SPHERES AND CIRCLES WITH RESPECT TO AN INDEFINITE METRIC ON A RIEMANNIAN MANIFOLD WITH A SKEW-CIRCULANT STRUCTURE
Abstract
Keywords
Full Text:
PDFReferences
N. Abe, Y. Nakanishi and S. Yamaguchi: Circles and spheres in
pseudo-Riemannian geometry, Aequationes Math. 39 (1990), no. 2-3, 134–145. https://doi.org/10.1007/BF01833144
D. Angella and M. Origlia: Locally conformally K¨ahler structures on fourdimensional solvable Lie algebras, Complex Manifolds 7 (2020), no. 1, 1–35. https://doi.org/10.1515/coma-2020-0001
Y. Cherevko, V. Berezovski, I. Hinterleitner and D. Smetanova: Infinitesimal transformations of locally conformal K¨ahler manifolds, Mathematics 7 (2019), no. 8, 658 pp. https://doi.org/10.3390/math7080658
P. J. Davis, Circulant matrices: A Wiley-Interscience Publication. Pure and Applied Mathematics. John Wiley and Sons, New York-Chichester-Brisbane, 1979.
I. Dokuzova and G. Dzhelepov: Spheres and circles in a tangent space of a 4-dimensional Riemannian manifold with respect to an indefinite metric, J. Geom. 109 (2018), no. 3, Paper No. 49, 11 pp. https://doi.org/10.1007/s00022-018-0455-x
I. Dokuzova and D. Razpopov: Four-dimensional almost Einstein manifolds with skew-circulant structures, J. Geom. 111 (2020), no. 1, Paper No. 9, 18 pp. https://doi.org/10.1007/s00022-020-0521-z
I. Dokuzova and D. Razpopov: A Riemannian manifold with skew-circulant structures and an associated locally conformal K¨ahler manifold, Novi Sad J. Math. (2023) (in print) https://doi.org/10.30755/NSJOM.12412
R. M. Gray: Toeplitz and circulant matrices: A review, Found. Trends Commun. Inf. Theory 2 (2006), no. 3, 155–239. http://dx.doi.org/10.1561/0100000006
A. Gray and L. M. Hervella: The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4), 123 (1980), 35–58. https://doi.org/10.1007/BF01796539
T. Huang: A note on Euler number of locally conformally K¨ahler manifolds, Math. Z. 296 (2020), no. 3-4, 1725-1733. https://doi.org/10.1007/s00209-020-02491-y
T. Ikawa: On curves and submanifolds in an indefinite-Riemannian manifold, Tsukuba J. Math. 9 (1985), no. 2, 353–371.
https://doi.org/10.21099/tkbjm/1496160296
J. J. Konderak: Construction of harmonic maps between pseudo-Riemannian spheres and hyperbolic spaces, Proc. Amer. Math. Soc. 109 (1990), no. 2, 469–476. https://doi.org/10.1090/S0002-9939-1990-0993755-2
R. Lopez: Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom. 7 (2014), no 1, 44–107. https://doi.org/10.36890/iejg.594497
A. Moroianu, S. Moroianu and L. Ornea: Locally conformally K¨ahler manifolds with holomorphic Lee field, Differential Geom. Appl., 60 (2018), 33-38. https://doi.org/10.1016/j.difgeo.2018.05.004
M. Prvanovi´c: Some properties of the locally conformal K¨ahler
manifold, Bull. Cl. Sci. Math. Nat. Sci. Math. 35 (2010), 9–23.
https://www.emis.de/journals/BSANU/35/2.html
G. E. Vilcu: Ruled CR-submanifolds of locally conformal K¨ahler manifolds, J. Geom. Phys. 62 (2012), no. 6, 1366–1372. https://doi.org/10.1016/j.geomphys.2012.02.004.
DOI: https://doi.org/10.22190/FUMI220707044D
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)