ON FRAMED TZITZEICA CURVES IN EUCLIDEAN SPACE
Abstract
Investigations are very important for non-regular curves in differential geometry. Framed curves have been used recently to study singular curves, and they have many contributions to singularity theory. In this study, framed Tzitzeica curves are introduced with the help of framed curves. In addition, some framed special curves that satisfy the Tzitzeica condition are given. New results have been obtained among the framed curves of these curves.
Keywords
Full Text:
PDFReferences
bibitem{1}
{sc M. E. Aydın} {rm and} {sc M. Ergut}: emph{Non-null curves of Tzitzeica type in Minkowski 3-space}. Romanian J. of Math. and Comp. Sci. textbf{4}(1) (2014), 81--90
bibitem{7}
{sc B. Bayram}, {sc E. Tunç}, {sc K. Arslan} {rm and} {sc G. Öztürk}: emph{On Tzitzeica curves in Euclidean space $E^3$}. Facta Universitatis. textbf{33}(3) (2018), 409--416.
bibitem{5}
{sc N. Bila}: emph{Symmetry raductions for the Tzitzeica curve equation}. Math. and Comp.
Sci. Workin Papers. textbf{16}(2012).
bibitem{4}
{sc A. Bobe}, {sc W. G. Boskoff} {rm and} {sc M. G. Ciuca}: emph{Tzitzeica type centro-affine invariants in Minkowski space}. An. St. Univ. Ovidius Constanta. textbf{20}(2) (2012), 27--34.
bibitem{2}
{sc M. Crasmareann}: emph{Cylindrical Tzitzeica curves implies forced harmonic oscillators}. Balkan J. Geom. Its App. textbf{7}(1) (2002), 37--42.
bibitem{6}
{sc O. Constantinescu} {rm and} {sc M. Crasmareann}: emph{A new Tzitzeica hypersurface and cubic Finslerian metrics of Berwall type}. Balkan J. Geom. Its App. textbf{16}(2)
(2011), 27--34.
bibitem{19} {sc K. Eren} {rm and} {sc S. Ersoy}: emph{Characterizations of Tzitzeica curves using Bishop frames}, Math. Meth. Appl. Sci. (2021), https://doi.org/10.1002/mma.7483.
bibitem{9}
{sc T. Fukunaga} {rm and} {sc M. Takahashi}: emph{Existence conditions of framed curves for smooth curves}. J. Geom. textbf{108}(2017),763--774.
bibitem{8}
{sc S. Honda} {rm and} {sc M. Takahashi}: emph{Framed curves in the Euclidean space}. Adv. Geom. textbf{16}(2016) 265--276.
bibitem{12}
{sc S. Honda} {rm and} {sc M. Takahashi}: emph{Bertrand and Mannheim curves of framed curves in the 3-dimensional Euclidean space},. Turk. J. Math. textbf{44}(2020), 883--899.
bibitem{14}
{sc S. Honda}: emph{Rectifying developable surfaces of framed base curves and framed helices}. Advanced Studies in Pure Math. textbf{78}(2018), 273--292.
bibitem{15}
{sc S. Honda} {rm and} {sc M. Takahashi}: emph{Evolutes and focal surfaces of framed immersions in the Euclidean space}, Proceedings of the Royal Society of Edinburgh. Sect. A., textbf{150}(1)(2020), 497-516.
bibitem{3}
{sc M. K. Karacan} {rm and} {sc B. Bükçü}: emph{On the elliptic cylindrical Tzitzeica curves in Minkowski 3-space}. Sci. Manga. textbf{5} (2009), 44--48.
bibitem{11}
{sc M. Takahashi}: emph{Legendre curves in the unit spherical bundle over the unit sphere and evolutes}. Contemporary Mathematics. textbf{675}(2016), 337--355.
bibitem{16}
{sc Y. Wang}, {sc D. Pei} {rm and} {sc R. Gao}: emph{Generic properties of framed rectifying curves}. Mathematics. textbf{7}(2019), 37.
bibitem{13}
{sc B. D. Yazıcı}, {sc S.Ö. Karakuş} {rm and} {sc M. Tosun}: emph{Framed normal curves in Euclidean space}. Tbilisi-Mathematics. 2020, 27--37.
bibitem{17} {sc B. D. Yazıcı}, {sc S.Ö. Karakuş} {rm and} {sc M. Tosun}: emph{On the classification of framed rectifying curves in Euclidean space}. Math. Meth. Appl. Sci. (2021), 1–10, DOI: https://doi.org/10.1002/mma.7561.
bibitem{18} {sc B. D. Yazıcı}, {sc S.Ö. Karakuş} {rm and} {sc M. Tosun}: emph{Framed curves and their applications based on a new differential equation}. International Electronic J. Geom. DOI: 10.36890/iejg.875477.
DOI: https://doi.org/10.22190/FUMI211025021D
Refbacks
ISSN 0352-9665 (Print)