ON WIJSMAN DEFERRED STATISTICAL CONVERGENCE OF DOUBLE SEQUENCES OF SETS
Abstract
In this article, we introduce the concepts of Wijsman deferred statistical convergence and Wijsman strong deferred Cesaro summability for double sequences of sets. Additionally, some properties and based results have been established under a few restrictions.
Keywords
Full Text:
PDFReferences
R. P. Agnew: On deferred Ces`aro means, Ann. Math. 33 (1932), 413–421.
B. Altay and F. Bas¸ar: Some new spaces of double sequences, J. Math. Anal. Appl. 309(1) (2005), 70–90.
Y. Altin, M. Et and M. Basarir: On some generalized difference sequences of fuzzy numbers, Kuwait J. Sci. Engrg. 34(1A) (2007), 1–14.
K. E. Akbas and M. Isik: On asymptotically λ−statistical equivalent sequences of order α in probability, Filomat 34(13) (2020), 4359–4365.
V. K. Bhardwaj and S. Dhawan: Density by moduli and lacunary statistical convergence, Abstr. Appl. Anal. 2016 (2016), 9365037.
V. K. Bhardwaj, S. Dhawan and O. Dovgoshey: Density by moduli and Wijsman statistical convergence, Bull. Belgian Math. Soc. 24(3) (2016), 1-28.
V. K. Bhardwaj and S. Dhawan: Density by moduli and Wijsman lacunary statistical convergence of sequences of sets, J. Inequal. Appl. 2017 (2017), 25.
H. Cakalli: Lacunary statistical convergence in topological groups, Indian J. Pure Appl. Math. 26 (1995), 113-119.
A. Caserta, G. Di Maio and L. D. R. Koˇcinac: Statistical convergence in function spaces, Abstr. Appl. Anal. 2011 (2011), 420419.
J. S. Connor: The statistical and strong p-Ces`aro convergence of sequences, Analysis 8 (1988), 47–63.
I. Dagadur and S. Sezgek: Deferred Ces`aro mean and deferred statistical convergence of double sequences, J. Inequal. Spec. Funct. 7(4) (2016), 118–136.
M. Et and H. S. Kandemir: On pointwise lacunary statistical convergence of order α of sequences of function, Proc. Nat. Acad. Sci. India Sect. A 85(2) (2015), 253–258.
M. Et, S. A. Mohiuddine and A. Alotaibi: On λ-statistical convergence and strongly λ-summable functions of order α, J. Inequal. Appl. 2013 (2013), 469.
H. Fast: Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
J. A. Fridy: On statistical convergence, Analysis 5 (1985), 301–313.
M. Gungor and M. Et: Δr−strongly almost summable sequences defined by Orlicz functions, Indian J. Pure Appl. Math. 34(8) (2003), 1141–1151.
M. Gungor, M. Et and Y. Altin: Strongly (Vσ, λ, q)−summable sequences defined by Orlicz functions, Appl. Math. Comput. 157(2) (2004), 561–571.
M. Isik and K. E. Akbas: On λ-statistical convergence of order α in probability, J. Inequal. Spec. Funct. 8 (2017), 57-64.
M. Isik and K. E. Akbas: On asymptotically lacunary statistical equivalent sequences of order α in probability, ITM Web of Conferences 13 (2017), 01024.
M. Kuc¸ukaslan and M. Yılmazturk: On deferred statistical convergence of sequences, Kyungpook Math. J. 56(2) (2016), 357–366.
M. Mursaleen and Osama H. H. Edely: Statistical convergence of double sequences, J. Math. Anal. Appl. 288(1) (2003), 223–231.
S. A. Rahaman and M. Mursaleen: On Rough Deferred Statistical Convergence of Difference Sequences in L–Fuzzy Normed Spaces, Journal of Mathematical Analysis and Applications (2023), 127684.
F. Nuray and B. E. Rhoades: Statistical convergence of sequences of sets, Fasc. Math. 49 (2012), 87-99.
F. Nuray, E. D¨undar and U. Ulusu: Wijsman Statistical Convergence of Double Sequences of Set, Iranian Journal of Mathematical Sciences and Informatics 16(1) (2021), 55-64.
F. Nuray, U. Ulusu and E. D¨undar: Lacunary statistical convergence of double sequences of sets, Soft Computing 20(7) (2016), 2883-2888.
A. Pringsheim: Zur Ttheorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900) 289–321.
T. Salat: On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150.
E. Savas and M. Et: On (Δmλ, I)−statistical convergence of order α, Period. Math. Hungar. 71 (2015), 135-145.
E. Savas: On generalized double statistical convergence in locally solid Riesz spaces, Miskolc Math. Notes 17(1) (2016), 591–603.
I. J. Schoenberg: The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361-375.
H. Steinhaus: Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-74.
V. B. Limaye and M. Zeltser: On the Pringsheim convergence of double series, Proc. Est. Acad. Sci. 58(2) (2009), 108–121.
M. Zeltser, M. Mursaleen and S. A. Mohiuddine: On almost conservative matrix methods for double sequence spaces, Publ. Math. Debrecen 75(3-4) (2009), 387–399.
A. Zygmund: Trigonometric Series, Cambridge University Press, Cambridge, UK, (1979).
DOI: https://doi.org/10.22190/FUMI211022043Y
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)