∆f−LACUNARY STATISTICAL CONVERGENCE OF ORDER β

Mithat Kasap, Hifsi Altinok

DOI Number
https://doi.org/10.22190/FUMI211101039K
First page
579
Last page
590

Abstract


The main object of this article is to introduce the concepts of ∆f-lacunary statistical convergence of order β and strong ∆f-lacunary summability of order β for sequences of fuzzy numbers and define some sequence classes related to these concepts. We give some inclusion relations between those sequence classes.


Keywords

∆f−lacunary statistical convergence, strong ∆f−lacunary summability.

Full Text:

PDF

References


A. Aizpuru, M. C. Listan-Garcıa and F. Rambla-Barreno: Density by moduli and statistical convergence. Quaest. Math. 37(4) (2014), 525-530.

H. Altınok, Y. Altın and M. Isık: Statistical Convergence and Strong p−Cesaro Summability of Order β in Sequences of Fuzzy Numbers. Iranian J. of Fuzzy Systems 9(2) (2012), 65–75.

H. Altınok and M. Mursaleen: ∆−Statistical boundedness for sequences of fuzzy numbers. Taiwanese Journal of Mathematics, 15(5), (2011), 2081–2093.

V. K. Bhardwaj and S. Dhawan: Density by moduli and lacunary statistical convergence. Abstr. Appl. Anal. (2016), Art. ID 9365037, 11 pp.

V. K. Bhardwaj and S. Dhawan: f−statistical convergence of order α and strong Cesaro summability of order α with respect to a modulus. J. Inequal. Appl. 2015(332) (2015).

R. Colak, Y. Altin, and M. Mursaleen: On some sets of difference sequences of fuzzy numbers. Soft Computing 15 (2011), 787–793.

J. S. Connor: The statistical and strong p−Cesaro convergence of sequences. Analysis 8 (1988), 47–63.

H. Cakallı: A study on statistical convergence. Funct. Anal. Approx. Comput. 1(2) (2009), 19–24.

M. Cınar, M. Karakas and M. Et: On pointwise and uniform statistical convergence of order α for sequences of functions. Fixed Point Theory And Applications, Article Number: 33 (2013).

R. Colak: Statistical convergence of order α: Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub, (2010), 121–129.

M. Et, Y. Altın and H. Altınok: On some generalized difference sequence spaces defined by a modulus function. Filomat 17 (2003), 23–33.

M. Et and H. Sengul: Some Cesaro-type summability spaces of order α and lacunary statistical convergence of order α. Filomat 28(8) (2014), 1593–1602.

H. Fast: Sur la convergence statistique. Colloq. Math. 2 (1951), 241–244.

A. R. Freedman, J. J. Sember and M. Raphael: Some Cesaro-type summability spaces. Proc. Lond. Math. Soc. 37(3) (1978), 508–520.

J. Fridy: On statistical convergence. Analysis 5 (1985), 301–313.

J. Fridy and C. Orhan: Lacunary statistical convergence. Pacific J. Math. 160 (1993), 43–51.

A. D. Gadjiev and C. Orhan: Some approximation theorems via statistical convergence. Rocky Mountain J. Math. 32(1) (2002), 129–138.

B. Hazarika, A. Alotaibi and S. A. Mohiuddine: Statistical convergence in measure for double sequences of fuzzy-valued functions. Soft Computing 24 (2020), 6613–6622.

M. Isık: Generalized vector-valued sequence spaces defined by modulus functions. J. Inequal, Appl. 2010, Art. ID 457892, 7 pp.

M. Isık and K. E. Et: On lacunary statistical convergence of order α in probability. AIP Conference Proceedings 1676, 020045 (2015). doi: http://dx.doi.org/10.1063/1.4930471.

H. Kızmaz: On certain sequence spaces. Canad. Math. Bull. 24(2) (1981), 169–176.

I. J. Maddox: Sequence spaces defined by a modulus. Math. Proc. Camb. Philos. Soc. 100 (1986), 161–166.

M. Matloka: Sequences of fuzzy numbers. BUSEFAL 28 (1986), 28–37.

S. A. Mohiuddine, A. Asiri and B. Hazarika: Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems. Int. J. Gen. Syst. 48(5) (2019), 492–506.

H. Nakano: Modulared sequence spaces. Proc. Japan Acad. 27 (1951), 508–512.

S. Nanda: On sequences of fuzzy number. Fuzzy Sets and Systems 33 (1989), 123–126.

F. Nuray and E. Savas¸: Some new sequence spaces defined by a modulus function. Indian J. Pure Appl. Math. 24(11) (1993), 657-663.

S. Pehlivan and B. Fisher: Some sequence spaces defined by a modulus. Math. Slovaca. 45(3) (1995), 275–280.

T. Salat: On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139–150.

I. J. Schoenberg: The integrability of certain functions and related summability methods. Amer. Math. Monthly 66 (1959), 361–375.

H. Steinhaus: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2 (1951),73–74.

H. Sengul and M. Et: On lacunary statistical convergence of order α. Acta Math. Sci. Ser. B Engl. Ed. 34(2) (2014), 473–482.

L. A. Zadeh: Fuzzy sets. Information and Control 8, (1965), 338–353.




DOI: https://doi.org/10.22190/FUMI211101039K

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)