step is optional in the FA.

Step 4. (Record the best solution)
Rank the fireflies by their light intensity/objectives and memorize the best solution
so far xbest and increase the variable t by one.

Step 5. (Check the termination criterion)
If the t is equal to the maximum number of iterations then finish the algorithm, else
go to Step 2.

In the FA there are three parameters that control its behavior i.e., the step size
of randomized move α, the attractiveness β and the absorption coefficient γ. The
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remaining control parameters are the size of population SP and themaximum cycle
number MCN which are common for all population based metaheuristics.

The control parameter values of the FA may affect convergence behavior at
different extents [23]. The control parameter α control the randomness or to some
extent the diversity of solutions. It was found that for most applications the per-
formances of the FA can be improved by using a geometric progression reduction
scheme similar to the cooling schedule of simulated annealing which is described
by Eq.2.7. The control parameter β controls the attractiveness, and for most ap-
plications it was found that β0 = 1 can be used. The control parameter γ in the
majority of applications typically varies from 0.01 to 100. This parameter can be
related to the scaling L, where L is the average scale of the problem of interest.
If the scaling variations are significant, than it is usually set γ = 1/

√
L, otherwise

the common setting for this parameter is γ = O(1). The best range of population
size is from 25 to 40. The values higher than 50 are not recommended since it will
significantly increase computation time [8].

3. The proposed algorithm: E-FA

In the proposed E-FA two modifications are introduced in comparison to the orig-
inal FA. Firstly, the three feasibility based rules are employed in order to guide
the search to the feasible region of the search space. The second modification is
using the geometric progression reduction scheme to reduce the scaling factors Sk
gradually. The details of each modification are explained in the further text.

3.1. The modification related to Deb’s rules

The original variant of the FA was not designed to deal with constrained search
space. Therefore in order to solve constrained optimization problems the penalty
function approach was incorporated in the FA [8]. The use of penalty functions
is the most common approach employed to deal with constrained search spaces
because a constrained problem is solved as an unconstrained one. However, the
main drawback of this approach is that it requires a careful fine tuning of the
penalty factors that estimate the degree of penalization to be applied [15]. The
lack of penalty approach was one of the reasons of using the constraint-handling
method based on three feasibility rules in the E-FA.

The set of three feasibility rules [6], also called Deb’s rules, where two solutions
are compared at a time defined by Deb are:

• Any feasible solution satisfying all constraints is preferred to any infeasible
solution violating any of the constraints.

• Among two feasible solutions, the one having betterfitness value is preferred.



An Enhanced Firefly Algorithm 407

• If both solutions are infeasible, the one with the lower sum of constraint
violation is preferred, where the sum of constraint violation is defined as:

(3.1) CV(x) =
q∑
j=1

max(0, � j(x)) +
m∑

j=q+1

|hj(x)|

where � j(x) are the inequality constraints, hj(x) are the equality constraints, q
is the number of inequality constraints andm is the total number of inequality.

In the proposed E-FA the selection mechanism based on Deb’s rules is used
two times during the creation a new solution of the population. Firstly, these rules
are employed instead of the greedy selection in order to decide which firefly is
brighter. Secondly, Deb’s rules are used each time after the Eq.2.4 is applied in
order to decide whether the solution will be updated.

In [12] it was noticed that the algorithms which use Deb’s rules lack diversity
in the population because feasible solutions are preferred to infeasible ones. On
the other hand, a selection mechanism is one of the major components which have
direct influence on the performances of a search algorithm [19]. Hence, in the E-FA
the diversity of the population is significantly decreased in comparison with the
original FA considering additional usage of Deb’s rules in order to decide whether
the solution will be updated.

From the exploration and exploitation viewpoints, decreasing diversity of the
population during the search process increases the exploitation ability of a search
algorithm [19]. Also, empirical knowledge from observations of the convergence
behavior of common optimization algorithms suggests that exploitation tends to
increase the speed of convergence [23]. Hence, the modification of the FA related
to Deb’s rules increases exploitation and consequently convergence speed of the
FA.

3.2. The modification related to scaling factors

In the original firefly algorithm it was found that it is possible to improve the
solution quality by reducing the randomness gradually [22]. It was also concluded
that a further improvement on the convergence of the algorithm is to vary the
randomization parameter so that it decreases gradually as the optimum is being
reached. Therefore, in the FA used to solve constrained optimization problems
reducing the randomization parameter by the geometric progression reduction
scheme is proposed [21].

Inspired by these conclusions in the E-FA it was found that the quality of the
results and convergence speed can be further improved by reducing each scaling
parameter Sk, k = 1, 2, ...,D, by using the same geometric progression reduction
schemewhich is used to decrease the parameter α, i.e. the scheme can be described
by:

(3.2) Sk(t) = Sk(t − 1) · θ 1
MCN
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where MCN is maximum cycle number, t is the current iteration number, θ is the
parameter calculated by Eq. 2.8.

3.3. The pseudo-code of the E-FA

The pseudo code of the E-FA is presented as Alg. 1.

It is important to note that both FA and E-FA use the same number of control
parameters, since tuning the control parameters of an algorithm might be more
difficult than the problem itself [19]. Also, in order to solve the mixed variable
structural optimization problems, continuous values of discrete variables were
rounded to the nearest available discrete values after evolution according to Eq.2.2,
as well as after the initialization phase of the algorithm.

Algorithm 1 The pseudo code of the E-FA
Initialize the population solutions by Eq.2.1
Evaluate each xi, i = 1, 2, . . . , SP
Initialize control parameters SP,MCN, α0, γ and β0
Calculate each Sk, k = 1, 2, . . . ,D by Eq.2.5
t = 1
repeat

for i = 1 to SP do
for j = 1 to SP do

if (xj is chosen according to Deb’s rules when we compare xi and xj) then
for k = 1 to D do
�k = xik + β · (xik − xjk) + α · Sk · (randk − 1

2 ) {where β is calculated by
Eq.2.3}

end for
if (� is chosen according to Deb’s rules whenwe compare xi and �) then

x[i] = � {the new solution � is accepted in the population}
end if

end if
end for

end for
for k = 1 to D do

Calculate new value of Sk by Eq.3.2
end for
Calculate new value of α by Eq.2.7
Memorize the best solution achieved so far
t = t + 1

until t =MCN
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4. Benchmark problems

The proposed E-FA was applied to four mixed variable structural optimization
design problems: welded beam, reinforced concrete beam, helical spring design
and stepped cantilever beam, same as used by [8].

The welded beam design problem, shown in Figure 4.1, aims to minimize the
cost of beam subject to constraints on shear stress, bending stress in the beam,
buckling load on the bar and deflection of the beam. The four continuous design
variables are the weld thickness h, length of the weld l, width of the bean t and the
thickness of the beam b, where 0.1 ≤ h, t ≤ 2.0, 0.1 ≤ l, b ≤ 10.0. The optimum
solution is located on the boundaries of the feasible regionwhich is very small with
respect to the entire search space. The best reported rounded value-to-reach for
this problem is 1.724852 [14].

Fig. 4.1: Welded beam design structure

The reinforced concrete beam design problem aims to be designed for mini-
mum cost. The beam is supported at two points spaced by 30 ft and it is subject to
a live load of 2000 lbf and a dead load of 1000 lbf accounting for the beam weight
(see Figure 4.2). The cross sectional area of the reinforcing bar As, the width of the
concrete beam b and the depth of the concrete beam h form the design variables.
The cross sectional area of the reinforcing bar As is a discrete variable that must be
chosen from the standardized dimensions listed in [1]. The width of the concrete
beam b must be an integer variable from a set of [28, 29, 30, 31,..., 38, 39, 40]. The
depth of the concrete beam h a is continuous variable, 5 ≤ h ≤ 10.

Fig. 4.2: Reinforced concrete beam design structure

The helical spring designproblem aims tominimize the volume of spring steel
wire used to manufacture the spring, shown in Figure 4.3. This problem has three
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design variables: the number of spring coils,N, the outside diameter of the spring,
D, and the spring wire diameter, d. The number of spring coils, N, is an integer
variable and the outside diameter, D, is a continuous variable. The spring wire
diameter, d, may have only discrete values according to available standard spring
steel wire diameters listed in [8].

Fig. 4.3: Helical spring design structure

The stepped cantilever beam design problem is to minimize the volume of
the stepped cantilever beam under the vertical tip force, shown in Figure 4.4. The
height and width of the rectangular cross section of each step form the design
variables. The problem consists of ten design variables. The width b1 and height
h1 of the first step are integer values; the widths b2, b3 of the second and third steps
are discrete values, chosen from a set of [2.4, 2.6, 2.8, 3.1]; the heights h2, h3 of the
second and third steps are discrete values, chosen from a set of [45.0, 50.0, 55.0,
60.0]. The remaining of the design variables are continuous.

Fig. 4.4: Stepped cantilever beam design structure

The mathematical models of these problems are given in [8].

5. Experimental analysis

The proposed E-FA has been implemented in Java programming language and run
on a PC with Intel(R) Core(TM) i7-3770K 4.2GHz processor with 16GB of RAM
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and Windows 8 x 64 Pro operating system. The optimization results obtained by
the E-FA were compared with the same of the original FA [8]. The results of the
algorithms used for comparison with the proposed E-FA were taken from [8].

5.1. Parameter settings

Theparameter values adoptedby the FA [8] are the following: the size of population
SP is 25, the value of parameter γ is 1/L, where L is the typical length of design
variables, the initial value of attractiveness β0 is 1, the initial value of parameter α
is 0.5, i.e. the reduction scheme described by Eq.2.7 was followed by reducing the
value of parameter α from 0.5 to 0.01. The maximum cycle number MCN of 2000
was used for welded beam and stepped cantilever beam problems. For problem
reinforced concrete beamMCN of 1000 was used, while for problem helical spring
MCN of 3000 was utilized. The statistical results of the FA were provided over 100
runs.

The parameter values utilized by the proposed E-FA in all the experiments are
the following: the size of population SP is 25, the value of parameter γ is 1, the
value of parameter β is 1.5 and the initial value of of parameter α is 0.9. For problem
welded beamMCN of 200 was used, while for problems reinforced concrete beam
and helical spring MCN of 350 was set. The MCN was limited to 2000 for problem
stepped cantilever beam. It should be mentioned that although the value 1 for
parameter βwas suitable for most of the FA applications, it was empirically deter-
mined that the performance of the proposed E-FA for these problems is sensitive
to this parameter value and slightly higher value was more suitable. Each of the
experiments was repeated for 100 runs.

5.2. Results and discussion

The comparison and discussion of the results are based on obtained better best
results and better mean and standard deviation values, as well as lower numbers
of evaluations used. The best results demonstrate the ability of an algorithm to
reach the optimal result, while mean and standard deviation values indicate the
robustness of the algorithm. The total number of evaluations can be considered a
measure of computational cost or a convergence rate.

The results for the E-FA are presented using high-precision numbers to allow a
correct manual calculation of the objective function values obtained in the experi-
ments. Table 5.1 presents the statistical results obtained by the FA [8] and proposed
E-FA. Best results are in bold. When both algorithms had equal results, none was
emphasized.

For welded beamproblem, the proposed E-FAwas able to find the best reported
roundedvalue to reach [14] in each run. On the other hand, the original FAobtained
notably worse best solution, as well as the mean result and standard deviation
value. In addition, the E-FA reduced the number of evaluations by a factor of 10 in
comparison with the same of the FA.
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Table 5.1: Comparative results obtained by the FA [8] and proposed E-FA over 100
runs for four structural optimization problems (best results bold)

Problem Stats FA [8] E-FA

Welded beam Best 1.7312065 1.7248523
Mean 1.8786560 1.7248523
Worst 2.3455793 1.7248523
St. Dev 0.2677989 6.17E-9
Eval. 50000 5000

Reinforced concrete beam Best 359.2080 359.2080
Mean 460.706 359.2080
Worst 669.150 359.2080
St. Dev 80.73870 1.89E-10
Eval. 25000 8750

Helical spring Best 2.658575665 2.658559166
Mean 4.3835958 2.6585592
Worst 7.8162919 2.6585592
St. Dev 4.6076313 4.42E-10
Eval. 75000 8750

Stepped cantilever beam Best 63893.52578 64578.194035
Mean 64144.75312 64578.194024
Worst 64262.99420 64578.194053
St. Dev 175.91879 5.76E-6
Eval. 50000 50000

For reinforced concrete beam and helical spring problems, the E-FA found the
same or slightly better best result and considerably better mean and standard
deviation values than the same of FA. In terms of convergence speed, the E-FA
performs about three times faster for reinforced concrete beam design problem
and about eight times faster than the FA for helical spring design problem.

For stepped cantilever beam problem, the E-FA achieved similar feasible solu-
tion of 64578.194 in each run. For this problem, the original FA obtained better best
and mean results and worse standard deviation value than the same of E-FA for
the same number of objective function evaluations. In addition, in [8] the results
are not presented using high-precision numbers to allow a correct manual calcu-
lation of the objective function values and also the values of constraints for tested
problems. On the other hand, in [8] the values of constraints are not reported for
stepped cantilever beam problem. Therefore, it is not clear does the best solution
obtained using the FA violates some of the constraints.

Tables 5.2, 5.4, 5.3 and 5.5 present the solution vectors for the best solutions
reached by the tested algorithms and the values of the constraints for each tested
problem.

The summary results show that the proposed E-FA is able to find the best
solutions which are equal or very close to the best found solution reported in
the literature for these four structural optimization problems. The E-FA performs
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Table 5.2: Parameter and constraint values of the best solutions obtained by the FA
[8] and E-FA for welded beam problem (NA means not available)

FA [8] E-FA

x1 0.2015 0.20572963705932407
x2 3.562 3.4704887163500215
x3 9.0414 9.036623941581052
x4 0.2057 0.20572963977307454
�1(x) NA -1.26E-5
�2(x) NA -2.05E-4
�3(x) NA -2.71E-9
�4(x) NA -3.432984
�5(x) NA -0.080730
�6(x) NA -0.235540
�7(x) NA -1.24E-05
f (x) 1.7312 1.7248523165044531

Table 5.3: Parameter and constraint values of the best solutions obtained by the FA
[8] and E-FA for the design of reinforced concrete beam

FA [8] E-FA

x1 6.32 6.32
x2 34.0 34.0
x3 8.5000 8.500000000000028
�1(x) -0.2241 -0.2241
�2(x) 0 -1.33E-14
f (x) 359.2080 359.20800000000054

better than the FA with respect to the quality and robustness of the results with
considerably improved convergence speed for the majority of tested problems.

Additionally, in [8] it was concluded that the original FA is more efficient than
other metaheuristic algorithms such as PSO, GA, SA and harmony search (HS).
Therefore this conclusion also holds for the proposed E-FA.
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Table 5.4: Parameter and constraint values of the best solutions obtained by the FA
[8] and E-FA for helical compression spring

FA [8] E-FA

x1 0.283 0.283
x2 1.223049 1.2230410099640818
x3 9 9
�1(x) -1008.02 -1008.811
�2(x) -8.946 -8.946
�3(x) -0.083 -0.083
�4(x) -1.777 -1.494
�5(x) -1.322 -1.322
�6(x) -5.464 -5.464
�7(x) 0 0
�8(x) 0.0000 -8.41E-13
f (x) 2.658575665 2.6585591659701966

Table 5.5: Parameter and constraint values of the best solutions obtained by the FA
[8] and E-FA for the design of stepped cantilever beam (NA means not available)

FA [8] E-FA

x1 3 3
x2 60 60
x3 3.1 3.1
x4 55 55
x5 2.6 2.6
x6 50 50
x7 2.205 2.2808874178752334
x8 44.091 45.61774832356247
x9 1.750 1.7497570126997908
x10 34.995 34.99514024843488
�1(x) NA -1.38E-05
�2(x) NA -1359.050
�3(x) NA -153.846
�4(x) NA -1203.412
�5(x) NA -111.111
�6(x) NA -1.16E-10
�7(x) NA 0.0
�8(x) NA -2.258
�9(x) NA -0.769
�10(x) NA -1.49E-08
�11(x) NA -3.18E-09
f (x) 63893.52 64578.19402431244
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6. Conclusion

The firefly algorithm (FA) is a prominent new swarm intelligence metaheuristic
which has been successfully used to solve a huge number of hard optimization
problems. In this paper an enhanced firefly algorithm (E-FA) is proposed in order
to improve the performance of the FA for mixed variable structural optimization
problems. The E-FA employs Deb’s rules in order to handle the constraint instead
of penalty approachwhich is used in the original FA. Also, in order to improve the
quality of the solutions and convergence speed, the E-FA uses the geometric pro-
gression reduction scheme similar to the cooling schedule of simulated annealing.

The proposed approach was then tested on four structural optimization prob-
lems. The comparison results show that the proposed E-FA, for the majority of
tested problems, found similar or better best solutions, with lower mean and stan-
dard deviations, and with significantly faster convergence. From this research, it
can be concluded that the results obtained by the proposedE-FAare very promising
and encourage further research for applying it to some other constrained optimiza-
tion problems, as well as its extension to solve the multi-objective problems.
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