ON SOME COMMON FIXED POINT THEOREMS FOR GENERALIZED INTEGRAL TYPE $F$-CONTRACTIONS IN PARTIAL METRIC SPACES
Abstract
Keywords
Full Text:
PDFReferences
bibitem{AKT11} T. Abdeljawad, E. Karapinar and K. Tas, Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett. {bf 24} (2011), 1900-1904.
bibitem{ADM14} $ddot{O}$. Acar, G. Durmaz and G. Minak, Generalized multivalued $F$-contractions on complete metric spaces, Bull. Iranian Math. Soc. {bf 40(6)} (2014), 1469-1478.
bibitem{A21} $ddot{O}$. Acar, Fixed point theorems for rational type $F$-contraction, Carpathian Math. Publ. {bf 13(1)} (2021), 39-47.
bibitem{ARA15} J. Ahmad, Al-Rawashdeh and A. Azam, New fixed point theorems for generalized $F$-contractions in complete metric spaces, Fixed Point Theory Appl. 2015, no. 1, Article ID 80, 2015.
bibitem{ANAK19} A. Asif, M. Nazam, M. Arshad and S. O. Kim, $F$-metric, $F$-contraction and common fixed point theorems with applications, Mathematics {bf 7(7)} (2019), 586, 1-13.
bibitem{AAV12} H. Aydi, M. Abbas and C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topology and Its Appl. {bf 159} (2012), No. 14, 3234-3242.
bibitem{B22} S. Banach, Sur les operation dans les ensembles
abstraits et leur application aux equation integrals, Fund. Math.
{bf 3}(1922), 133-181.
bibitem{B02} A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, International J. Math. Math. Sci. {bf 29(9)} (2002), 531-536.
bibitem{KY11} E. Karapinar and U. Y$ddot{u}$ksel, Some common fixed point theorems in partial metric space, J. Appl. Math. {bf 2011}, Article ID: 263621, 2011.
bibitem{KL21} S. Kumar and S. Luanbano, On some fixed point theorems for multivalued $F$-contractions in partial metric spaces, Demonstratio Math. {bf 54} (2021), 151-161.
bibitem{K01} H. P. A. K$ddot{u}$nzi, Nonsymmetric distances and their associated topologies about the origins of basic ideas in the area of asymptotic topology, Handbook of the History Gen. Topology (eds. C.E. Aull and R. Lowen), Kluwer Acad. Publ., {bf 3} (2001), 853-868.
bibitem{LKK19} S. Luanbano, S. Kumar and G. Kakiko, Fixed point theorems for $F$-contraction mappings in partial metric spaces, Lobachaveskii J. Math. {bf 40} (2019), 183-188.
bibitem{M92} S. G. Matthews, Partial metric topology, Research report 2012, Dept. Computer Science, University of Warwick, 1992.
bibitem{M94} S. G. Matthews, Partial metric topology, Proceedings of the 8th summer conference on topology and its applications, Annals of the New York Academy of Sciences, {bf 728} (1994), 183-197.
bibitem{NKRK12} H. K. Nashine, Z. Kadelburg, S. Radenovic and J. K. Kim, Fixed point theorems under Hardy-Rogers contractive conditions on $0$-complete ordered partial metric spaces, Fixed Point Theory Appl. {bf 2012} (2012), 1-15.
bibitem{S03} M. Schellekens, A characterization of partial metrizibility: domains are quantifiable, Theoritical Computer Science, {bf 305(1-3)} (2003), 409-432.
bibitem{S13} N. A. Secelean, Iterated function systems consisting of $F$-contractions, Fixed Point Theory Appl. {bf 2013}, Article ID 277, (2013).
bibitem{SSK21} M. Shoaib, M. Sarwar and P. Kumam, Multi-valued fixed point theorem via $F$-contraction of Nadler type and application to functional and integral equations, Bol. Soc. Paran. Mat. {bf 39(4)} (2021), 83-95.
bibitem{SR13} S. Shukla and S. Radenovi$acute{c}$, Some common fixed point theorems for $F$-contraction type mappings in $0$-complete partial metric spaces, J. Math. {bf 2013}, Article ID 878730, 2013.
bibitem{TGJM16} A. Tomar, Giniswamy, C. Jeyanthi and P. G. Maheshwari, Coincidence and common fixed point of $F$-contractions via CLRST property, Surveys Math. Appl. {bf 11} (2016), 21-31.
bibitem{V05} O. Vetro, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topology {bf 6} (2005), No. 12, 229-240.
bibitem{W12} D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, FPoint Theory Appl. (2012), {bf 2012:94}.
bibitem{W06} P. Waszkiewicz, Partial metrizibility of continuous posets, Mathematical Structures in Computer Science {bf 16(2)} (2006), 359-372.
DOI: https://doi.org/10.22190/FUMI220306047S
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)